/* Server side implementation for rtc-cmos Copyright (C) 2024 Free Software Foundation, Inc. This file is part of the GNU Hurd. The GNU Hurd is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. The GNU Hurd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA. */ /* This implementation is largely based on sys-utils/hwclock-cmos.c from util-linux. */ /* A struct tm has int fields (it is defined in POSIX) tm_sec 0-59, 60 or 61 only for leap seconds tm_min 0-59 tm_hour 0-23 tm_mday 1-31 tm_mon 0-11 tm_year number of years since 1900 tm_wday 0-6, 0=Sunday tm_yday 0-365 tm_isdst >0: yes, 0: no, <0: unknown */ #include "rtc_pioctl_S.h" #include #include #include #include /* Conversions to and from RTC internal format. */ #define BCD_TO_BIN(val) ((val)=((val)&15) + (((val)>>4)&15)*10 + \ ((val)>>8)*100) #define BIN_TO_BCD(val) ((val)=(((val)/100)<<8) + \ ((((val)/10)%10)<<4) + (val)%10) /* POSIX uses 1900 as epoch for a struct tm, and 1970 for a time_t. */ #define TM_EPOCH 1900 #define CLOCK_CTL_ADDR 0x70 #define CLOCK_DATA_ADDR 0x71 #define is_leap(year) \ ((year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0)) static const int mon_yday[2][13] = { /* Normal years. */ { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }, /* Leap years. */ { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 } }; static inline unsigned char cmos_read (unsigned char reg) { outb_p (reg, CLOCK_CTL_ADDR); return inb_p (CLOCK_DATA_ADDR); } static inline void cmos_write (unsigned char reg, unsigned char val) { outb_p (reg, CLOCK_CTL_ADDR); outb_p (val, CLOCK_DATA_ADDR); } static inline int cmos_clock_busy (void) { /* Poll bit 7 (UIP) of Control Register A. */ return (cmos_read (10) & 0x80); } /* Calculate day of year based on month, day of month, and year. The value it returns is in binary format. */ static int calculate_yday (const struct rtc_time *tm) { return mon_yday[is_leap (tm->tm_year)][tm->tm_mon] + tm->tm_mday - 1; } /* 3 RTC_UIE_ON -- Enable update-ended interrupt. */ kern_return_t rtc_S_pioctl_rtc_uie_on (struct trivfs_protid *cred) { return EOPNOTSUPP; } /* 4 RTC_UIE_OFF -- Disable update-ended interrupt. */ kern_return_t rtc_S_pioctl_rtc_uie_off (struct trivfs_protid *cred) { return EOPNOTSUPP; } /* 9 RTC_RD_TIME -- Read RTC time. */ kern_return_t rtc_S_pioctl_rtc_rd_time (struct trivfs_protid *cred, struct rtc_time *tm) { unsigned char status = 0; unsigned char pmbit = 0; int time_passed_in_milliseconds = 0; bool read_rtc_successfully = false; if (!cred) return EOPNOTSUPP; if (!(cred->po->openmodes & O_READ)) return EBADF; /* When we wait for 100 ms (it takes too long), we exit with error. */ while (time_passed_in_milliseconds < 100) { if (!cmos_clock_busy ()) { tm->tm_sec = cmos_read (0); tm->tm_min = cmos_read (2); tm->tm_hour = cmos_read (4); tm->tm_wday = cmos_read (6); tm->tm_mday = cmos_read (7); tm->tm_mon = cmos_read (8); tm->tm_year = cmos_read (9); status = cmos_read (11); /* Unless the clock changed while we were reading, consider this a good clock read. */ if (tm->tm_sec == cmos_read (0)) { read_rtc_successfully = true; break; } } usleep (1000); time_passed_in_milliseconds++; } if (!read_rtc_successfully) return EBUSY; /* If the data we just read is in BCD format, convert it to binary format. */ if (!(status & 0x04)) { BCD_TO_BIN (tm->tm_sec); BCD_TO_BIN (tm->tm_min); pmbit = (tm->tm_hour & 0x80); tm->tm_hour &= 0x7f; BCD_TO_BIN (tm->tm_hour); BCD_TO_BIN (tm->tm_wday); BCD_TO_BIN (tm->tm_mday); BCD_TO_BIN (tm->tm_mon); BCD_TO_BIN (tm->tm_year); } /* We don't use the century byte of the Hardware Clock since we don't know its address (usually 50 or 55). Here, we follow the advice of the X/Open Base Working Group: "if century is not specified, then values in the range [69-99] refer to years in the twentieth century (1969 to 1999 inclusive), and values in the range [00-68] refer to years in the twenty-first century (2000 to 2068 inclusive)". */ tm->tm_wday -= 1; tm->tm_mon -= 1; if (tm->tm_year < 69) tm->tm_year += 100; /* Calculate day of year. */ tm->tm_yday = calculate_yday (tm); if (pmbit) { tm->tm_hour += 12; if (tm->tm_hour == 24) tm->tm_hour = 0; } /* We don't know whether it's daylight. */ tm->tm_isdst = -1; return KERN_SUCCESS; } /* 10 RTC_SET_TIME -- Set RTC time. */ kern_return_t rtc_S_pioctl_rtc_set_time (struct trivfs_protid *cred, struct rtc_time tm) { unsigned char save_control, save_freq_select, pmbit = 0; if (!cred) return EOPNOTSUPP; if (!(cred->po->openmodes & O_WRITE)) return EBADF; /* CMOS byte 10 (clock status register A) has 3 bitfields: bit 7: 1 if data invalid, update in progress (read-only bit) (this is raised 224 us before the actual update starts) 6-4 select base frequency 010: 32768 Hz time base (default) 111: reset all other combinations are manufacturer-dependent (e.g.: DS1287: 010 = start oscillator, anything else = stop) 3-0 rate selection bits for interrupt 0000 none (may stop RTC) 0001, 0010 give same frequency as 1000, 1001 0011 122 microseconds (minimum, 8192 Hz) .... each increase by 1 halves the frequency, doubles the period 1111 500 milliseconds (maximum, 2 Hz) 0110 976.562 microseconds (default 1024 Hz). */ /* Tell the clock it's being set. */ save_control = cmos_read (11); cmos_write (11, (save_control | 0x80)); /* Stop and reset prescaler. */ save_freq_select = cmos_read (10); cmos_write (10, (save_freq_select | 0x70)); tm.tm_year %= 100; tm.tm_mon += 1; tm.tm_wday += 1; /* 12hr mode; the default is 24hr mode. */ if (!(save_control & 0x02)) { if (tm.tm_hour == 0) tm.tm_hour = 24; if (tm.tm_hour > 12) { tm.tm_hour -= 12; pmbit = 0x80; } } /* BCD mode - the default. */ if (!(save_control & 0x04)) { BIN_TO_BCD (tm.tm_sec); BIN_TO_BCD (tm.tm_min); BIN_TO_BCD (tm.tm_hour); BIN_TO_BCD (tm.tm_wday); BIN_TO_BCD (tm.tm_mday); BIN_TO_BCD (tm.tm_mon); BIN_TO_BCD (tm.tm_year); } cmos_write (0, tm.tm_sec); cmos_write (2, tm.tm_min); cmos_write (4, tm.tm_hour | pmbit); cmos_write (6, tm.tm_wday); cmos_write (7, tm.tm_mday); cmos_write (8, tm.tm_mon); cmos_write (9, tm.tm_year); /* The kernel sources, linux/arch/i386/kernel/time.c, have the following comment: The following flags have to be released exactly in this order, otherwise the DS12887 (popular MC146818A clone with integrated battery and quartz) will not reset the oscillator and will not update precisely 500 ms later. You won't find this mentioned in the Dallas Semiconductor data sheets, but who believes data sheets anyway ... -- Markus Kuhn. */ cmos_write (11, save_control); cmos_write (10, save_freq_select); return KERN_SUCCESS; }