#include #include int calc(std::vector> &obstacleGrid) { int R = obstacleGrid.size(); int C = obstacleGrid[0].size(); // If the starting cell has an obstacle, then simply return as there would be // no paths to the destination. if (obstacleGrid[0][0] == 1) { return 0; } // Number of ways of reaching the starting cell = 1. obstacleGrid[0][0] = 1; // Filling the values for the first column for (int i = 1; i < R; i++) { obstacleGrid[i][0] = (obstacleGrid[i][0] == 0 && obstacleGrid[i - 1][0] == 1) ? 1 : 0; } // Filling the values for the first row for (int i = 1; i < C; i++) { obstacleGrid[0][i] = (obstacleGrid[0][i] == 0 && obstacleGrid[0][i - 1] == 1) ? 1 : 0; } // Starting from cell(1,1) fill up the values // No. of ways of reaching cell[i][j] = cell[i - 1][j] + cell[i][j - 1] // i.e. From above and left. for (int i = 1; i < R; i++) { for (int j = 1; j < C; j++) { if (obstacleGrid[i][j] == 0) { obstacleGrid[i][j] = obstacleGrid[i - 1][j] + obstacleGrid[i][j - 1]; } else { obstacleGrid[i][j] = 0; } } } // Return value stored in rightmost bottommost cell. That is the destination. return obstacleGrid[R - 1][C - 1]; } int main() { int row, column, bs; std::cin >> row >> column >> bs; std::vector> grid(row, std::vector(column, 0)); for (int i = 0; i < bs; i++) { int r, c; std::cin >> r >> c; grid[r][c] = 1; } std::cout << calc(grid); return 0; }