using Microsoft.AspNetCore.Cryptography.KeyDerivation; using System; using System.Runtime.CompilerServices; using System.Security.Cryptography; namespace Timeline.Services { /// /// Hashed password is of bad format. /// /// [Serializable] public class HashedPasswordBadFromatException : Exception { private static string MakeMessage(string reason) { return Resources.Services.Exception.HashedPasswordBadFromatException + " Reason: " + reason; } public HashedPasswordBadFromatException() : base(Resources.Services.Exception.HashedPasswordBadFromatException) { } public HashedPasswordBadFromatException(string message) : base(message) { } public HashedPasswordBadFromatException(string message, Exception inner) : base(message, inner) { } public HashedPasswordBadFromatException(string hashedPassword, string reason) : base(MakeMessage(reason)) { HashedPassword = hashedPassword; } public HashedPasswordBadFromatException(string hashedPassword, string reason, Exception inner) : base(MakeMessage(reason), inner) { HashedPassword = hashedPassword; } protected HashedPasswordBadFromatException( System.Runtime.Serialization.SerializationInfo info, System.Runtime.Serialization.StreamingContext context) : base(info, context) { } public string? HashedPassword { get; set; } } public interface IPasswordService { /// /// Hash a password. /// /// The password to hash. /// A hashed representation of the supplied . /// Thrown when is null. string HashPassword(string password); /// /// Verify whether the password fits into the hashed one. /// /// Usually you only need to check the returned bool value. /// Catching usually is not necessary. /// Because if your program logic is right and always call /// and in pair, this exception will never be thrown. /// A thrown one usually means the data you saved is corupted, which is a critical problem. /// /// The hashed password. /// The password supplied for comparison. /// True indicating password is right. Otherwise false. /// Thrown when or is null. /// Thrown when the hashed password is of bad format. bool VerifyPassword(string hashedPassword, string providedPassword); } /// /// Copied from https://github.com/aspnet/AspNetCore/blob/master/src/Identity/Extensions.Core/src/PasswordHasher.cs /// Remove V2 format and unnecessary format version check. /// Remove configuration options. /// Remove user related parts. /// Change the exceptions. /// public class PasswordService : IPasswordService { /* ======================= * HASHED PASSWORD FORMATS * ======================= * * Version 3: * PBKDF2 with HMAC-SHA256, 128-bit salt, 256-bit subkey, 10000 iterations. * Format: { 0x01, prf (UInt32), iter count (UInt32), salt length (UInt32), salt, subkey } * (All UInt32s are stored big-endian.) */ private readonly RandomNumberGenerator _rng = RandomNumberGenerator.Create(); public PasswordService() { } // Compares two byte arrays for equality. The method is specifically written so that the loop is not optimized. [MethodImpl(MethodImplOptions.NoInlining | MethodImplOptions.NoOptimization)] private static bool ByteArraysEqual(byte[] a, byte[] b) { if (a == null && b == null) { return true; } if (a == null || b == null || a.Length != b.Length) { return false; } var areSame = true; for (var i = 0; i < a.Length; i++) { areSame &= (a[i] == b[i]); } return areSame; } public string HashPassword(string password) { if (password == null) throw new ArgumentNullException(nameof(password)); return Convert.ToBase64String(HashPasswordV3(password, _rng)); } private byte[] HashPasswordV3(string password, RandomNumberGenerator rng) { return HashPasswordV3(password, rng, prf: KeyDerivationPrf.HMACSHA256, iterCount: 10000, saltSize: 128 / 8, numBytesRequested: 256 / 8); } private static byte[] HashPasswordV3(string password, RandomNumberGenerator rng, KeyDerivationPrf prf, int iterCount, int saltSize, int numBytesRequested) { // Produce a version 3 (see comment above) text hash. byte[] salt = new byte[saltSize]; rng.GetBytes(salt); byte[] subkey = KeyDerivation.Pbkdf2(password, salt, prf, iterCount, numBytesRequested); var outputBytes = new byte[13 + salt.Length + subkey.Length]; outputBytes[0] = 0x01; // format marker WriteNetworkByteOrder(outputBytes, 1, (uint)prf); WriteNetworkByteOrder(outputBytes, 5, (uint)iterCount); WriteNetworkByteOrder(outputBytes, 9, (uint)saltSize); Buffer.BlockCopy(salt, 0, outputBytes, 13, salt.Length); Buffer.BlockCopy(subkey, 0, outputBytes, 13 + saltSize, subkey.Length); return outputBytes; } public bool VerifyPassword(string hashedPassword, string providedPassword) { if (hashedPassword == null) throw new ArgumentNullException(nameof(hashedPassword)); if (providedPassword == null) throw new ArgumentNullException(nameof(providedPassword)); byte[] decodedHashedPassword; try { decodedHashedPassword = Convert.FromBase64String(hashedPassword); } catch (FormatException e) { throw new HashedPasswordBadFromatException(hashedPassword, Resources.Services.Exception.HashedPasswordBadFromatExceptionNotBase64, e); } // read the format marker from the hashed password if (decodedHashedPassword.Length == 0) { throw new HashedPasswordBadFromatException(hashedPassword, Resources.Services.Exception.HashedPasswordBadFromatExceptionNotLength0); } return (decodedHashedPassword[0]) switch { 0x01 => VerifyHashedPasswordV3(decodedHashedPassword, providedPassword, hashedPassword), _ => throw new HashedPasswordBadFromatException(hashedPassword, Resources.Services.Exception.HashedPasswordBadFromatExceptionNotUnknownMarker), }; } private bool VerifyHashedPasswordV3(byte[] hashedPassword, string password, string hashedPasswordString) { try { // Read header information KeyDerivationPrf prf = (KeyDerivationPrf)ReadNetworkByteOrder(hashedPassword, 1); int iterCount = (int)ReadNetworkByteOrder(hashedPassword, 5); int saltLength = (int)ReadNetworkByteOrder(hashedPassword, 9); // Read the salt: must be >= 128 bits if (saltLength < 128 / 8) { throw new HashedPasswordBadFromatException(hashedPasswordString, Resources.Services.Exception.HashedPasswordBadFromatExceptionNotSaltTooShort); } byte[] salt = new byte[saltLength]; Buffer.BlockCopy(hashedPassword, 13, salt, 0, salt.Length); // Read the subkey (the rest of the payload): must be >= 128 bits int subkeyLength = hashedPassword.Length - 13 - salt.Length; if (subkeyLength < 128 / 8) { throw new HashedPasswordBadFromatException(hashedPasswordString, Resources.Services.Exception.HashedPasswordBadFromatExceptionNotSubkeyTooShort); } byte[] expectedSubkey = new byte[subkeyLength]; Buffer.BlockCopy(hashedPassword, 13 + salt.Length, expectedSubkey, 0, expectedSubkey.Length); // Hash the incoming password and verify it byte[] actualSubkey = KeyDerivation.Pbkdf2(password, salt, prf, iterCount, subkeyLength); return ByteArraysEqual(actualSubkey, expectedSubkey); } catch (Exception e) { // This should never occur except in the case of a malformed payload, where // we might go off the end of the array. Regardless, a malformed payload // implies verification failed. throw new HashedPasswordBadFromatException(hashedPasswordString, Resources.Services.Exception.HashedPasswordBadFromatExceptionNotOthers, e); } } private static uint ReadNetworkByteOrder(byte[] buffer, int offset) { return ((uint)(buffer[offset + 0]) << 24) | ((uint)(buffer[offset + 1]) << 16) | ((uint)(buffer[offset + 2]) << 8) | ((uint)(buffer[offset + 3])); } private static void WriteNetworkByteOrder(byte[] buffer, int offset, uint value) { buffer[offset + 0] = (byte)(value >> 24); buffer[offset + 1] = (byte)(value >> 16); buffer[offset + 2] = (byte)(value >> 8); buffer[offset + 3] = (byte)(value >> 0); } } }