aboutsummaryrefslogtreecommitdiff
path: root/vm
diff options
context:
space:
mode:
Diffstat (limited to 'vm')
-rw-r--r--vm/pmap.h15
-rw-r--r--vm/vm_fault.c4
-rw-r--r--vm/vm_init.c1
-rw-r--r--vm/vm_object.c3
-rw-r--r--vm/vm_page.c762
-rw-r--r--vm/vm_page.h220
-rw-r--r--vm/vm_resident.c546
7 files changed, 1137 insertions, 414 deletions
diff --git a/vm/pmap.h b/vm/pmap.h
index 134f9c64..9bbcdc32 100644
--- a/vm/pmap.h
+++ b/vm/pmap.h
@@ -67,9 +67,6 @@
extern vm_offset_t pmap_steal_memory(vm_size_t);
/* During VM initialization, report remaining unused physical pages. */
extern unsigned int pmap_free_pages(void);
-/* During VM initialization, use remaining physical pages to allocate page
- * frames. */
-extern void pmap_startup(vm_offset_t *, vm_offset_t *);
/* Initialization, after kernel runs in virtual memory. */
extern void pmap_init(void);
@@ -80,18 +77,14 @@ extern void pmap_init(void);
* Otherwise, it must implement
* pmap_free_pages
* pmap_virtual_space
- * pmap_next_page
* pmap_init
- * and vm/vm_resident.c implements pmap_steal_memory and pmap_startup
- * using pmap_free_pages, pmap_next_page, pmap_virtual_space,
- * and pmap_enter. pmap_free_pages may over-estimate the number
- * of unused physical pages, and pmap_next_page may return FALSE
- * to indicate that there are no more unused pages to return.
+ * and vm/vm_resident.c implements pmap_steal_memory using
+ * pmap_free_pages, pmap_virtual_space, and pmap_enter.
+ *
+ * pmap_free_pages may over-estimate the number of unused physical pages.
* However, for best performance pmap_free_pages should be accurate.
*/
-/* During VM initialization, return the next unused physical page. */
-extern boolean_t pmap_next_page(vm_offset_t *);
/* During VM initialization, report virtual space available for the kernel. */
extern void pmap_virtual_space(vm_offset_t *, vm_offset_t *);
#endif /* MACHINE_PAGES */
diff --git a/vm/vm_fault.c b/vm/vm_fault.c
index 46779f63..4d674174 100644
--- a/vm/vm_fault.c
+++ b/vm/vm_fault.c
@@ -607,7 +607,7 @@ vm_fault_return_t vm_fault_page(
* won't block for pages.
*/
- if (m->fictitious && !vm_page_convert(m, FALSE)) {
+ if (m->fictitious && !vm_page_convert(&m, FALSE)) {
VM_PAGE_FREE(m);
vm_fault_cleanup(object, first_m);
return(VM_FAULT_MEMORY_SHORTAGE);
@@ -725,7 +725,7 @@ vm_fault_return_t vm_fault_page(
assert(m->object == object);
first_m = VM_PAGE_NULL;
- if (m->fictitious && !vm_page_convert(m, !object->internal)) {
+ if (m->fictitious && !vm_page_convert(&m, !object->internal)) {
VM_PAGE_FREE(m);
vm_fault_cleanup(object, VM_PAGE_NULL);
return(VM_FAULT_MEMORY_SHORTAGE);
diff --git a/vm/vm_init.c b/vm/vm_init.c
index 3d1081cc..23d5d46e 100644
--- a/vm/vm_init.c
+++ b/vm/vm_init.c
@@ -83,4 +83,5 @@ void vm_mem_init(void)
{
vm_object_init();
memory_object_proxy_init();
+ vm_page_info_all();
}
diff --git a/vm/vm_object.c b/vm/vm_object.c
index 6666fcba..eda03c65 100644
--- a/vm/vm_object.c
+++ b/vm/vm_object.c
@@ -2891,7 +2891,8 @@ vm_object_page_map(
VM_PAGE_FREE(old_page);
}
- vm_page_init(m, addr);
+ vm_page_init(m);
+ m->phys_addr = addr;
m->private = TRUE; /* don`t free page */
m->wire_count = 1;
vm_page_lock_queues();
diff --git a/vm/vm_page.c b/vm/vm_page.c
new file mode 100644
index 00000000..a539ab41
--- /dev/null
+++ b/vm/vm_page.c
@@ -0,0 +1,762 @@
+/*
+ * Copyright (c) 2010-2014 Richard Braun.
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ *
+ *
+ * This implementation uses the binary buddy system to manage its heap.
+ * Descriptions of the buddy system can be found in the following works :
+ * - "UNIX Internals: The New Frontiers", by Uresh Vahalia.
+ * - "Dynamic Storage Allocation: A Survey and Critical Review",
+ * by Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles.
+ *
+ * In addition, this allocator uses per-CPU pools of pages for order 0
+ * (i.e. single page) allocations. These pools act as caches (but are named
+ * differently to avoid confusion with CPU caches) that reduce contention on
+ * multiprocessor systems. When a pool is empty and cannot provide a page,
+ * it is filled by transferring multiple pages from the backend buddy system.
+ * The symmetric case is handled likewise.
+ */
+
+#include <string.h>
+#include <kern/assert.h>
+#include <kern/cpu_number.h>
+#include <kern/debug.h>
+#include <kern/list.h>
+#include <kern/lock.h>
+#include <kern/macros.h>
+#include <kern/printf.h>
+#include <kern/thread.h>
+#include <mach/vm_param.h>
+#include <machine/pmap.h>
+#include <sys/types.h>
+#include <vm/vm_page.h>
+
+#define __init
+#define __initdata
+#define __read_mostly
+
+#define thread_pin()
+#define thread_unpin()
+
+/*
+ * Number of free block lists per segment.
+ */
+#define VM_PAGE_NR_FREE_LISTS 11
+
+/*
+ * The size of a CPU pool is computed by dividing the number of pages in its
+ * containing segment by this value.
+ */
+#define VM_PAGE_CPU_POOL_RATIO 1024
+
+/*
+ * Maximum number of pages in a CPU pool.
+ */
+#define VM_PAGE_CPU_POOL_MAX_SIZE 128
+
+/*
+ * The transfer size of a CPU pool is computed by dividing the pool size by
+ * this value.
+ */
+#define VM_PAGE_CPU_POOL_TRANSFER_RATIO 2
+
+/*
+ * Per-processor cache of pages.
+ */
+struct vm_page_cpu_pool {
+ simple_lock_data_t lock;
+ int size;
+ int transfer_size;
+ int nr_pages;
+ struct list pages;
+} __aligned(CPU_L1_SIZE);
+
+/*
+ * Special order value for pages that aren't in a free list. Such pages are
+ * either allocated, or part of a free block of pages but not the head page.
+ */
+#define VM_PAGE_ORDER_UNLISTED ((unsigned short)-1)
+
+/*
+ * Doubly-linked list of free blocks.
+ */
+struct vm_page_free_list {
+ unsigned long size;
+ struct list blocks;
+};
+
+/*
+ * Segment name buffer size.
+ */
+#define VM_PAGE_NAME_SIZE 16
+
+/*
+ * Segment of contiguous memory.
+ */
+struct vm_page_seg {
+ struct vm_page_cpu_pool cpu_pools[NCPUS];
+
+ phys_addr_t start;
+ phys_addr_t end;
+ struct vm_page *pages;
+ struct vm_page *pages_end;
+ simple_lock_data_t lock;
+ struct vm_page_free_list free_lists[VM_PAGE_NR_FREE_LISTS];
+ unsigned long nr_free_pages;
+};
+
+/*
+ * Bootstrap information about a segment.
+ */
+struct vm_page_boot_seg {
+ phys_addr_t start;
+ phys_addr_t end;
+ phys_addr_t avail_start;
+ phys_addr_t avail_end;
+};
+
+static int vm_page_is_ready __read_mostly;
+
+/*
+ * Segment table.
+ *
+ * The system supports a maximum of 4 segments :
+ * - DMA: suitable for DMA
+ * - DMA32: suitable for DMA when devices support 32-bits addressing
+ * - DIRECTMAP: direct physical mapping, allows direct access from
+ * the kernel with a simple offset translation
+ * - HIGHMEM: must be mapped before it can be accessed
+ *
+ * Segments are ordered by priority, 0 being the lowest priority. Their
+ * relative priorities are DMA < DMA32 < DIRECTMAP < HIGHMEM. Some segments
+ * may actually be aliases for others, e.g. if DMA is always possible from
+ * the direct physical mapping, DMA and DMA32 are aliases for DIRECTMAP,
+ * in which case the segment table contains DIRECTMAP and HIGHMEM only.
+ */
+static struct vm_page_seg vm_page_segs[VM_PAGE_MAX_SEGS];
+
+/*
+ * Bootstrap segment table.
+ */
+static struct vm_page_boot_seg vm_page_boot_segs[VM_PAGE_MAX_SEGS] __initdata;
+
+/*
+ * Number of loaded segments.
+ */
+static unsigned int vm_page_segs_size __read_mostly;
+
+static void __init
+vm_page_init_pa(struct vm_page *page, unsigned short seg_index, phys_addr_t pa)
+{
+ memset(page, 0, sizeof(*page));
+ vm_page_init(page); /* vm_resident members */
+ page->type = VM_PT_RESERVED;
+ page->seg_index = seg_index;
+ page->order = VM_PAGE_ORDER_UNLISTED;
+ page->phys_addr = pa;
+}
+
+void
+vm_page_set_type(struct vm_page *page, unsigned int order, unsigned short type)
+{
+ unsigned int i, nr_pages;
+
+ nr_pages = 1 << order;
+
+ for (i = 0; i < nr_pages; i++)
+ page[i].type = type;
+}
+
+static void __init
+vm_page_free_list_init(struct vm_page_free_list *free_list)
+{
+ free_list->size = 0;
+ list_init(&free_list->blocks);
+}
+
+static inline void
+vm_page_free_list_insert(struct vm_page_free_list *free_list,
+ struct vm_page *page)
+{
+ assert(page->order == VM_PAGE_ORDER_UNLISTED);
+
+ free_list->size++;
+ list_insert_head(&free_list->blocks, &page->node);
+}
+
+static inline void
+vm_page_free_list_remove(struct vm_page_free_list *free_list,
+ struct vm_page *page)
+{
+ assert(page->order != VM_PAGE_ORDER_UNLISTED);
+
+ free_list->size--;
+ list_remove(&page->node);
+}
+
+static struct vm_page *
+vm_page_seg_alloc_from_buddy(struct vm_page_seg *seg, unsigned int order)
+{
+ struct vm_page_free_list *free_list = free_list;
+ struct vm_page *page, *buddy;
+ unsigned int i;
+
+ assert(order < VM_PAGE_NR_FREE_LISTS);
+
+ for (i = order; i < VM_PAGE_NR_FREE_LISTS; i++) {
+ free_list = &seg->free_lists[i];
+
+ if (free_list->size != 0)
+ break;
+ }
+
+ if (i == VM_PAGE_NR_FREE_LISTS)
+ return NULL;
+
+ page = list_first_entry(&free_list->blocks, struct vm_page, node);
+ vm_page_free_list_remove(free_list, page);
+ page->order = VM_PAGE_ORDER_UNLISTED;
+
+ while (i > order) {
+ i--;
+ buddy = &page[1 << i];
+ vm_page_free_list_insert(&seg->free_lists[i], buddy);
+ buddy->order = i;
+ }
+
+ seg->nr_free_pages -= (1 << order);
+ return page;
+}
+
+static void
+vm_page_seg_free_to_buddy(struct vm_page_seg *seg, struct vm_page *page,
+ unsigned int order)
+{
+ struct vm_page *buddy;
+ phys_addr_t pa, buddy_pa;
+ unsigned int nr_pages;
+
+ assert(page >= seg->pages);
+ assert(page < seg->pages_end);
+ assert(page->order == VM_PAGE_ORDER_UNLISTED);
+ assert(order < VM_PAGE_NR_FREE_LISTS);
+
+ nr_pages = (1 << order);
+ pa = page->phys_addr;
+
+ while (order < (VM_PAGE_NR_FREE_LISTS - 1)) {
+ buddy_pa = pa ^ vm_page_ptoa(1 << order);
+
+ if ((buddy_pa < seg->start) || (buddy_pa >= seg->end))
+ break;
+
+ buddy = &seg->pages[vm_page_atop(buddy_pa - seg->start)];
+
+ if (buddy->order != order)
+ break;
+
+ vm_page_free_list_remove(&seg->free_lists[order], buddy);
+ buddy->order = VM_PAGE_ORDER_UNLISTED;
+ order++;
+ pa &= -vm_page_ptoa(1 << order);
+ page = &seg->pages[vm_page_atop(pa - seg->start)];
+ }
+
+ vm_page_free_list_insert(&seg->free_lists[order], page);
+ page->order = order;
+ seg->nr_free_pages += nr_pages;
+}
+
+static void __init
+vm_page_cpu_pool_init(struct vm_page_cpu_pool *cpu_pool, int size)
+{
+ simple_lock_init(&cpu_pool->lock);
+ cpu_pool->size = size;
+ cpu_pool->transfer_size = (size + VM_PAGE_CPU_POOL_TRANSFER_RATIO - 1)
+ / VM_PAGE_CPU_POOL_TRANSFER_RATIO;
+ cpu_pool->nr_pages = 0;
+ list_init(&cpu_pool->pages);
+}
+
+static inline struct vm_page_cpu_pool *
+vm_page_cpu_pool_get(struct vm_page_seg *seg)
+{
+ return &seg->cpu_pools[cpu_number()];
+}
+
+static inline struct vm_page *
+vm_page_cpu_pool_pop(struct vm_page_cpu_pool *cpu_pool)
+{
+ struct vm_page *page;
+
+ assert(cpu_pool->nr_pages != 0);
+ cpu_pool->nr_pages--;
+ page = list_first_entry(&cpu_pool->pages, struct vm_page, node);
+ list_remove(&page->node);
+ return page;
+}
+
+static inline void
+vm_page_cpu_pool_push(struct vm_page_cpu_pool *cpu_pool, struct vm_page *page)
+{
+ assert(cpu_pool->nr_pages < cpu_pool->size);
+ cpu_pool->nr_pages++;
+ list_insert_head(&cpu_pool->pages, &page->node);
+}
+
+static int
+vm_page_cpu_pool_fill(struct vm_page_cpu_pool *cpu_pool,
+ struct vm_page_seg *seg)
+{
+ struct vm_page *page;
+ int i;
+
+ assert(cpu_pool->nr_pages == 0);
+
+ simple_lock(&seg->lock);
+
+ for (i = 0; i < cpu_pool->transfer_size; i++) {
+ page = vm_page_seg_alloc_from_buddy(seg, 0);
+
+ if (page == NULL)
+ break;
+
+ vm_page_cpu_pool_push(cpu_pool, page);
+ }
+
+ simple_unlock(&seg->lock);
+
+ return i;
+}
+
+static void
+vm_page_cpu_pool_drain(struct vm_page_cpu_pool *cpu_pool,
+ struct vm_page_seg *seg)
+{
+ struct vm_page *page;
+ int i;
+
+ assert(cpu_pool->nr_pages == cpu_pool->size);
+
+ simple_lock(&seg->lock);
+
+ for (i = cpu_pool->transfer_size; i > 0; i--) {
+ page = vm_page_cpu_pool_pop(cpu_pool);
+ vm_page_seg_free_to_buddy(seg, page, 0);
+ }
+
+ simple_unlock(&seg->lock);
+}
+
+static phys_addr_t __init
+vm_page_seg_size(struct vm_page_seg *seg)
+{
+ return seg->end - seg->start;
+}
+
+static int __init
+vm_page_seg_compute_pool_size(struct vm_page_seg *seg)
+{
+ phys_addr_t size;
+
+ size = vm_page_atop(vm_page_seg_size(seg)) / VM_PAGE_CPU_POOL_RATIO;
+
+ if (size == 0)
+ size = 1;
+ else if (size > VM_PAGE_CPU_POOL_MAX_SIZE)
+ size = VM_PAGE_CPU_POOL_MAX_SIZE;
+
+ return size;
+}
+
+static void __init
+vm_page_seg_init(struct vm_page_seg *seg, phys_addr_t start, phys_addr_t end,
+ struct vm_page *pages)
+{
+ phys_addr_t pa;
+ int pool_size;
+ unsigned int i;
+
+ seg->start = start;
+ seg->end = end;
+ pool_size = vm_page_seg_compute_pool_size(seg);
+
+ for (i = 0; i < ARRAY_SIZE(seg->cpu_pools); i++)
+ vm_page_cpu_pool_init(&seg->cpu_pools[i], pool_size);
+
+ seg->pages = pages;
+ seg->pages_end = pages + vm_page_atop(vm_page_seg_size(seg));
+ simple_lock_init(&seg->lock);
+
+ for (i = 0; i < ARRAY_SIZE(seg->free_lists); i++)
+ vm_page_free_list_init(&seg->free_lists[i]);
+
+ seg->nr_free_pages = 0;
+ i = seg - vm_page_segs;
+
+ for (pa = seg->start; pa < seg->end; pa += PAGE_SIZE)
+ vm_page_init_pa(&pages[vm_page_atop(pa - seg->start)], i, pa);
+}
+
+static struct vm_page *
+vm_page_seg_alloc(struct vm_page_seg *seg, unsigned int order,
+ unsigned short type)
+{
+ struct vm_page_cpu_pool *cpu_pool;
+ struct vm_page *page;
+ int filled;
+
+ assert(order < VM_PAGE_NR_FREE_LISTS);
+
+ if (order == 0) {
+ thread_pin();
+ cpu_pool = vm_page_cpu_pool_get(seg);
+ simple_lock(&cpu_pool->lock);
+
+ if (cpu_pool->nr_pages == 0) {
+ filled = vm_page_cpu_pool_fill(cpu_pool, seg);
+
+ if (!filled) {
+ simple_unlock(&cpu_pool->lock);
+ thread_unpin();
+ return NULL;
+ }
+ }
+
+ page = vm_page_cpu_pool_pop(cpu_pool);
+ simple_unlock(&cpu_pool->lock);
+ thread_unpin();
+ } else {
+ simple_lock(&seg->lock);
+ page = vm_page_seg_alloc_from_buddy(seg, order);
+ simple_unlock(&seg->lock);
+ }
+
+ assert(page->type == VM_PT_FREE);
+ vm_page_set_type(page, order, type);
+ return page;
+}
+
+static void
+vm_page_seg_free(struct vm_page_seg *seg, struct vm_page *page,
+ unsigned int order)
+{
+ struct vm_page_cpu_pool *cpu_pool;
+
+ assert(page->type != VM_PT_FREE);
+ assert(order < VM_PAGE_NR_FREE_LISTS);
+
+ vm_page_set_type(page, order, VM_PT_FREE);
+
+ if (order == 0) {
+ thread_pin();
+ cpu_pool = vm_page_cpu_pool_get(seg);
+ simple_lock(&cpu_pool->lock);
+
+ if (cpu_pool->nr_pages == cpu_pool->size)
+ vm_page_cpu_pool_drain(cpu_pool, seg);
+
+ vm_page_cpu_pool_push(cpu_pool, page);
+ simple_unlock(&cpu_pool->lock);
+ thread_unpin();
+ } else {
+ simple_lock(&seg->lock);
+ vm_page_seg_free_to_buddy(seg, page, order);
+ simple_unlock(&seg->lock);
+ }
+}
+
+void __init
+vm_page_load(unsigned int seg_index, phys_addr_t start, phys_addr_t end,
+ phys_addr_t avail_start, phys_addr_t avail_end)
+{
+ struct vm_page_boot_seg *seg;
+
+ assert(seg_index < ARRAY_SIZE(vm_page_boot_segs));
+ assert(vm_page_aligned(start));
+ assert(vm_page_aligned(end));
+ assert(vm_page_aligned(avail_start));
+ assert(vm_page_aligned(avail_end));
+ assert(start < end);
+ assert(start <= avail_start);
+ assert(avail_end <= end);
+ assert(vm_page_segs_size < ARRAY_SIZE(vm_page_boot_segs));
+
+ seg = &vm_page_boot_segs[seg_index];
+ seg->start = start;
+ seg->end = end;
+ seg->avail_start = avail_start;
+ seg->avail_end = avail_end;
+ vm_page_segs_size++;
+}
+
+int
+vm_page_ready(void)
+{
+ return vm_page_is_ready;
+}
+
+static unsigned int
+vm_page_select_alloc_seg(unsigned int selector)
+{
+ unsigned int seg_index;
+
+ switch (selector) {
+ case VM_PAGE_SEL_DMA:
+ seg_index = VM_PAGE_SEG_DMA;
+ break;
+ case VM_PAGE_SEL_DMA32:
+ seg_index = VM_PAGE_SEG_DMA32;
+ break;
+ case VM_PAGE_SEL_DIRECTMAP:
+ seg_index = VM_PAGE_SEG_DIRECTMAP;
+ break;
+ case VM_PAGE_SEL_HIGHMEM:
+ seg_index = VM_PAGE_SEG_HIGHMEM;
+ break;
+ default:
+ panic("vm_page: invalid selector");
+ }
+
+ return MIN(vm_page_segs_size - 1, seg_index);
+}
+
+static int __init
+vm_page_boot_seg_loaded(const struct vm_page_boot_seg *seg)
+{
+ return (seg->end != 0);
+}
+
+static void __init
+vm_page_check_boot_segs(void)
+{
+ unsigned int i;
+ int expect_loaded;
+
+ if (vm_page_segs_size == 0)
+ panic("vm_page: no physical memory loaded");
+
+ for (i = 0; i < ARRAY_SIZE(vm_page_boot_segs); i++) {
+ expect_loaded = (i < vm_page_segs_size);
+
+ if (vm_page_boot_seg_loaded(&vm_page_boot_segs[i]) == expect_loaded)
+ continue;
+
+ panic("vm_page: invalid boot segment table");
+ }
+}
+
+static phys_addr_t __init
+vm_page_boot_seg_size(struct vm_page_boot_seg *seg)
+{
+ return seg->end - seg->start;
+}
+
+static phys_addr_t __init
+vm_page_boot_seg_avail_size(struct vm_page_boot_seg *seg)
+{
+ return seg->avail_end - seg->avail_start;
+}
+
+unsigned long __init
+vm_page_bootalloc(size_t size)
+{
+ struct vm_page_boot_seg *seg;
+ phys_addr_t pa;
+ unsigned int i;
+
+ for (i = vm_page_select_alloc_seg(VM_PAGE_SEL_DIRECTMAP);
+ i < vm_page_segs_size;
+ i--) {
+ seg = &vm_page_boot_segs[i];
+
+ if (size <= vm_page_boot_seg_avail_size(seg)) {
+ pa = seg->avail_start;
+ seg->avail_start += vm_page_round(size);
+ return pa;
+ }
+ }
+
+ panic("vm_page: no physical memory available");
+}
+
+void __init
+vm_page_setup(void)
+{
+ struct vm_page_boot_seg *boot_seg;
+ struct vm_page_seg *seg;
+ struct vm_page *table, *page, *end;
+ size_t nr_pages, table_size;
+ unsigned long va;
+ unsigned int i;
+ phys_addr_t pa;
+
+ vm_page_check_boot_segs();
+
+ /*
+ * Compute the page table size.
+ */
+ nr_pages = 0;
+
+ for (i = 0; i < vm_page_segs_size; i++)
+ nr_pages += vm_page_atop(vm_page_boot_seg_size(&vm_page_boot_segs[i]));
+
+ table_size = vm_page_round(nr_pages * sizeof(struct vm_page));
+ printf("vm_page: page table size: %lu entries (%luk)\n", nr_pages,
+ table_size >> 10);
+ table = (struct vm_page *)pmap_steal_memory(table_size);
+ va = (unsigned long)table;
+
+ /*
+ * Initialize the segments, associating them to the page table. When
+ * the segments are initialized, all their pages are set allocated.
+ * Pages are then released, which populates the free lists.
+ */
+ for (i = 0; i < vm_page_segs_size; i++) {
+ seg = &vm_page_segs[i];
+ boot_seg = &vm_page_boot_segs[i];
+ vm_page_seg_init(seg, boot_seg->start, boot_seg->end, table);
+ page = seg->pages + vm_page_atop(boot_seg->avail_start
+ - boot_seg->start);
+ end = seg->pages + vm_page_atop(boot_seg->avail_end
+ - boot_seg->start);
+
+ while (page < end) {
+ page->type = VM_PT_FREE;
+ vm_page_seg_free_to_buddy(seg, page, 0);
+ page++;
+
+ /* XXX */
+ if (i <= VM_PAGE_SEG_DIRECTMAP)
+ vm_page_free_count++;
+ }
+
+ table += vm_page_atop(vm_page_seg_size(seg));
+ }
+
+ while (va < (unsigned long)table) {
+ pa = pmap_extract(kernel_pmap, va);
+ page = vm_page_lookup_pa(pa);
+ assert((page != NULL) && (page->type == VM_PT_RESERVED));
+ page->type = VM_PT_TABLE;
+ va += PAGE_SIZE;
+ }
+
+ vm_page_is_ready = 1;
+}
+
+void __init
+vm_page_manage(struct vm_page *page)
+{
+ assert(page->seg_index < ARRAY_SIZE(vm_page_segs));
+ assert(page->type == VM_PT_RESERVED);
+
+ vm_page_set_type(page, 0, VM_PT_FREE);
+ vm_page_seg_free_to_buddy(&vm_page_segs[page->seg_index], page, 0);
+}
+
+struct vm_page *
+vm_page_lookup_pa(phys_addr_t pa)
+{
+ struct vm_page_seg *seg;
+ unsigned int i;
+
+ for (i = 0; i < vm_page_segs_size; i++) {
+ seg = &vm_page_segs[i];
+
+ if ((pa >= seg->start) && (pa < seg->end))
+ return &seg->pages[vm_page_atop(pa - seg->start)];
+ }
+
+ return NULL;
+}
+
+struct vm_page *
+vm_page_alloc_pa(unsigned int order, unsigned int selector, unsigned short type)
+{
+ struct vm_page *page;
+ unsigned int i;
+
+ for (i = vm_page_select_alloc_seg(selector); i < vm_page_segs_size; i--) {
+ page = vm_page_seg_alloc(&vm_page_segs[i], order, type);
+
+ if (page != NULL)
+ return page;
+ }
+
+ if (type == VM_PT_PMAP)
+ panic("vm_page: unable to allocate pmap page");
+
+ return NULL;
+}
+
+void
+vm_page_free_pa(struct vm_page *page, unsigned int order)
+{
+ assert(page->seg_index < ARRAY_SIZE(vm_page_segs));
+
+ vm_page_seg_free(&vm_page_segs[page->seg_index], page, order);
+}
+
+const char *
+vm_page_seg_name(unsigned int seg_index)
+{
+ /* Don't use a switch statement since segments can be aliased */
+ if (seg_index == VM_PAGE_SEG_HIGHMEM)
+ return "HIGHMEM";
+ else if (seg_index == VM_PAGE_SEG_DIRECTMAP)
+ return "DIRECTMAP";
+ else if (seg_index == VM_PAGE_SEG_DMA32)
+ return "DMA32";
+ else if (seg_index == VM_PAGE_SEG_DMA)
+ return "DMA";
+ else
+ panic("vm_page: invalid segment index");
+}
+
+void
+vm_page_info_all(void)
+{
+ struct vm_page_seg *seg;
+ unsigned long pages;
+ unsigned int i;
+
+ for (i = 0; i < vm_page_segs_size; i++) {
+ seg = &vm_page_segs[i];
+ pages = (unsigned long)(seg->pages_end - seg->pages);
+ printf("vm_page: %s: pages: %lu (%luM), free: %lu (%luM)\n",
+ vm_page_seg_name(i), pages, pages >> (20 - PAGE_SHIFT),
+ seg->nr_free_pages, seg->nr_free_pages >> (20 - PAGE_SHIFT));
+ }
+}
+
+phys_addr_t
+vm_page_mem_size(void)
+{
+ phys_addr_t total;
+ unsigned int i;
+
+ total = 0;
+
+ for (i = 0; i < vm_page_segs_size; i++) {
+ /* XXX */
+ if (i > VM_PAGE_SEG_DIRECTMAP)
+ continue;
+
+ total += vm_page_seg_size(&vm_page_segs[i]);
+ }
+
+ return total;
+}
diff --git a/vm/vm_page.h b/vm/vm_page.h
index e6a8c497..7607aad0 100644
--- a/vm/vm_page.h
+++ b/vm/vm_page.h
@@ -36,11 +36,12 @@
#include <mach/boolean.h>
#include <mach/vm_prot.h>
-#include <mach/vm_param.h>
+#include <machine/vm_param.h>
#include <vm/vm_object.h>
#include <vm/vm_types.h>
#include <kern/queue.h>
#include <kern/lock.h>
+#include <kern/log2.h>
#include <kern/macros.h>
#include <kern/sched_prim.h> /* definitions of wait/wakeup */
@@ -76,6 +77,22 @@
*/
struct vm_page {
+ /* Members used in the vm_page module only */
+ struct list node;
+ unsigned short type;
+ unsigned short seg_index;
+ unsigned short order;
+
+ /*
+ * This member is used throughout the code and may only change for
+ * fictitious pages.
+ */
+ phys_addr_t phys_addr;
+
+ /* We use an empty struct as the delimiter. */
+ struct {} vm_page_header;
+#define VM_PAGE_HEADER_SIZE offsetof(struct vm_page, vm_page_header)
+
queue_chain_t pageq; /* queue info for FIFO
* queue or free list (P) */
queue_chain_t listq; /* all pages in same object (O) */
@@ -110,8 +127,6 @@ struct vm_page {
* without having data. (O)
* [See vm_object_overwrite] */
- vm_offset_t phys_addr; /* Physical address of page, passed
- * to pmap_enter (read-only) */
vm_prot_t page_lock; /* Uses prohibited by data manager (O) */
vm_prot_t unlock_request; /* Outstanding unlock request (O) */
};
@@ -140,8 +155,6 @@ struct vm_page {
*/
extern
-vm_page_t vm_page_queue_free; /* memory free queue */
-extern
vm_page_t vm_page_queue_fictitious; /* fictitious free queue */
extern
queue_head_t vm_page_queue_active; /* active memory queue */
@@ -196,25 +209,21 @@ extern void vm_page_bootstrap(
vm_offset_t *endp);
extern void vm_page_module_init(void);
-extern void vm_page_create(
- vm_offset_t start,
- vm_offset_t end);
extern vm_page_t vm_page_lookup(
vm_object_t object,
vm_offset_t offset);
extern vm_page_t vm_page_grab_fictitious(void);
-extern void vm_page_release_fictitious(vm_page_t);
-extern boolean_t vm_page_convert(vm_page_t, boolean_t);
+extern boolean_t vm_page_convert(vm_page_t *, boolean_t);
extern void vm_page_more_fictitious(void);
extern vm_page_t vm_page_grab(boolean_t);
-extern void vm_page_release(vm_page_t, boolean_t);
+extern vm_page_t vm_page_grab_contig(vm_size_t, unsigned int);
+extern void vm_page_free_contig(vm_page_t, vm_size_t);
extern void vm_page_wait(void (*)(void));
extern vm_page_t vm_page_alloc(
vm_object_t object,
vm_offset_t offset);
extern void vm_page_init(
- vm_page_t mem,
- vm_offset_t phys_addr);
+ vm_page_t mem);
extern void vm_page_free(vm_page_t);
extern void vm_page_activate(vm_page_t);
extern void vm_page_deactivate(vm_page_t);
@@ -312,4 +321,189 @@ extern unsigned int vm_page_info(
} \
MACRO_END
+/*
+ * Copyright (c) 2010-2014 Richard Braun.
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ *
+ *
+ * Physical page management.
+ */
+
+/*
+ * Address/page conversion and rounding macros (not inline functions to
+ * be easily usable on both virtual and physical addresses, which may not
+ * have the same type size).
+ */
+#define vm_page_atop(addr) ((addr) >> PAGE_SHIFT)
+#define vm_page_ptoa(page) ((page) << PAGE_SHIFT)
+#define vm_page_trunc(addr) P2ALIGN(addr, PAGE_SIZE)
+#define vm_page_round(addr) P2ROUND(addr, PAGE_SIZE)
+#define vm_page_aligned(addr) P2ALIGNED(addr, PAGE_SIZE)
+
+/*
+ * Segment selectors.
+ *
+ * Selector-to-segment-list translation table :
+ * DMA DMA
+ * DMA32 DMA32 DMA
+ * DIRECTMAP DIRECTMAP DMA32 DMA
+ * HIGHMEM HIGHMEM DIRECTMAP DMA32 DMA
+ */
+#define VM_PAGE_SEL_DMA 0
+#define VM_PAGE_SEL_DMA32 1
+#define VM_PAGE_SEL_DIRECTMAP 2
+#define VM_PAGE_SEL_HIGHMEM 3
+
+/*
+ * Page usage types.
+ *
+ * Failing to allocate pmap pages will cause a kernel panic.
+ * TODO Obviously, this needs to be addressed, e.g. with a reserved pool of
+ * pages.
+ */
+#define VM_PT_FREE 0 /* Page unused */
+#define VM_PT_RESERVED 1 /* Page reserved at boot time */
+#define VM_PT_TABLE 2 /* Page is part of the page table */
+#define VM_PT_PMAP 3 /* Page stores pmap-specific data */
+#define VM_PT_KMEM 4 /* Page is part of a kmem slab */
+#define VM_PT_KERNEL 5 /* Type for generic kernel allocations */
+
+static inline unsigned short
+vm_page_type(const struct vm_page *page)
+{
+ return page->type;
+}
+
+void vm_page_set_type(struct vm_page *page, unsigned int order,
+ unsigned short type);
+
+static inline unsigned int
+vm_page_order(size_t size)
+{
+ return iorder2(vm_page_atop(vm_page_round(size)));
+}
+
+static inline phys_addr_t
+vm_page_to_pa(const struct vm_page *page)
+{
+ return page->phys_addr;
+}
+
+#if 0
+static inline unsigned long
+vm_page_direct_va(phys_addr_t pa)
+{
+ assert(pa < VM_PAGE_DIRECTMAP_LIMIT);
+ return ((unsigned long)pa + VM_MIN_DIRECTMAP_ADDRESS);
+}
+
+static inline phys_addr_t
+vm_page_direct_pa(unsigned long va)
+{
+ assert(va >= VM_MIN_DIRECTMAP_ADDRESS);
+ assert(va < VM_MAX_DIRECTMAP_ADDRESS);
+ return (va - VM_MIN_DIRECTMAP_ADDRESS);
+}
+
+static inline void *
+vm_page_direct_ptr(const struct vm_page *page)
+{
+ return (void *)vm_page_direct_va(vm_page_to_pa(page));
+}
+#endif
+
+/*
+ * Load physical memory into the vm_page module at boot time.
+ *
+ * The avail_start and avail_end parameters are used to maintain a simple
+ * heap for bootstrap allocations.
+ *
+ * All addresses must be page-aligned. Segments can be loaded in any order.
+ */
+void vm_page_load(unsigned int seg_index, phys_addr_t start, phys_addr_t end,
+ phys_addr_t avail_start, phys_addr_t avail_end);
+
+/*
+ * Return true if the vm_page module is completely initialized, false
+ * otherwise, in which case only vm_page_bootalloc() can be used for
+ * allocations.
+ */
+int vm_page_ready(void);
+
+/*
+ * Early allocation function.
+ *
+ * This function is used by the vm_resident module to implement
+ * pmap_steal_memory. It can be used after physical segments have been loaded
+ * and before the vm_page module is initialized.
+ */
+unsigned long vm_page_bootalloc(size_t size);
+
+/*
+ * Set up the vm_page module.
+ *
+ * Architecture-specific code must have loaded segments before calling this
+ * function. Segments must comply with the selector-to-segment-list table,
+ * e.g. HIGHMEM is loaded if and only if DIRECTMAP, DMA32 and DMA are loaded,
+ * notwithstanding segment aliasing.
+ *
+ * Once this function returns, the vm_page module is ready, and normal
+ * allocation functions can be used.
+ */
+void vm_page_setup(void);
+
+/*
+ * Make the given page managed by the vm_page module.
+ *
+ * If additional memory can be made usable after the VM system is initialized,
+ * it should be reported through this function.
+ */
+void vm_page_manage(struct vm_page *page);
+
+/*
+ * Return the page descriptor for the given physical address.
+ */
+struct vm_page * vm_page_lookup_pa(phys_addr_t pa);
+
+/*
+ * Allocate a block of 2^order physical pages.
+ *
+ * The selector is used to determine the segments from which allocation can
+ * be attempted.
+ */
+struct vm_page * vm_page_alloc_pa(unsigned int order, unsigned int selector,
+ unsigned short type);
+
+/*
+ * Release a block of 2^order physical pages.
+ */
+void vm_page_free_pa(struct vm_page *page, unsigned int order);
+
+/*
+ * Return the name of the given segment.
+ */
+const char * vm_page_seg_name(unsigned int seg_index);
+
+/*
+ * Display internal information about the module.
+ */
+void vm_page_info_all(void);
+
+/*
+ * Return the total amount of physical memory.
+ */
+phys_addr_t vm_page_mem_size(void);
+
#endif /* _VM_VM_PAGE_H_ */
diff --git a/vm/vm_resident.c b/vm/vm_resident.c
index c70fa734..9fd64918 100644
--- a/vm/vm_resident.c
+++ b/vm/vm_resident.c
@@ -72,7 +72,7 @@
/*
* These variables record the values returned by vm_page_bootstrap,
* for debugging purposes. The implementation of pmap_steal_memory
- * and pmap_startup here also uses them internally.
+ * here also uses them internally.
*/
vm_offset_t virtual_space_start;
@@ -95,21 +95,6 @@ vm_page_bucket_t *vm_page_buckets; /* Array of buckets */
unsigned int vm_page_bucket_count = 0; /* How big is array? */
unsigned int vm_page_hash_mask; /* Mask for hash function */
-/*
- * Resident page structures are initialized from
- * a template (see vm_page_alloc).
- *
- * When adding a new field to the virtual memory
- * object structure, be sure to add initialization
- * (see vm_page_bootstrap).
- */
-struct vm_page vm_page_template;
-
-/*
- * Resident pages that represent real memory
- * are allocated from a free list.
- */
-vm_page_t vm_page_queue_free;
vm_page_t vm_page_queue_fictitious;
decl_simple_lock_data(,vm_page_queue_free_lock)
unsigned int vm_page_free_wanted;
@@ -192,48 +177,15 @@ void vm_page_bootstrap(
vm_offset_t *startp,
vm_offset_t *endp)
{
- vm_page_t m;
int i;
/*
- * Initialize the vm_page template.
- */
-
- m = &vm_page_template;
- m->object = VM_OBJECT_NULL; /* reset later */
- m->offset = 0; /* reset later */
- m->wire_count = 0;
-
- m->inactive = FALSE;
- m->active = FALSE;
- m->laundry = FALSE;
- m->free = FALSE;
- m->external = FALSE;
-
- m->busy = TRUE;
- m->wanted = FALSE;
- m->tabled = FALSE;
- m->fictitious = FALSE;
- m->private = FALSE;
- m->absent = FALSE;
- m->error = FALSE;
- m->dirty = FALSE;
- m->precious = FALSE;
- m->reference = FALSE;
-
- m->phys_addr = 0; /* reset later */
-
- m->page_lock = VM_PROT_NONE;
- m->unlock_request = VM_PROT_NONE;
-
- /*
* Initialize the page queues.
*/
simple_lock_init(&vm_page_queue_free_lock);
simple_lock_init(&vm_page_queue_lock);
- vm_page_queue_free = VM_PAGE_NULL;
vm_page_queue_fictitious = VM_PAGE_NULL;
queue_init(&vm_page_queue_active);
queue_init(&vm_page_queue_inactive);
@@ -280,15 +232,8 @@ void vm_page_bootstrap(
simple_lock_init(&bucket->lock);
}
- /*
- * Machine-dependent code allocates the resident page table.
- * It uses vm_page_init to initialize the page frames.
- * The code also returns to us the virtual space available
- * to the kernel. We don't trust the pmap module
- * to get the alignment right.
- */
+ vm_page_setup();
- pmap_startup(&virtual_space_start, &virtual_space_end);
virtual_space_start = round_page(virtual_space_start);
virtual_space_end = trunc_page(virtual_space_end);
@@ -301,8 +246,8 @@ void vm_page_bootstrap(
#ifndef MACHINE_PAGES
/*
- * We implement pmap_steal_memory and pmap_startup with the help
- * of two simpler functions, pmap_virtual_space and pmap_next_page.
+ * We implement pmap_steal_memory with the help
+ * of two simpler functions, pmap_virtual_space and vm_page_bootalloc.
*/
vm_offset_t pmap_steal_memory(
@@ -310,11 +255,7 @@ vm_offset_t pmap_steal_memory(
{
vm_offset_t addr, vaddr, paddr;
- /*
- * We round the size to an integer multiple.
- */
-
- size = (size + 3) &~ 3;
+ size = round_page(size);
/*
* If this is the first call to pmap_steal_memory,
@@ -347,8 +288,7 @@ vm_offset_t pmap_steal_memory(
for (vaddr = round_page(addr);
vaddr < addr + size;
vaddr += PAGE_SIZE) {
- if (!pmap_next_page(&paddr))
- panic("pmap_steal_memory");
+ paddr = vm_page_bootalloc(PAGE_SIZE);
/*
* XXX Logically, these mappings should be wired,
@@ -361,64 +301,6 @@ vm_offset_t pmap_steal_memory(
return addr;
}
-
-void pmap_startup(
- vm_offset_t *startp,
- vm_offset_t *endp)
-{
- unsigned int i, npages, pages_initialized;
- vm_page_t pages;
- vm_offset_t paddr;
-
- /*
- * We calculate how many page frames we will have
- * and then allocate the page structures in one chunk.
- */
-
- npages = ((PAGE_SIZE * pmap_free_pages() +
- (round_page(virtual_space_start) - virtual_space_start)) /
- (PAGE_SIZE + sizeof *pages));
-
- pages = (vm_page_t) pmap_steal_memory(npages * sizeof *pages);
-
- /*
- * Initialize the page frames.
- */
-
- for (i = 0, pages_initialized = 0; i < npages; i++) {
- if (!pmap_next_page(&paddr))
- break;
-
- vm_page_init(&pages[i], paddr);
- pages_initialized++;
- }
- i = 0;
- while (pmap_next_page(&paddr))
- i++;
- if (i)
- printf("%u memory page(s) left away\n", i);
-
- /*
- * Release pages in reverse order so that physical pages
- * initially get allocated in ascending addresses. This keeps
- * the devices (which must address physical memory) happy if
- * they require several consecutive pages.
- */
-
- for (i = pages_initialized; i > 0; i--) {
- vm_page_release(&pages[i - 1], FALSE);
- }
-
- /*
- * We have to re-align virtual_space_start,
- * because pmap_steal_memory has been using it.
- */
-
- virtual_space_start = round_page(virtual_space_start);
-
- *startp = virtual_space_start;
- *endp = virtual_space_end;
-}
#endif /* MACHINE_PAGES */
/*
@@ -434,34 +316,6 @@ void vm_page_module_init(void)
}
/*
- * Routine: vm_page_create
- * Purpose:
- * After the VM system is up, machine-dependent code
- * may stumble across more physical memory. For example,
- * memory that it was reserving for a frame buffer.
- * vm_page_create turns this memory into available pages.
- */
-
-void vm_page_create(
- vm_offset_t start,
- vm_offset_t end)
-{
- vm_offset_t paddr;
- vm_page_t m;
-
- for (paddr = round_page(start);
- paddr < trunc_page(end);
- paddr += PAGE_SIZE) {
- m = (vm_page_t) kmem_cache_alloc(&vm_page_cache);
- if (m == VM_PAGE_NULL)
- panic("vm_page_create");
-
- vm_page_init(m, paddr);
- vm_page_release(m, FALSE);
- }
-}
-
-/*
* vm_page_hash:
*
* Distributes the object/offset key pair among hash buckets.
@@ -750,6 +604,33 @@ void vm_page_rename(
vm_page_unlock_queues();
}
+static void vm_page_init_template(vm_page_t m)
+{
+ m->object = VM_OBJECT_NULL; /* reset later */
+ m->offset = 0; /* reset later */
+ m->wire_count = 0;
+
+ m->inactive = FALSE;
+ m->active = FALSE;
+ m->laundry = FALSE;
+ m->free = FALSE;
+ m->external = FALSE;
+
+ m->busy = TRUE;
+ m->wanted = FALSE;
+ m->tabled = FALSE;
+ m->fictitious = FALSE;
+ m->private = FALSE;
+ m->absent = FALSE;
+ m->error = FALSE;
+ m->dirty = FALSE;
+ m->precious = FALSE;
+ m->reference = FALSE;
+
+ m->page_lock = VM_PROT_NONE;
+ m->unlock_request = VM_PROT_NONE;
+}
+
/*
* vm_page_init:
*
@@ -758,11 +639,9 @@ void vm_page_rename(
* so that it can be given to vm_page_release or vm_page_insert.
*/
void vm_page_init(
- vm_page_t mem,
- vm_offset_t phys_addr)
+ vm_page_t mem)
{
- *mem = vm_page_template;
- mem->phys_addr = phys_addr;
+ vm_page_init_template(mem);
}
/*
@@ -794,7 +673,7 @@ vm_page_t vm_page_grab_fictitious(void)
* Release a fictitious page to the free list.
*/
-void vm_page_release_fictitious(
+static void vm_page_release_fictitious(
vm_page_t m)
{
simple_lock(&vm_page_queue_free_lock);
@@ -826,7 +705,8 @@ void vm_page_more_fictitious(void)
if (m == VM_PAGE_NULL)
panic("vm_page_more_fictitious");
- vm_page_init(m, vm_page_fictitious_addr);
+ vm_page_init(m);
+ m->phys_addr = vm_page_fictitious_addr;
m->fictitious = TRUE;
vm_page_release_fictitious(m);
}
@@ -836,25 +716,46 @@ void vm_page_more_fictitious(void)
* vm_page_convert:
*
* Attempt to convert a fictitious page into a real page.
+ *
+ * The object referenced by *MP must be locked.
*/
boolean_t vm_page_convert(
- vm_page_t m,
+ struct vm_page **mp,
boolean_t external)
{
- vm_page_t real_m;
+ struct vm_page *real_m, *fict_m;
+ vm_object_t object;
+ vm_offset_t offset;
+
+ fict_m = *mp;
+
+ assert(fict_m->fictitious);
+ assert(fict_m->phys_addr == vm_page_fictitious_addr);
+ assert(!fict_m->active);
+ assert(!fict_m->inactive);
real_m = vm_page_grab(external);
if (real_m == VM_PAGE_NULL)
return FALSE;
- m->phys_addr = real_m->phys_addr;
- m->fictitious = FALSE;
+ object = fict_m->object;
+ offset = fict_m->offset;
+ vm_page_remove(fict_m);
+
+ memcpy(&real_m->vm_page_header,
+ &fict_m->vm_page_header,
+ sizeof(*fict_m) - VM_PAGE_HEADER_SIZE);
+ real_m->fictitious = FALSE;
- real_m->phys_addr = vm_page_fictitious_addr;
- real_m->fictitious = TRUE;
+ vm_page_insert(real_m, object, offset);
- vm_page_release_fictitious(real_m);
+ assert(real_m->phys_addr != vm_page_fictitious_addr);
+ assert(fict_m->fictitious);
+ assert(fict_m->phys_addr == vm_page_fictitious_addr);
+
+ vm_page_release_fictitious(fict_m);
+ *mp = real_m;
return TRUE;
}
@@ -886,15 +787,16 @@ vm_page_t vm_page_grab(
return VM_PAGE_NULL;
}
- if (vm_page_queue_free == VM_PAGE_NULL)
+ mem = vm_page_alloc_pa(0, VM_PAGE_SEL_DIRECTMAP, VM_PT_KERNEL);
+
+ if (mem == NULL)
panic("vm_page_grab");
if (--vm_page_free_count < vm_page_free_count_minimum)
vm_page_free_count_minimum = vm_page_free_count;
if (external)
vm_page_external_count++;
- mem = vm_page_queue_free;
- vm_page_queue_free = (vm_page_t) mem->pageq.next;
+
mem->free = FALSE;
mem->extcounted = mem->external = external;
simple_unlock(&vm_page_queue_free_lock);
@@ -928,208 +830,97 @@ vm_offset_t vm_page_grab_phys_addr(void)
}
/*
- * vm_page_grab_contiguous_pages:
- *
- * Take N pages off the free list, the pages should
- * cover a contiguous range of physical addresses.
- * [Used by device drivers to cope with DMA limitations]
+ * vm_page_release:
*
- * Returns the page descriptors in ascending order, or
- * Returns KERN_RESOURCE_SHORTAGE if it could not.
+ * Return a page to the free list.
*/
-/* Biggest phys page number for the pages we handle in VM */
-
-vm_size_t vm_page_big_pagenum = 0; /* Set this before call! */
-
-kern_return_t
-vm_page_grab_contiguous_pages(
- int npages,
- vm_page_t pages[],
- natural_t *bits,
- boolean_t external)
+static void vm_page_release(
+ vm_page_t mem,
+ boolean_t external)
{
- int first_set;
- int size, alloc_size;
- kern_return_t ret;
- vm_page_t mem, *prevmemp;
+ simple_lock(&vm_page_queue_free_lock);
+ if (mem->free)
+ panic("vm_page_release");
+ mem->free = TRUE;
+ vm_page_free_pa(mem, 0);
+ vm_page_free_count++;
+ if (external)
+ vm_page_external_count--;
-#ifndef NBBY
-#define NBBY 8 /* size in bits of sizeof()`s unity */
-#endif
+ /*
+ * Check if we should wake up someone waiting for page.
+ * But don't bother waking them unless they can allocate.
+ *
+ * We wakeup only one thread, to prevent starvation.
+ * Because the scheduling system handles wait queues FIFO,
+ * if we wakeup all waiting threads, one greedy thread
+ * can starve multiple niceguy threads. When the threads
+ * all wakeup, the greedy threads runs first, grabs the page,
+ * and waits for another page. It will be the first to run
+ * when the next page is freed.
+ *
+ * However, there is a slight danger here.
+ * The thread we wake might not use the free page.
+ * Then the other threads could wait indefinitely
+ * while the page goes unused. To forestall this,
+ * the pageout daemon will keep making free pages
+ * as long as vm_page_free_wanted is non-zero.
+ */
-#define NBPEL (sizeof(natural_t)*NBBY)
+ if ((vm_page_free_wanted > 0) &&
+ (vm_page_free_count >= vm_page_free_reserved)) {
+ vm_page_free_wanted--;
+ thread_wakeup_one((event_t) &vm_page_free_count);
+ }
- size = (vm_page_big_pagenum + NBPEL - 1)
- & ~(NBPEL - 1); /* in bits */
+ simple_unlock(&vm_page_queue_free_lock);
+}
- size = size / NBBY; /* in bytes */
+/*
+ * vm_page_grab_contig:
+ *
+ * Remove a block of contiguous pages from the free list.
+ * Returns VM_PAGE_NULL if the request fails.
+ */
- /*
- * If we are called before the VM system is fully functional
- * the invoker must provide us with the work space. [one bit
- * per page starting at phys 0 and up to vm_page_big_pagenum]
- */
- if (bits == 0) {
- alloc_size = round_page(size);
- if (kmem_alloc_wired(kernel_map,
- (vm_offset_t *)&bits,
- alloc_size)
- != KERN_SUCCESS)
- return KERN_RESOURCE_SHORTAGE;
- } else
- alloc_size = 0;
+vm_page_t vm_page_grab_contig(
+ vm_size_t size,
+ unsigned int selector)
+{
+ unsigned int i, order, nr_pages;
+ vm_page_t mem;
- memset(bits, 0, size);
+ order = vm_page_order(size);
+ nr_pages = 1 << order;
- /*
- * A very large granularity call, its rare so that is ok
- */
simple_lock(&vm_page_queue_free_lock);
/*
- * Do not dip into the reserved pool.
+ * Only let privileged threads (involved in pageout)
+ * dip into the reserved pool or exceed the limit
+ * for externally-managed pages.
*/
- if ((vm_page_free_count < vm_page_free_reserved)
- || (vm_page_external_count >= vm_page_external_limit)) {
- printf_once("no more room for vm_page_grab_contiguous_pages");
+ if (((vm_page_free_count - nr_pages) <= vm_page_free_reserved)
+ && !current_thread()->vm_privilege) {
simple_unlock(&vm_page_queue_free_lock);
- return KERN_RESOURCE_SHORTAGE;
- }
-
- /*
- * First pass through, build a big bit-array of
- * the pages that are free. It is not going to
- * be too large anyways, in 4k we can fit info
- * for 32k pages.
- */
- mem = vm_page_queue_free;
- while (mem) {
- int word_index, bit_index;
-
- bit_index = (mem->phys_addr >> PAGE_SHIFT);
- word_index = bit_index / NBPEL;
- bit_index = bit_index - (word_index * NBPEL);
- bits[word_index] |= 1 << bit_index;
-
- mem = (vm_page_t) mem->pageq.next;
+ return VM_PAGE_NULL;
}
- /*
- * Second loop. Scan the bit array for NPAGES
- * contiguous bits. That gives us, if any,
- * the range of pages we will be grabbing off
- * the free list.
- */
- {
- int bits_so_far = 0, i;
-
- first_set = 0;
-
- for (i = 0; i < size; i += sizeof(natural_t)) {
-
- natural_t v = bits[i / sizeof(natural_t)];
- int bitpos;
-
- /*
- * Bitscan this one word
- */
- if (v) {
- /*
- * keep counting them beans ?
- */
- bitpos = 0;
-
- if (bits_so_far) {
-count_ones:
- while (v & 1) {
- bitpos++;
- /*
- * got enough beans ?
- */
- if (++bits_so_far == npages)
- goto found_em;
- v >>= 1;
- }
- /* if we are being lucky, roll again */
- if (bitpos == NBPEL)
- continue;
- }
-
- /*
- * search for beans here
- */
- bits_so_far = 0;
- while ((bitpos < NBPEL) && ((v & 1) == 0)) {
- bitpos++;
- v >>= 1;
- }
- if (v & 1) {
- first_set = (i * NBBY) + bitpos;
- goto count_ones;
- }
- }
- /*
- * No luck
- */
- bits_so_far = 0;
- }
- }
+ mem = vm_page_alloc_pa(order, selector, VM_PT_KERNEL);
- /*
- * We could not find enough contiguous pages.
- */
- simple_unlock(&vm_page_queue_free_lock);
+ if (mem == NULL)
+ panic("vm_page_grab_contig");
- printf_once("no contiguous room for vm_page_grab_contiguous_pages");
- ret = KERN_RESOURCE_SHORTAGE;
- goto out;
+ vm_page_free_count -= nr_pages;
- /*
- * Final pass. Now we know which pages we want.
- * Scan the list until we find them all, grab
- * pages as we go. FIRST_SET tells us where
- * in the bit-array our pages start.
- */
-found_em:
- vm_page_free_count -= npages;
if (vm_page_free_count < vm_page_free_count_minimum)
vm_page_free_count_minimum = vm_page_free_count;
- if (external)
- vm_page_external_count += npages;
- {
- vm_offset_t first_phys, last_phys;
-
- /* cache values for compare */
- first_phys = first_set << PAGE_SHIFT;
- last_phys = first_phys + (npages << PAGE_SHIFT);/* not included */
-
- /* running pointers */
- mem = vm_page_queue_free;
- prevmemp = &vm_page_queue_free;
-
- while (mem) {
-
- vm_offset_t addr;
-
- addr = mem->phys_addr;
-
- if ((addr >= first_phys) &&
- (addr < last_phys)) {
- *prevmemp = (vm_page_t) mem->pageq.next;
- pages[(addr - first_phys) >> PAGE_SHIFT] = mem;
- mem->free = FALSE;
- mem->extcounted = mem->external = external;
- /*
- * Got them all ?
- */
- if (--npages == 0) break;
- } else
- prevmemp = (vm_page_t *) &mem->pageq.next;
-
- mem = (vm_page_t) mem->pageq.next;
- }
+
+ for (i = 0; i < nr_pages; i++) {
+ mem[i].free = FALSE;
+ mem[i].extcounted = mem[i].external = 0;
}
simple_unlock(&vm_page_queue_free_lock);
@@ -1148,55 +939,35 @@ found_em:
if ((vm_page_free_count < vm_page_free_min) ||
((vm_page_free_count < vm_page_free_target) &&
(vm_page_inactive_count < vm_page_inactive_target)))
- thread_wakeup(&vm_page_free_wanted);
-
- ret = KERN_SUCCESS;
-out:
- if (alloc_size)
- kmem_free(kernel_map, (vm_offset_t) bits, alloc_size);
+ thread_wakeup((event_t) &vm_page_free_wanted);
- return ret;
+ return mem;
}
/*
- * vm_page_release:
+ * vm_page_free_contig:
*
- * Return a page to the free list.
+ * Return a block of contiguous pages to the free list.
*/
-void vm_page_release(
- vm_page_t mem,
- boolean_t external)
+void vm_page_free_contig(vm_page_t mem, vm_size_t size)
{
+ unsigned int i, order, nr_pages;
+
+ order = vm_page_order(size);
+ nr_pages = 1 << order;
+
simple_lock(&vm_page_queue_free_lock);
- if (mem->free)
- panic("vm_page_release");
- mem->free = TRUE;
- mem->pageq.next = (queue_entry_t) vm_page_queue_free;
- vm_page_queue_free = mem;
- vm_page_free_count++;
- if (external)
- vm_page_external_count--;
- /*
- * Check if we should wake up someone waiting for page.
- * But don't bother waking them unless they can allocate.
- *
- * We wakeup only one thread, to prevent starvation.
- * Because the scheduling system handles wait queues FIFO,
- * if we wakeup all waiting threads, one greedy thread
- * can starve multiple niceguy threads. When the threads
- * all wakeup, the greedy threads runs first, grabs the page,
- * and waits for another page. It will be the first to run
- * when the next page is freed.
- *
- * However, there is a slight danger here.
- * The thread we wake might not use the free page.
- * Then the other threads could wait indefinitely
- * while the page goes unused. To forestall this,
- * the pageout daemon will keep making free pages
- * as long as vm_page_free_wanted is non-zero.
- */
+ for (i = 0; i < nr_pages; i++) {
+ if (mem[i].free)
+ panic("vm_page_free_contig");
+
+ mem[i].free = TRUE;
+ }
+
+ vm_page_free_pa(mem, order);
+ vm_page_free_count += nr_pages;
if ((vm_page_free_wanted > 0) &&
(vm_page_free_count >= vm_page_free_reserved)) {
@@ -1310,12 +1081,13 @@ void vm_page_free(
*/
if (mem->private || mem->fictitious) {
- vm_page_init(mem, vm_page_fictitious_addr);
+ vm_page_init(mem);
+ mem->phys_addr = vm_page_fictitious_addr;
mem->fictitious = TRUE;
vm_page_release_fictitious(mem);
} else {
int external = mem->external && mem->extcounted;
- vm_page_init(mem, mem->phys_addr);
+ vm_page_init(mem);
vm_page_release(mem, external);
}
}