// Copyright 2019 The libgav1 Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/dsp/cdef.h" #include "src/utils/cpu.h" #if LIBGAV1_ENABLE_NEON #include #include #include #include #include #include #include "src/dsp/arm/common_neon.h" #include "src/dsp/constants.h" #include "src/dsp/dsp.h" #include "src/utils/common.h" #include "src/utils/constants.h" namespace libgav1 { namespace dsp { namespace low_bitdepth { namespace { #include "src/dsp/cdef.inc" // ---------------------------------------------------------------------------- // Refer to CdefDirection_C(). // // int32_t partial[8][15] = {}; // for (int i = 0; i < 8; ++i) { // for (int j = 0; j < 8; ++j) { // const int x = 1; // partial[0][i + j] += x; // partial[1][i + j / 2] += x; // partial[2][i] += x; // partial[3][3 + i - j / 2] += x; // partial[4][7 + i - j] += x; // partial[5][3 - i / 2 + j] += x; // partial[6][j] += x; // partial[7][i / 2 + j] += x; // } // } // // Using the code above, generate the position count for partial[8][15]. // // partial[0]: 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 // partial[1]: 2 4 6 8 8 8 8 8 6 4 2 0 0 0 0 // partial[2]: 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 // partial[3]: 2 4 6 8 8 8 8 8 6 4 2 0 0 0 0 // partial[4]: 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 // partial[5]: 2 4 6 8 8 8 8 8 6 4 2 0 0 0 0 // partial[6]: 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 // partial[7]: 2 4 6 8 8 8 8 8 6 4 2 0 0 0 0 // // The SIMD code shifts the input horizontally, then adds vertically to get the // correct partial value for the given position. // ---------------------------------------------------------------------------- // ---------------------------------------------------------------------------- // partial[0][i + j] += x; // // 00 01 02 03 04 05 06 07 00 00 00 00 00 00 00 // 00 10 11 12 13 14 15 16 17 00 00 00 00 00 00 // 00 00 20 21 22 23 24 25 26 27 00 00 00 00 00 // 00 00 00 30 31 32 33 34 35 36 37 00 00 00 00 // 00 00 00 00 40 41 42 43 44 45 46 47 00 00 00 // 00 00 00 00 00 50 51 52 53 54 55 56 57 00 00 // 00 00 00 00 00 00 60 61 62 63 64 65 66 67 00 // 00 00 00 00 00 00 00 70 71 72 73 74 75 76 77 // // partial[4] is the same except the source is reversed. LIBGAV1_ALWAYS_INLINE void AddPartial_D0_D4(uint8x8_t* v_src, uint16x8_t* partial_lo, uint16x8_t* partial_hi) { const uint8x8_t v_zero = vdup_n_u8(0); // 00 01 02 03 04 05 06 07 // 00 10 11 12 13 14 15 16 *partial_lo = vaddl_u8(v_src[0], vext_u8(v_zero, v_src[1], 7)); // 00 00 20 21 22 23 24 25 *partial_lo = vaddw_u8(*partial_lo, vext_u8(v_zero, v_src[2], 6)); // 17 00 00 00 00 00 00 00 // 26 27 00 00 00 00 00 00 *partial_hi = vaddl_u8(vext_u8(v_src[1], v_zero, 7), vext_u8(v_src[2], v_zero, 6)); // 00 00 00 30 31 32 33 34 *partial_lo = vaddw_u8(*partial_lo, vext_u8(v_zero, v_src[3], 5)); // 35 36 37 00 00 00 00 00 *partial_hi = vaddw_u8(*partial_hi, vext_u8(v_src[3], v_zero, 5)); // 00 00 00 00 40 41 42 43 *partial_lo = vaddw_u8(*partial_lo, vext_u8(v_zero, v_src[4], 4)); // 44 45 46 47 00 00 00 00 *partial_hi = vaddw_u8(*partial_hi, vext_u8(v_src[4], v_zero, 4)); // 00 00 00 00 00 50 51 52 *partial_lo = vaddw_u8(*partial_lo, vext_u8(v_zero, v_src[5], 3)); // 53 54 55 56 57 00 00 00 *partial_hi = vaddw_u8(*partial_hi, vext_u8(v_src[5], v_zero, 3)); // 00 00 00 00 00 00 60 61 *partial_lo = vaddw_u8(*partial_lo, vext_u8(v_zero, v_src[6], 2)); // 62 63 64 65 66 67 00 00 *partial_hi = vaddw_u8(*partial_hi, vext_u8(v_src[6], v_zero, 2)); // 00 00 00 00 00 00 00 70 *partial_lo = vaddw_u8(*partial_lo, vext_u8(v_zero, v_src[7], 1)); // 71 72 73 74 75 76 77 00 *partial_hi = vaddw_u8(*partial_hi, vext_u8(v_src[7], v_zero, 1)); } // ---------------------------------------------------------------------------- // partial[1][i + j / 2] += x; // // A0 = src[0] + src[1], A1 = src[2] + src[3], ... // // A0 A1 A2 A3 00 00 00 00 00 00 00 00 00 00 00 // 00 B0 B1 B2 B3 00 00 00 00 00 00 00 00 00 00 // 00 00 C0 C1 C2 C3 00 00 00 00 00 00 00 00 00 // 00 00 00 D0 D1 D2 D3 00 00 00 00 00 00 00 00 // 00 00 00 00 E0 E1 E2 E3 00 00 00 00 00 00 00 // 00 00 00 00 00 F0 F1 F2 F3 00 00 00 00 00 00 // 00 00 00 00 00 00 G0 G1 G2 G3 00 00 00 00 00 // 00 00 00 00 00 00 00 H0 H1 H2 H3 00 00 00 00 // // partial[3] is the same except the source is reversed. LIBGAV1_ALWAYS_INLINE void AddPartial_D1_D3(uint8x8_t* v_src, uint16x8_t* partial_lo, uint16x8_t* partial_hi) { uint8x16_t v_d1_temp[8]; const uint8x8_t v_zero = vdup_n_u8(0); const uint8x16_t v_zero_16 = vdupq_n_u8(0); for (int i = 0; i < 8; ++i) { v_d1_temp[i] = vcombine_u8(v_src[i], v_zero); } *partial_lo = *partial_hi = vdupq_n_u16(0); // A0 A1 A2 A3 00 00 00 00 *partial_lo = vpadalq_u8(*partial_lo, v_d1_temp[0]); // 00 B0 B1 B2 B3 00 00 00 *partial_lo = vpadalq_u8(*partial_lo, vextq_u8(v_zero_16, v_d1_temp[1], 14)); // 00 00 C0 C1 C2 C3 00 00 *partial_lo = vpadalq_u8(*partial_lo, vextq_u8(v_zero_16, v_d1_temp[2], 12)); // 00 00 00 D0 D1 D2 D3 00 *partial_lo = vpadalq_u8(*partial_lo, vextq_u8(v_zero_16, v_d1_temp[3], 10)); // 00 00 00 00 E0 E1 E2 E3 *partial_lo = vpadalq_u8(*partial_lo, vextq_u8(v_zero_16, v_d1_temp[4], 8)); // 00 00 00 00 00 F0 F1 F2 *partial_lo = vpadalq_u8(*partial_lo, vextq_u8(v_zero_16, v_d1_temp[5], 6)); // F3 00 00 00 00 00 00 00 *partial_hi = vpadalq_u8(*partial_hi, vextq_u8(v_d1_temp[5], v_zero_16, 6)); // 00 00 00 00 00 00 G0 G1 *partial_lo = vpadalq_u8(*partial_lo, vextq_u8(v_zero_16, v_d1_temp[6], 4)); // G2 G3 00 00 00 00 00 00 *partial_hi = vpadalq_u8(*partial_hi, vextq_u8(v_d1_temp[6], v_zero_16, 4)); // 00 00 00 00 00 00 00 H0 *partial_lo = vpadalq_u8(*partial_lo, vextq_u8(v_zero_16, v_d1_temp[7], 2)); // H1 H2 H3 00 00 00 00 00 *partial_hi = vpadalq_u8(*partial_hi, vextq_u8(v_d1_temp[7], v_zero_16, 2)); } // ---------------------------------------------------------------------------- // partial[7][i / 2 + j] += x; // // 00 01 02 03 04 05 06 07 00 00 00 00 00 00 00 // 10 11 12 13 14 15 16 17 00 00 00 00 00 00 00 // 00 20 21 22 23 24 25 26 27 00 00 00 00 00 00 // 00 30 31 32 33 34 35 36 37 00 00 00 00 00 00 // 00 00 40 41 42 43 44 45 46 47 00 00 00 00 00 // 00 00 50 51 52 53 54 55 56 57 00 00 00 00 00 // 00 00 00 60 61 62 63 64 65 66 67 00 00 00 00 // 00 00 00 70 71 72 73 74 75 76 77 00 00 00 00 // // partial[5] is the same except the source is reversed. LIBGAV1_ALWAYS_INLINE void AddPartial_D5_D7(uint8x8_t* v_src, uint16x8_t* partial_lo, uint16x8_t* partial_hi) { const uint16x8_t v_zero = vdupq_n_u16(0); uint16x8_t v_pair_add[4]; // Add vertical source pairs. v_pair_add[0] = vaddl_u8(v_src[0], v_src[1]); v_pair_add[1] = vaddl_u8(v_src[2], v_src[3]); v_pair_add[2] = vaddl_u8(v_src[4], v_src[5]); v_pair_add[3] = vaddl_u8(v_src[6], v_src[7]); // 00 01 02 03 04 05 06 07 // 10 11 12 13 14 15 16 17 *partial_lo = v_pair_add[0]; // 00 00 00 00 00 00 00 00 // 00 00 00 00 00 00 00 00 *partial_hi = vdupq_n_u16(0); // 00 20 21 22 23 24 25 26 // 00 30 31 32 33 34 35 36 *partial_lo = vaddq_u16(*partial_lo, vextq_u16(v_zero, v_pair_add[1], 7)); // 27 00 00 00 00 00 00 00 // 37 00 00 00 00 00 00 00 *partial_hi = vaddq_u16(*partial_hi, vextq_u16(v_pair_add[1], v_zero, 7)); // 00 00 40 41 42 43 44 45 // 00 00 50 51 52 53 54 55 *partial_lo = vaddq_u16(*partial_lo, vextq_u16(v_zero, v_pair_add[2], 6)); // 46 47 00 00 00 00 00 00 // 56 57 00 00 00 00 00 00 *partial_hi = vaddq_u16(*partial_hi, vextq_u16(v_pair_add[2], v_zero, 6)); // 00 00 00 60 61 62 63 64 // 00 00 00 70 71 72 73 74 *partial_lo = vaddq_u16(*partial_lo, vextq_u16(v_zero, v_pair_add[3], 5)); // 65 66 67 00 00 00 00 00 // 75 76 77 00 00 00 00 00 *partial_hi = vaddq_u16(*partial_hi, vextq_u16(v_pair_add[3], v_zero, 5)); } LIBGAV1_ALWAYS_INLINE void AddPartial(const void* const source, ptrdiff_t stride, uint16x8_t* partial_lo, uint16x8_t* partial_hi) { const auto* src = static_cast(source); // 8x8 input // 00 01 02 03 04 05 06 07 // 10 11 12 13 14 15 16 17 // 20 21 22 23 24 25 26 27 // 30 31 32 33 34 35 36 37 // 40 41 42 43 44 45 46 47 // 50 51 52 53 54 55 56 57 // 60 61 62 63 64 65 66 67 // 70 71 72 73 74 75 76 77 uint8x8_t v_src[8]; for (int i = 0; i < 8; ++i) { v_src[i] = vld1_u8(src); src += stride; } // partial for direction 2 // -------------------------------------------------------------------------- // partial[2][i] += x; // 00 10 20 30 40 50 60 70 00 00 00 00 00 00 00 00 // 01 11 21 33 41 51 61 71 00 00 00 00 00 00 00 00 // 02 12 22 33 42 52 62 72 00 00 00 00 00 00 00 00 // 03 13 23 33 43 53 63 73 00 00 00 00 00 00 00 00 // 04 14 24 34 44 54 64 74 00 00 00 00 00 00 00 00 // 05 15 25 35 45 55 65 75 00 00 00 00 00 00 00 00 // 06 16 26 36 46 56 66 76 00 00 00 00 00 00 00 00 // 07 17 27 37 47 57 67 77 00 00 00 00 00 00 00 00 partial_lo[2] = vsetq_lane_u16(SumVector(v_src[0]), vdupq_n_u16(0), 0); partial_lo[2] = vsetq_lane_u16(SumVector(v_src[1]), partial_lo[2], 1); partial_lo[2] = vsetq_lane_u16(SumVector(v_src[2]), partial_lo[2], 2); partial_lo[2] = vsetq_lane_u16(SumVector(v_src[3]), partial_lo[2], 3); partial_lo[2] = vsetq_lane_u16(SumVector(v_src[4]), partial_lo[2], 4); partial_lo[2] = vsetq_lane_u16(SumVector(v_src[5]), partial_lo[2], 5); partial_lo[2] = vsetq_lane_u16(SumVector(v_src[6]), partial_lo[2], 6); partial_lo[2] = vsetq_lane_u16(SumVector(v_src[7]), partial_lo[2], 7); // partial for direction 6 // -------------------------------------------------------------------------- // partial[6][j] += x; // 00 01 02 03 04 05 06 07 00 00 00 00 00 00 00 00 // 10 11 12 13 14 15 16 17 00 00 00 00 00 00 00 00 // 20 21 22 23 24 25 26 27 00 00 00 00 00 00 00 00 // 30 31 32 33 34 35 36 37 00 00 00 00 00 00 00 00 // 40 41 42 43 44 45 46 47 00 00 00 00 00 00 00 00 // 50 51 52 53 54 55 56 57 00 00 00 00 00 00 00 00 // 60 61 62 63 64 65 66 67 00 00 00 00 00 00 00 00 // 70 71 72 73 74 75 76 77 00 00 00 00 00 00 00 00 partial_lo[6] = vaddl_u8(v_src[0], v_src[1]); for (int i = 2; i < 8; ++i) { partial_lo[6] = vaddw_u8(partial_lo[6], v_src[i]); } // partial for direction 0 AddPartial_D0_D4(v_src, &partial_lo[0], &partial_hi[0]); // partial for direction 1 AddPartial_D1_D3(v_src, &partial_lo[1], &partial_hi[1]); // partial for direction 7 AddPartial_D5_D7(v_src, &partial_lo[7], &partial_hi[7]); uint8x8_t v_src_reverse[8]; for (int i = 0; i < 8; ++i) { v_src_reverse[i] = vrev64_u8(v_src[i]); } // partial for direction 4 AddPartial_D0_D4(v_src_reverse, &partial_lo[4], &partial_hi[4]); // partial for direction 3 AddPartial_D1_D3(v_src_reverse, &partial_lo[3], &partial_hi[3]); // partial for direction 5 AddPartial_D5_D7(v_src_reverse, &partial_lo[5], &partial_hi[5]); } uint32x4_t Square(uint16x4_t a) { return vmull_u16(a, a); } uint32x4_t SquareAccumulate(uint32x4_t a, uint16x4_t b) { return vmlal_u16(a, b, b); } // |cost[0]| and |cost[4]| square the input and sum with the corresponding // element from the other end of the vector: // |kCdefDivisionTable[]| element: // cost[0] += (Square(partial[0][i]) + Square(partial[0][14 - i])) * // kCdefDivisionTable[i + 1]; // cost[0] += Square(partial[0][7]) * kCdefDivisionTable[8]; // Because everything is being summed into a single value the distributive // property allows us to mirror the division table and accumulate once. uint32_t Cost0Or4(const uint16x8_t a, const uint16x8_t b, const uint32x4_t division_table[4]) { uint32x4_t c = vmulq_u32(Square(vget_low_u16(a)), division_table[0]); c = vmlaq_u32(c, Square(vget_high_u16(a)), division_table[1]); c = vmlaq_u32(c, Square(vget_low_u16(b)), division_table[2]); c = vmlaq_u32(c, Square(vget_high_u16(b)), division_table[3]); return SumVector(c); } // |cost[2]| and |cost[6]| square the input and accumulate: // cost[2] += Square(partial[2][i]) uint32_t SquareAccumulate(const uint16x8_t a) { uint32x4_t c = Square(vget_low_u16(a)); c = SquareAccumulate(c, vget_high_u16(a)); c = vmulq_n_u32(c, kCdefDivisionTable[7]); return SumVector(c); } uint32_t CostOdd(const uint16x8_t a, const uint16x8_t b, const uint32x4_t mask, const uint32x4_t division_table[2]) { // Remove elements 0-2. uint32x4_t c = vandq_u32(mask, Square(vget_low_u16(a))); c = vaddq_u32(c, Square(vget_high_u16(a))); c = vmulq_n_u32(c, kCdefDivisionTable[7]); c = vmlaq_u32(c, Square(vget_low_u16(a)), division_table[0]); c = vmlaq_u32(c, Square(vget_low_u16(b)), division_table[1]); return SumVector(c); } void CdefDirection_NEON(const void* const source, ptrdiff_t stride, uint8_t* const direction, int* const variance) { assert(direction != nullptr); assert(variance != nullptr); const auto* src = static_cast(source); uint32_t cost[8]; uint16x8_t partial_lo[8], partial_hi[8]; AddPartial(src, stride, partial_lo, partial_hi); cost[2] = SquareAccumulate(partial_lo[2]); cost[6] = SquareAccumulate(partial_lo[6]); const uint32x4_t division_table[4] = { vld1q_u32(kCdefDivisionTable), vld1q_u32(kCdefDivisionTable + 4), vld1q_u32(kCdefDivisionTable + 8), vld1q_u32(kCdefDivisionTable + 12)}; cost[0] = Cost0Or4(partial_lo[0], partial_hi[0], division_table); cost[4] = Cost0Or4(partial_lo[4], partial_hi[4], division_table); const uint32x4_t division_table_odd[2] = { vld1q_u32(kCdefDivisionTableOdd), vld1q_u32(kCdefDivisionTableOdd + 4)}; const uint32x4_t element_3_mask = {0, 0, 0, static_cast(-1)}; cost[1] = CostOdd(partial_lo[1], partial_hi[1], element_3_mask, division_table_odd); cost[3] = CostOdd(partial_lo[3], partial_hi[3], element_3_mask, division_table_odd); cost[5] = CostOdd(partial_lo[5], partial_hi[5], element_3_mask, division_table_odd); cost[7] = CostOdd(partial_lo[7], partial_hi[7], element_3_mask, division_table_odd); uint32_t best_cost = 0; *direction = 0; for (int i = 0; i < 8; ++i) { if (cost[i] > best_cost) { best_cost = cost[i]; *direction = i; } } *variance = (best_cost - cost[(*direction + 4) & 7]) >> 10; } // ------------------------------------------------------------------------- // CdefFilter // Load 4 vectors based on the given |direction|. void LoadDirection(const uint16_t* const src, const ptrdiff_t stride, uint16x8_t* output, const int direction) { // Each |direction| describes a different set of source values. Expand this // set by negating each set. For |direction| == 0 this gives a diagonal line // from top right to bottom left. The first value is y, the second x. Negative // y values move up. // a b c d // {-1, 1}, {1, -1}, {-2, 2}, {2, -2} // c // a // 0 // b // d const int y_0 = kCdefDirections[direction][0][0]; const int x_0 = kCdefDirections[direction][0][1]; const int y_1 = kCdefDirections[direction][1][0]; const int x_1 = kCdefDirections[direction][1][1]; output[0] = vld1q_u16(src + y_0 * stride + x_0); output[1] = vld1q_u16(src - y_0 * stride - x_0); output[2] = vld1q_u16(src + y_1 * stride + x_1); output[3] = vld1q_u16(src - y_1 * stride - x_1); } // Load 4 vectors based on the given |direction|. Use when |block_width| == 4 to // do 2 rows at a time. void LoadDirection4(const uint16_t* const src, const ptrdiff_t stride, uint16x8_t* output, const int direction) { const int y_0 = kCdefDirections[direction][0][0]; const int x_0 = kCdefDirections[direction][0][1]; const int y_1 = kCdefDirections[direction][1][0]; const int x_1 = kCdefDirections[direction][1][1]; output[0] = vcombine_u16(vld1_u16(src + y_0 * stride + x_0), vld1_u16(src + y_0 * stride + stride + x_0)); output[1] = vcombine_u16(vld1_u16(src - y_0 * stride - x_0), vld1_u16(src - y_0 * stride + stride - x_0)); output[2] = vcombine_u16(vld1_u16(src + y_1 * stride + x_1), vld1_u16(src + y_1 * stride + stride + x_1)); output[3] = vcombine_u16(vld1_u16(src - y_1 * stride - x_1), vld1_u16(src - y_1 * stride + stride - x_1)); } int16x8_t Constrain(const uint16x8_t pixel, const uint16x8_t reference, const uint16x8_t threshold, const int16x8_t damping) { // If reference > pixel, the difference will be negative, so convert to 0 or // -1. const uint16x8_t sign = vcgtq_u16(reference, pixel); const uint16x8_t abs_diff = vabdq_u16(pixel, reference); const uint16x8_t shifted_diff = vshlq_u16(abs_diff, damping); // For bitdepth == 8, the threshold range is [0, 15] and the damping range is // [3, 6]. If pixel == kCdefLargeValue(0x4000), shifted_diff will always be // larger than threshold. Subtract using saturation will return 0 when pixel // == kCdefLargeValue. static_assert(kCdefLargeValue == 0x4000, "Invalid kCdefLargeValue"); const uint16x8_t thresh_minus_shifted_diff = vqsubq_u16(threshold, shifted_diff); const uint16x8_t clamp_abs_diff = vminq_u16(thresh_minus_shifted_diff, abs_diff); // Restore the sign. return vreinterpretq_s16_u16( vsubq_u16(veorq_u16(clamp_abs_diff, sign), sign)); } template void CdefFilter_NEON(const uint16_t* src, const ptrdiff_t src_stride, const int height, const int primary_strength, const int secondary_strength, const int damping, const int direction, void* dest, const ptrdiff_t dst_stride) { static_assert(width == 8 || width == 4, ""); static_assert(enable_primary || enable_secondary, ""); constexpr bool clipping_required = enable_primary && enable_secondary; auto* dst = static_cast(dest); const uint16x8_t cdef_large_value_mask = vdupq_n_u16(static_cast(~kCdefLargeValue)); const uint16x8_t primary_threshold = vdupq_n_u16(primary_strength); const uint16x8_t secondary_threshold = vdupq_n_u16(secondary_strength); int16x8_t primary_damping_shift, secondary_damping_shift; // FloorLog2() requires input to be > 0. // 8-bit damping range: Y: [3, 6], UV: [2, 5]. if (enable_primary) { // primary_strength: [0, 15] -> FloorLog2: [0, 3] so a clamp is necessary // for UV filtering. primary_damping_shift = vdupq_n_s16(-std::max(0, damping - FloorLog2(primary_strength))); } if (enable_secondary) { // secondary_strength: [0, 4] -> FloorLog2: [0, 2] so no clamp to 0 is // necessary. assert(damping - FloorLog2(secondary_strength) >= 0); secondary_damping_shift = vdupq_n_s16(-(damping - FloorLog2(secondary_strength))); } const int primary_tap_0 = kCdefPrimaryTaps[primary_strength & 1][0]; const int primary_tap_1 = kCdefPrimaryTaps[primary_strength & 1][1]; int y = height; do { uint16x8_t pixel; if (width == 8) { pixel = vld1q_u16(src); } else { pixel = vcombine_u16(vld1_u16(src), vld1_u16(src + src_stride)); } uint16x8_t min = pixel; uint16x8_t max = pixel; int16x8_t sum; if (enable_primary) { // Primary |direction|. uint16x8_t primary_val[4]; if (width == 8) { LoadDirection(src, src_stride, primary_val, direction); } else { LoadDirection4(src, src_stride, primary_val, direction); } if (clipping_required) { min = vminq_u16(min, primary_val[0]); min = vminq_u16(min, primary_val[1]); min = vminq_u16(min, primary_val[2]); min = vminq_u16(min, primary_val[3]); // The source is 16 bits, however, we only really care about the lower // 8 bits. The upper 8 bits contain the "large" flag. After the final // primary max has been calculated, zero out the upper 8 bits. Use this // to find the "16 bit" max. const uint8x16_t max_p01 = vmaxq_u8(vreinterpretq_u8_u16(primary_val[0]), vreinterpretq_u8_u16(primary_val[1])); const uint8x16_t max_p23 = vmaxq_u8(vreinterpretq_u8_u16(primary_val[2]), vreinterpretq_u8_u16(primary_val[3])); const uint16x8_t max_p = vreinterpretq_u16_u8(vmaxq_u8(max_p01, max_p23)); max = vmaxq_u16(max, vandq_u16(max_p, cdef_large_value_mask)); } sum = Constrain(primary_val[0], pixel, primary_threshold, primary_damping_shift); sum = vmulq_n_s16(sum, primary_tap_0); sum = vmlaq_n_s16(sum, Constrain(primary_val[1], pixel, primary_threshold, primary_damping_shift), primary_tap_0); sum = vmlaq_n_s16(sum, Constrain(primary_val[2], pixel, primary_threshold, primary_damping_shift), primary_tap_1); sum = vmlaq_n_s16(sum, Constrain(primary_val[3], pixel, primary_threshold, primary_damping_shift), primary_tap_1); } else { sum = vdupq_n_s16(0); } if (enable_secondary) { // Secondary |direction| values (+/- 2). Clamp |direction|. uint16x8_t secondary_val[8]; if (width == 8) { LoadDirection(src, src_stride, secondary_val, direction + 2); LoadDirection(src, src_stride, secondary_val + 4, direction - 2); } else { LoadDirection4(src, src_stride, secondary_val, direction + 2); LoadDirection4(src, src_stride, secondary_val + 4, direction - 2); } if (clipping_required) { min = vminq_u16(min, secondary_val[0]); min = vminq_u16(min, secondary_val[1]); min = vminq_u16(min, secondary_val[2]); min = vminq_u16(min, secondary_val[3]); min = vminq_u16(min, secondary_val[4]); min = vminq_u16(min, secondary_val[5]); min = vminq_u16(min, secondary_val[6]); min = vminq_u16(min, secondary_val[7]); const uint8x16_t max_s01 = vmaxq_u8(vreinterpretq_u8_u16(secondary_val[0]), vreinterpretq_u8_u16(secondary_val[1])); const uint8x16_t max_s23 = vmaxq_u8(vreinterpretq_u8_u16(secondary_val[2]), vreinterpretq_u8_u16(secondary_val[3])); const uint8x16_t max_s45 = vmaxq_u8(vreinterpretq_u8_u16(secondary_val[4]), vreinterpretq_u8_u16(secondary_val[5])); const uint8x16_t max_s67 = vmaxq_u8(vreinterpretq_u8_u16(secondary_val[6]), vreinterpretq_u8_u16(secondary_val[7])); const uint16x8_t max_s = vreinterpretq_u16_u8( vmaxq_u8(vmaxq_u8(max_s01, max_s23), vmaxq_u8(max_s45, max_s67))); max = vmaxq_u16(max, vandq_u16(max_s, cdef_large_value_mask)); } sum = vmlaq_n_s16(sum, Constrain(secondary_val[0], pixel, secondary_threshold, secondary_damping_shift), kCdefSecondaryTap0); sum = vmlaq_n_s16(sum, Constrain(secondary_val[1], pixel, secondary_threshold, secondary_damping_shift), kCdefSecondaryTap0); sum = vmlaq_n_s16(sum, Constrain(secondary_val[2], pixel, secondary_threshold, secondary_damping_shift), kCdefSecondaryTap1); sum = vmlaq_n_s16(sum, Constrain(secondary_val[3], pixel, secondary_threshold, secondary_damping_shift), kCdefSecondaryTap1); sum = vmlaq_n_s16(sum, Constrain(secondary_val[4], pixel, secondary_threshold, secondary_damping_shift), kCdefSecondaryTap0); sum = vmlaq_n_s16(sum, Constrain(secondary_val[5], pixel, secondary_threshold, secondary_damping_shift), kCdefSecondaryTap0); sum = vmlaq_n_s16(sum, Constrain(secondary_val[6], pixel, secondary_threshold, secondary_damping_shift), kCdefSecondaryTap1); sum = vmlaq_n_s16(sum, Constrain(secondary_val[7], pixel, secondary_threshold, secondary_damping_shift), kCdefSecondaryTap1); } // Clip3(pixel + ((8 + sum - (sum < 0)) >> 4), min, max)) const int16x8_t sum_lt_0 = vshrq_n_s16(sum, 15); sum = vaddq_s16(sum, sum_lt_0); int16x8_t result = vrsraq_n_s16(vreinterpretq_s16_u16(pixel), sum, 4); if (clipping_required) { result = vminq_s16(result, vreinterpretq_s16_u16(max)); result = vmaxq_s16(result, vreinterpretq_s16_u16(min)); } const uint8x8_t dst_pixel = vqmovun_s16(result); if (width == 8) { src += src_stride; vst1_u8(dst, dst_pixel); dst += dst_stride; --y; } else { src += src_stride << 1; StoreLo4(dst, dst_pixel); dst += dst_stride; StoreHi4(dst, dst_pixel); dst += dst_stride; y -= 2; } } while (y != 0); } void Init8bpp() { Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8); assert(dsp != nullptr); dsp->cdef_direction = CdefDirection_NEON; dsp->cdef_filters[0][0] = CdefFilter_NEON<4>; dsp->cdef_filters[0][1] = CdefFilter_NEON<4, /*enable_primary=*/true, /*enable_secondary=*/false>; dsp->cdef_filters[0][2] = CdefFilter_NEON<4, /*enable_primary=*/false>; dsp->cdef_filters[1][0] = CdefFilter_NEON<8>; dsp->cdef_filters[1][1] = CdefFilter_NEON<8, /*enable_primary=*/true, /*enable_secondary=*/false>; dsp->cdef_filters[1][2] = CdefFilter_NEON<8, /*enable_primary=*/false>; } } // namespace } // namespace low_bitdepth void CdefInit_NEON() { low_bitdepth::Init8bpp(); } } // namespace dsp } // namespace libgav1 #else // !LIBGAV1_ENABLE_NEON namespace libgav1 { namespace dsp { void CdefInit_NEON() {} } // namespace dsp } // namespace libgav1 #endif // LIBGAV1_ENABLE_NEON