diff options
Diffstat (limited to 'patches/mpfr/3.1.3/220-root.patch')
-rw-r--r-- | patches/mpfr/3.1.3/220-root.patch | 621 |
1 files changed, 621 insertions, 0 deletions
diff --git a/patches/mpfr/3.1.3/220-root.patch b/patches/mpfr/3.1.3/220-root.patch new file mode 100644 index 00000000..9cd62a77 --- /dev/null +++ b/patches/mpfr/3.1.3/220-root.patch @@ -0,0 +1,621 @@ +diff -Naurd mpfr-3.1.3-a/PATCHES mpfr-3.1.3-b/PATCHES +--- mpfr-3.1.3-a/PATCHES 2016-02-15 15:20:51.242696408 +0000 ++++ mpfr-3.1.3-b/PATCHES 2016-02-15 15:20:51.306696441 +0000 +@@ -0,0 +1 @@ ++root +diff -Naurd mpfr-3.1.3-a/VERSION mpfr-3.1.3-b/VERSION +--- mpfr-3.1.3-a/VERSION 2016-02-15 15:20:16.922677881 +0000 ++++ mpfr-3.1.3-b/VERSION 2016-02-15 15:20:51.306696441 +0000 +@@ -1 +1 @@ +-3.1.3-p11 ++3.1.3-p12 +diff -Naurd mpfr-3.1.3-a/src/mpfr.h mpfr-3.1.3-b/src/mpfr.h +--- mpfr-3.1.3-a/src/mpfr.h 2016-02-15 15:20:16.922677881 +0000 ++++ mpfr-3.1.3-b/src/mpfr.h 2016-02-15 15:20:51.302696439 +0000 +@@ -27,7 +27,7 @@ + #define MPFR_VERSION_MAJOR 3 + #define MPFR_VERSION_MINOR 1 + #define MPFR_VERSION_PATCHLEVEL 3 +-#define MPFR_VERSION_STRING "3.1.3-p11" ++#define MPFR_VERSION_STRING "3.1.3-p12" + + /* Macros dealing with MPFR VERSION */ + #define MPFR_VERSION_NUM(a,b,c) (((a) << 16L) | ((b) << 8) | (c)) +diff -Naurd mpfr-3.1.3-a/src/root.c mpfr-3.1.3-b/src/root.c +--- mpfr-3.1.3-a/src/root.c 2015-06-19 19:55:10.000000000 +0000 ++++ mpfr-3.1.3-b/src/root.c 2016-02-15 15:20:51.282696429 +0000 +@@ -23,13 +23,15 @@ + #define MPFR_NEED_LONGLONG_H + #include "mpfr-impl.h" + +- /* The computation of y = x^(1/k) is done as follows: ++ /* The computation of y = x^(1/k) is done as follows, except for large ++ values of k, for which this would be inefficient or yield internal ++ integer overflows: + + Let x = sign * m * 2^(k*e) where m is an integer + + with 2^(k*(n-1)) <= m < 2^(k*n) where n = PREC(y) + +- and m = s^k + r where 0 <= r and m < (s+1)^k ++ and m = s^k + t where 0 <= t and m < (s+1)^k + + we want that s has n bits i.e. s >= 2^(n-1), or m >= 2^(k*(n-1)) + i.e. m must have at least k*(n-1)+1 bits +@@ -38,11 +40,15 @@ + x^(1/k) = s * 2^e or (s+1) * 2^e according to the rounding mode. + */ + ++static int ++mpfr_root_aux (mpfr_ptr y, mpfr_srcptr x, unsigned long k, ++ mpfr_rnd_t rnd_mode); ++ + int + mpfr_root (mpfr_ptr y, mpfr_srcptr x, unsigned long k, mpfr_rnd_t rnd_mode) + { + mpz_t m; +- mpfr_exp_t e, r, sh; ++ mpfr_exp_t e, r, sh, f; + mpfr_prec_t n, size_m, tmp; + int inexact, negative; + MPFR_SAVE_EXPO_DECL (expo); +@@ -55,50 +61,27 @@ + + if (MPFR_UNLIKELY (k <= 1)) + { +- if (k < 1) /* k==0 => y=x^(1/0)=x^(+Inf) */ +-#if 0 +- /* For 0 <= x < 1 => +0. +- For x = 1 => 1. +- For x > 1, => +Inf. +- For x < 0 => NaN. +- */ ++ if (k == 0) + { +- if (MPFR_IS_NEG (x) && !MPFR_IS_ZERO (x)) +- { +- MPFR_SET_NAN (y); +- MPFR_RET_NAN; +- } +- inexact = mpfr_cmp (x, __gmpfr_one); +- if (inexact == 0) +- return mpfr_set_ui (y, 1, rnd_mode); /* 1 may be Out of Range */ +- else if (inexact < 0) +- return mpfr_set_ui (y, 0, rnd_mode); /* 0+ */ +- else +- { +- mpfr_set_inf (y, 1); +- return 0; +- } ++ MPFR_SET_NAN (y); ++ MPFR_RET_NAN; + } +-#endif +- { +- MPFR_SET_NAN (y); +- MPFR_RET_NAN; +- } +- else /* y =x^(1/1)=x */ ++ else /* y = x^(1/1) = x */ + return mpfr_set (y, x, rnd_mode); + } + + /* Singular values */ +- else if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) ++ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) + { + if (MPFR_IS_NAN (x)) + { + MPFR_SET_NAN (y); /* NaN^(1/k) = NaN */ + MPFR_RET_NAN; + } +- else if (MPFR_IS_INF (x)) /* +Inf^(1/k) = +Inf +- -Inf^(1/k) = -Inf if k odd +- -Inf^(1/k) = NaN if k even */ ++ ++ if (MPFR_IS_INF (x)) /* +Inf^(1/k) = +Inf ++ -Inf^(1/k) = -Inf if k odd ++ -Inf^(1/k) = NaN if k even */ + { + if (MPFR_IS_NEG(x) && (k % 2 == 0)) + { +@@ -106,27 +89,31 @@ + MPFR_RET_NAN; + } + MPFR_SET_INF (y); +- MPFR_SET_SAME_SIGN (y, x); +- MPFR_RET (0); + } + else /* x is necessarily 0: (+0)^(1/k) = +0 + (-0)^(1/k) = -0 */ + { + MPFR_ASSERTD (MPFR_IS_ZERO (x)); + MPFR_SET_ZERO (y); +- MPFR_SET_SAME_SIGN (y, x); +- MPFR_RET (0); + } ++ MPFR_SET_SAME_SIGN (y, x); ++ MPFR_RET (0); + } + + /* Returns NAN for x < 0 and k even */ +- else if (MPFR_IS_NEG (x) && (k % 2 == 0)) ++ if (MPFR_UNLIKELY (MPFR_IS_NEG (x) && (k % 2 == 0))) + { + MPFR_SET_NAN (y); + MPFR_RET_NAN; + } + + /* General case */ ++ ++ /* For large k, use exp(log(x)/k). The threshold of 100 seems to be quite ++ good when the precision goes to infinity. */ ++ if (k > 100) ++ return mpfr_root_aux (y, x, k, rnd_mode); ++ + MPFR_SAVE_EXPO_MARK (expo); + mpz_init (m); + +@@ -135,31 +122,24 @@ + mpz_neg (m, m); + r = e % (mpfr_exp_t) k; + if (r < 0) +- r += k; /* now r = e (mod k) with 0 <= e < r */ ++ r += k; /* now r = e (mod k) with 0 <= r < k */ ++ MPFR_ASSERTD (0 <= r && r < k); + /* x = (m*2^r) * 2^(e-r) where e-r is a multiple of k */ + + MPFR_MPZ_SIZEINBASE2 (size_m, m); + /* for rounding to nearest, we want the round bit to be in the root */ + n = MPFR_PREC (y) + (rnd_mode == MPFR_RNDN); + +- /* we now multiply m by 2^(r+k*sh) so that root(m,k) will give +- exactly n bits: we want k*(n-1)+1 <= size_m + k*sh + r <= k*n +- i.e. sh = floor ((kn-size_m-r)/k) */ +- if ((mpfr_exp_t) size_m + r > k * (mpfr_exp_t) n) +- sh = 0; /* we already have too many bits */ ++ /* we now multiply m by 2^sh so that root(m,k) will give ++ exactly n bits: we want k*(n-1)+1 <= size_m + sh <= k*n ++ i.e. sh = k*f + r with f = max(floor((k*n-size_m-r)/k),0) */ ++ if ((mpfr_exp_t) size_m + r >= k * (mpfr_exp_t) n) ++ f = 0; /* we already have too many bits */ + else +- sh = (k * (mpfr_exp_t) n - (mpfr_exp_t) size_m - r) / k; +- sh = k * sh + r; +- if (sh >= 0) +- { +- mpz_mul_2exp (m, m, sh); +- e = e - sh; +- } +- else if (r > 0) +- { +- mpz_mul_2exp (m, m, r); +- e = e - r; +- } ++ f = (k * (mpfr_exp_t) n - (mpfr_exp_t) size_m - r) / k; ++ sh = k * f + r; ++ mpz_mul_2exp (m, m, sh); ++ e = e - sh; + + /* invariant: x = m*2^e, with e divisible by k */ + +@@ -203,3 +183,97 @@ + MPFR_SAVE_EXPO_FREE (expo); + return mpfr_check_range (y, inexact, rnd_mode); + } ++ ++/* Compute y <- x^(1/k) using exp(log(x)/k). ++ Assume all special cases have been eliminated before. ++ In the extended exponent range, overflows/underflows are not possible. ++ Assume x > 0, or x < 0 and k odd. ++*/ ++static int ++mpfr_root_aux (mpfr_ptr y, mpfr_srcptr x, unsigned long k, mpfr_rnd_t rnd_mode) ++{ ++ int inexact, exact_root = 0; ++ mpfr_prec_t w; /* working precision */ ++ mpfr_t absx, t; ++ MPFR_GROUP_DECL(group); ++ MPFR_TMP_DECL(marker); ++ MPFR_ZIV_DECL(loop); ++ MPFR_SAVE_EXPO_DECL (expo); ++ ++ MPFR_TMP_INIT_ABS (absx, x); ++ ++ MPFR_TMP_MARK(marker); ++ w = MPFR_PREC(y) + 10; ++ /* Take some guard bits to prepare for the 'expt' lost bits below. ++ If |x| < 2^k, then log|x| < k, thus taking log2(k) bits should be fine. */ ++ if (MPFR_GET_EXP(x) > 0) ++ w += MPFR_INT_CEIL_LOG2 (MPFR_GET_EXP(x)); ++ MPFR_GROUP_INIT_1(group, w, t); ++ MPFR_SAVE_EXPO_MARK (expo); ++ MPFR_ZIV_INIT (loop, w); ++ for (;;) ++ { ++ mpfr_exp_t expt; ++ unsigned int err; ++ ++ mpfr_log (t, absx, MPFR_RNDN); ++ /* t = log|x| * (1 + theta) with |theta| <= 2^(-w) */ ++ mpfr_div_ui (t, t, k, MPFR_RNDN); ++ expt = MPFR_GET_EXP (t); ++ /* t = log|x|/k * (1 + theta) + eps with |theta| <= 2^(-w) ++ and |eps| <= 1/2 ulp(t), thus the total error is bounded ++ by 1.5 * 2^(expt - w) */ ++ mpfr_exp (t, t, MPFR_RNDN); ++ /* t = |x|^(1/k) * exp(tau) * (1 + theta1) with ++ |tau| <= 1.5 * 2^(expt - w) and |theta1| <= 2^(-w). ++ For |tau| <= 0.5 we have |exp(tau)-1| < 4/3*tau, thus ++ for w >= expt + 2 we have: ++ t = |x|^(1/k) * (1 + 2^(expt+2)*theta2) * (1 + theta1) with ++ |theta1|, |theta2| <= 2^(-w). ++ If expt+2 > 0, as long as w >= 1, we have: ++ t = |x|^(1/k) * (1 + 2^(expt+3)*theta3) with |theta3| < 2^(-w). ++ For expt+2 = 0, we have: ++ t = |x|^(1/k) * (1 + 2^2*theta3) with |theta3| < 2^(-w). ++ Finally for expt+2 < 0 we have: ++ t = |x|^(1/k) * (1 + 2*theta3) with |theta3| < 2^(-w). ++ */ ++ err = (expt + 2 > 0) ? expt + 3 ++ : (expt + 2 == 0) ? 2 : 1; ++ /* now t = |x|^(1/k) * (1 + 2^(err-w)) thus the error is at most ++ 2^(EXP(t) - w + err) */ ++ if (MPFR_LIKELY (MPFR_CAN_ROUND(t, w - err, MPFR_PREC(y), rnd_mode))) ++ break; ++ ++ /* If we fail to round correctly, check for an exact result or a ++ midpoint result with MPFR_RNDN (regarded as hard-to-round in ++ all precisions in order to determine the ternary value). */ ++ { ++ mpfr_t z, zk; ++ ++ mpfr_init2 (z, MPFR_PREC(y) + (rnd_mode == MPFR_RNDN)); ++ mpfr_init2 (zk, MPFR_PREC(x)); ++ mpfr_set (z, t, MPFR_RNDN); ++ inexact = mpfr_pow_ui (zk, z, k, MPFR_RNDN); ++ exact_root = !inexact && mpfr_equal_p (zk, absx); ++ if (exact_root) /* z is the exact root, thus round z directly */ ++ inexact = mpfr_set4 (y, z, rnd_mode, MPFR_SIGN (x)); ++ mpfr_clear (zk); ++ mpfr_clear (z); ++ if (exact_root) ++ break; ++ } ++ ++ MPFR_ZIV_NEXT (loop, w); ++ MPFR_GROUP_REPREC_1(group, w, t); ++ } ++ MPFR_ZIV_FREE (loop); ++ ++ if (!exact_root) ++ inexact = mpfr_set4 (y, t, rnd_mode, MPFR_SIGN (x)); ++ ++ MPFR_GROUP_CLEAR(group); ++ MPFR_TMP_FREE(marker); ++ MPFR_SAVE_EXPO_FREE (expo); ++ ++ return mpfr_check_range (y, inexact, rnd_mode); ++} +diff -Naurd mpfr-3.1.3-a/src/version.c mpfr-3.1.3-b/src/version.c +--- mpfr-3.1.3-a/src/version.c 2016-02-15 15:20:16.922677881 +0000 ++++ mpfr-3.1.3-b/src/version.c 2016-02-15 15:20:51.306696441 +0000 +@@ -25,5 +25,5 @@ + const char * + mpfr_get_version (void) + { +- return "3.1.3-p11"; ++ return "3.1.3-p12"; + } +diff -Naurd mpfr-3.1.3-a/tests/troot.c mpfr-3.1.3-b/tests/troot.c +--- mpfr-3.1.3-a/tests/troot.c 2015-06-19 19:55:10.000000000 +0000 ++++ mpfr-3.1.3-b/tests/troot.c 2016-02-15 15:20:51.282696429 +0000 +@@ -25,6 +25,19 @@ + + #include "mpfr-test.h" + ++#define DEFN(N) \ ++ static int root##N (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd) \ ++ { return mpfr_root (y, x, N, rnd); } \ ++ static int pow##N (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd) \ ++ { return mpfr_pow_ui (y, x, N, rnd); } ++ ++DEFN(2) ++DEFN(3) ++DEFN(4) ++DEFN(5) ++DEFN(17) ++DEFN(120) ++ + static void + special (void) + { +@@ -52,7 +65,7 @@ + exit (1); + } + +- /* root(-Inf, 17) = -Inf */ ++ /* root(-Inf, 17) = -Inf */ + mpfr_set_inf (x, -1); + mpfr_root (y, x, 17, MPFR_RNDN); + if (!mpfr_inf_p (y) || mpfr_sgn (y) > 0) +@@ -69,7 +82,7 @@ + exit (1); + } + +- /* root(+/-0) = +/-0 */ ++ /* root(+/-0, k) = +/-0 for k > 0 */ + mpfr_set_ui (x, 0, MPFR_RNDN); + mpfr_root (y, x, 17, MPFR_RNDN); + if (mpfr_cmp_ui (y, 0) || mpfr_sgn (y) < 0) +@@ -190,64 +203,39 @@ + i = mpfr_root (y, x, 1, MPFR_RNDN); + if (mpfr_cmp_ui (x, 17) || i != 0) + { +- printf ("Error in root (17^(1/1))\n"); ++ printf ("Error in root for 17^(1/1)\n"); + exit (1); + } + +-#if 0 +- /* Check for k == 0: +- For 0 <= x < 1 => +0. +- For x = 1 => 1. +- For x > 1, => +Inf. +- For x < 0 => NaN. */ +- i = mpfr_root (y, x, 0, MPFR_RNDN); +- if (!MPFR_IS_INF (y) || !MPFR_IS_POS (y) || i != 0) +- { +- printf ("Error in root 17^(1/0)\n"); +- exit (1); +- } +- mpfr_set_ui (x, 1, MPFR_RNDN); +- i = mpfr_root (y, x, 0, MPFR_RNDN); +- if (mpfr_cmp_ui (y, 1) || i != 0) +- { +- printf ("Error in root 1^(1/0)\n"); +- exit (1); +- } + mpfr_set_ui (x, 0, MPFR_RNDN); + i = mpfr_root (y, x, 0, MPFR_RNDN); +- if (!MPFR_IS_ZERO (y) || !MPFR_IS_POS (y) || i != 0) +- { +- printf ("Error in root 0+^(1/0)\n"); +- exit (1); +- } +- MPFR_CHANGE_SIGN (x); +- i = mpfr_root (y, x, 0, MPFR_RNDN); +- if (!MPFR_IS_ZERO (y) || !MPFR_IS_POS (y) || i != 0) ++ if (!MPFR_IS_NAN (y) || i != 0) + { +- printf ("Error in root 0-^(1/0)\n"); ++ printf ("Error in root for (+0)^(1/0)\n"); + exit (1); + } +- mpfr_set_ui_2exp (x, 17, -5, MPFR_RNDD); ++ mpfr_neg (x, x, MPFR_RNDN); + i = mpfr_root (y, x, 0, MPFR_RNDN); +- if (!MPFR_IS_ZERO (y) || !MPFR_IS_POS (y) || i != 0) ++ if (!MPFR_IS_NAN (y) || i != 0) + { +- printf ("Error in root (17/2^5)^(1/0)\n"); ++ printf ("Error in root for (-0)^(1/0)\n"); + exit (1); + } +-#endif +- mpfr_set_ui (x, 0, MPFR_RNDN); ++ ++ mpfr_set_ui (x, 1, MPFR_RNDN); + i = mpfr_root (y, x, 0, MPFR_RNDN); + if (!MPFR_IS_NAN (y) || i != 0) + { +- printf ("Error in root 0+^(1/0)\n"); ++ printf ("Error in root for 1^(1/0)\n"); + exit (1); + } ++ + /* Check for k==2 */ + mpfr_set_si (x, -17, MPFR_RNDD); + i = mpfr_root (y, x, 2, MPFR_RNDN); + if (!MPFR_IS_NAN (y) || i != 0) + { +- printf ("Error in root (-17)^(1/2)\n"); ++ printf ("Error in root for (-17)^(1/2)\n"); + exit (1); + } + +@@ -255,11 +243,168 @@ + mpfr_clear (y); + } + ++/* https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=812779 ++ * https://bugzilla.gnome.org/show_bug.cgi?id=756960 ++ * is a GNOME Calculator bug (mpfr_root applied on a negative integer, ++ * which is converted to an unsigned integer), but the strange result ++ * is also due to a bug in MPFR. ++ */ ++static void ++bigint (void) ++{ ++ mpfr_t x, y; ++ ++ mpfr_inits2 (64, x, y, (mpfr_ptr) 0); ++ ++ mpfr_set_ui (x, 10, MPFR_RNDN); ++ if (sizeof (unsigned long) * CHAR_BIT == 64) ++ { ++ mpfr_root (x, x, ULONG_MAX, MPFR_RNDN); ++ mpfr_set_ui_2exp (y, 1, -63, MPFR_RNDN); ++ mpfr_add_ui (y, y, 1, MPFR_RNDN); ++ if (! mpfr_equal_p (x, y)) ++ { ++ printf ("Error in bigint for ULONG_MAX\n"); ++ printf ("Expected "); ++ mpfr_dump (y); ++ printf ("Got "); ++ mpfr_dump (x); ++ exit (1); ++ } ++ } ++ ++ mpfr_set_ui (x, 10, MPFR_RNDN); ++ mpfr_root (x, x, 1234567890, MPFR_RNDN); ++ mpfr_set_str_binary (y, ++ "1.00000000000000000000000000001000000000101011000101000110010001"); ++ if (! mpfr_equal_p (x, y)) ++ { ++ printf ("Error in bigint for 1234567890\n"); ++ printf ("Expected "); ++ mpfr_dump (y); ++ printf ("Got "); ++ mpfr_dump (x); ++ exit (1); ++ } ++ ++ mpfr_clears (x, y, (mpfr_ptr) 0); ++} ++ + #define TEST_FUNCTION mpfr_root + #define INTEGER_TYPE unsigned long +-#define INT_RAND_FUNCTION() (INTEGER_TYPE) (randlimb () % 3 +2) ++#define INT_RAND_FUNCTION() \ ++ (INTEGER_TYPE) (randlimb () & 1 ? randlimb () : randlimb () % 3 + 2) + #include "tgeneric_ui.c" + ++static void ++exact_powers (unsigned long bmax, unsigned long kmax) ++{ ++ long b, k; ++ mpz_t z; ++ mpfr_t x, y; ++ int inex, neg; ++ ++ mpz_init (z); ++ for (b = 2; b <= bmax; b++) ++ for (k = 1; k <= kmax; k++) ++ { ++ mpz_ui_pow_ui (z, b, k); ++ mpfr_init2 (x, mpz_sizeinbase (z, 2)); ++ mpfr_set_ui (x, b, MPFR_RNDN); ++ mpfr_pow_ui (x, x, k, MPFR_RNDN); ++ mpz_set_ui (z, b); ++ mpfr_init2 (y, mpz_sizeinbase (z, 2)); ++ for (neg = 0; neg <= 1; neg++) ++ { ++ inex = mpfr_root (y, x, k, MPFR_RNDN); ++ if (inex != 0) ++ { ++ printf ("Error in exact_powers, b=%ld, k=%ld\n", b, k); ++ printf ("Expected inex=0, got %d\n", inex); ++ exit (1); ++ } ++ if (neg && (k & 1) == 0) ++ { ++ if (!MPFR_IS_NAN (y)) ++ { ++ printf ("Error in exact_powers, b=%ld, k=%ld\n", b, k); ++ printf ("Expected y=NaN\n"); ++ printf ("Got "); ++ mpfr_out_str (stdout, 10, 0, y, MPFR_RNDN); ++ printf ("\n"); ++ exit (1); ++ } ++ } ++ else if (MPFR_IS_NAN (y) || mpfr_cmp_si (y, b) != 0) ++ { ++ printf ("Error in exact_powers, b=%ld, k=%ld\n", b, k); ++ printf ("Expected y=%ld\n", b); ++ printf ("Got "); ++ mpfr_out_str (stdout, 10, 0, y, MPFR_RNDN); ++ printf ("\n"); ++ exit (1); ++ } ++ mpfr_neg (x, x, MPFR_RNDN); ++ b = -b; ++ } ++ mpfr_clear (x); ++ mpfr_clear (y); ++ } ++ mpz_clear (z); ++} ++ ++/* Compare root(x,2^h) with pow(x,2^(-h)). */ ++static void ++cmp_pow (void) ++{ ++ mpfr_t x, y1, y2; ++ int h; ++ ++ mpfr_inits2 (128, x, y1, y2, (mpfr_ptr) 0); ++ ++ for (h = 1; h < sizeof (unsigned long) * CHAR_BIT; h++) ++ { ++ unsigned long k = (unsigned long) 1 << h; ++ int i; ++ ++ for (i = 0; i < 10; i++) ++ { ++ mpfr_rnd_t rnd; ++ unsigned int flags1, flags2; ++ int inex1, inex2; ++ ++ tests_default_random (x, 0, __gmpfr_emin, __gmpfr_emax, 1); ++ rnd = RND_RAND (); ++ mpfr_set_ui_2exp (y1, 1, -h, MPFR_RNDN); ++ mpfr_clear_flags (); ++ inex1 = mpfr_pow (y1, x, y1, rnd); ++ flags1 = __gmpfr_flags; ++ mpfr_clear_flags (); ++ inex2 = mpfr_root (y2, x, k, rnd); ++ flags2 = __gmpfr_flags; ++ if (!(mpfr_equal_p (y1, y2) && SAME_SIGN (inex1, inex2) && ++ flags1 == flags2)) ++ { ++ printf ("Error in cmp_pow on h=%d, i=%d, rnd=%s\n", ++ h, i, mpfr_print_rnd_mode ((mpfr_rnd_t) rnd)); ++ printf ("x = "); ++ mpfr_dump (x); ++ printf ("pow = "); ++ mpfr_dump (y1); ++ printf ("with inex = %d, flags =", inex1); ++ flags_out (flags1); ++ printf ("root = "); ++ mpfr_dump (y2); ++ printf ("with inex = %d, flags =", inex2); ++ flags_out (flags2); ++ exit (1); ++ } ++ } ++ } ++ ++ mpfr_clears (x, y1, y2, (mpfr_ptr) 0); ++} ++ + int + main (void) + { +@@ -270,7 +415,10 @@ + + tests_start_mpfr (); + ++ exact_powers (3, 1000); + special (); ++ bigint (); ++ cmp_pow (); + + mpfr_init (x); + +@@ -329,6 +477,13 @@ + + test_generic_ui (2, 200, 30); + ++ bad_cases (root2, pow2, "mpfr_root[2]", 8, -256, 255, 4, 128, 800, 40); ++ bad_cases (root3, pow3, "mpfr_root[3]", 8, -256, 255, 4, 128, 800, 40); ++ bad_cases (root4, pow4, "mpfr_root[4]", 8, -256, 255, 4, 128, 800, 40); ++ bad_cases (root5, pow5, "mpfr_root[5]", 8, -256, 255, 4, 128, 800, 40); ++ bad_cases (root17, pow17, "mpfr_root[17]", 8, -256, 255, 4, 128, 800, 40); ++ bad_cases (root120, pow120, "mpfr_root[120]", 8, -256, 255, 4, 128, 800, 40); ++ + tests_end_mpfr (); + return 0; + } |