// Copyright 2021 The libgav1 Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/dsp/convolve.h" #include "src/utils/cpu.h" #if LIBGAV1_ENABLE_NEON && LIBGAV1_MAX_BITDEPTH >= 10 #include #include #include #include #include "src/dsp/arm/common_neon.h" #include "src/dsp/constants.h" #include "src/dsp/dsp.h" #include "src/utils/common.h" #include "src/utils/compiler_attributes.h" #include "src/utils/constants.h" namespace libgav1 { namespace dsp { namespace { // Include the constants and utility functions inside the anonymous namespace. #include "src/dsp/convolve.inc" // Output of ConvolveTest.ShowRange below. // Bitdepth: 10 Input range: [ 0, 1023] // Horizontal base upscaled range: [ -28644, 94116] // Horizontal halved upscaled range: [ -14322, 47085] // Horizontal downscaled range: [ -7161, 23529] // Vertical upscaled range: [-1317624, 2365176] // Pixel output range: [ 0, 1023] // Compound output range: [ 3988, 61532] template int32x4x2_t SumOnePassTaps(const uint16x8_t* const src, const int16x4_t* const taps) { const auto* ssrc = reinterpret_cast(src); int32x4x2_t sum; if (filter_index < 2) { // 6 taps. sum.val[0] = vmull_s16(vget_low_s16(ssrc[0]), taps[0]); sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[1]), taps[1]); sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[2]), taps[2]); sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[3]), taps[3]); sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[4]), taps[4]); sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[5]), taps[5]); sum.val[1] = vmull_s16(vget_high_s16(ssrc[0]), taps[0]); sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[1]), taps[1]); sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[2]), taps[2]); sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[3]), taps[3]); sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[4]), taps[4]); sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[5]), taps[5]); } else if (filter_index == 2) { // 8 taps. sum.val[0] = vmull_s16(vget_low_s16(ssrc[0]), taps[0]); sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[1]), taps[1]); sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[2]), taps[2]); sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[3]), taps[3]); sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[4]), taps[4]); sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[5]), taps[5]); sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[6]), taps[6]); sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[7]), taps[7]); sum.val[1] = vmull_s16(vget_high_s16(ssrc[0]), taps[0]); sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[1]), taps[1]); sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[2]), taps[2]); sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[3]), taps[3]); sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[4]), taps[4]); sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[5]), taps[5]); sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[6]), taps[6]); sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[7]), taps[7]); } else if (filter_index == 3) { // 2 taps. sum.val[0] = vmull_s16(vget_low_s16(ssrc[0]), taps[0]); sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[1]), taps[1]); sum.val[1] = vmull_s16(vget_high_s16(ssrc[0]), taps[0]); sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[1]), taps[1]); } else { // 4 taps. sum.val[0] = vmull_s16(vget_low_s16(ssrc[0]), taps[0]); sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[1]), taps[1]); sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[2]), taps[2]); sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[3]), taps[3]); sum.val[1] = vmull_s16(vget_high_s16(ssrc[0]), taps[0]); sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[1]), taps[1]); sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[2]), taps[2]); sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[3]), taps[3]); } return sum; } template int32x4_t SumOnePassTaps(const uint16x4_t* const src, const int16x4_t* const taps) { const auto* ssrc = reinterpret_cast(src); int32x4_t sum; if (filter_index < 2) { // 6 taps. sum = vmull_s16(ssrc[0], taps[0]); sum = vmlal_s16(sum, ssrc[1], taps[1]); sum = vmlal_s16(sum, ssrc[2], taps[2]); sum = vmlal_s16(sum, ssrc[3], taps[3]); sum = vmlal_s16(sum, ssrc[4], taps[4]); sum = vmlal_s16(sum, ssrc[5], taps[5]); } else if (filter_index == 2) { // 8 taps. sum = vmull_s16(ssrc[0], taps[0]); sum = vmlal_s16(sum, ssrc[1], taps[1]); sum = vmlal_s16(sum, ssrc[2], taps[2]); sum = vmlal_s16(sum, ssrc[3], taps[3]); sum = vmlal_s16(sum, ssrc[4], taps[4]); sum = vmlal_s16(sum, ssrc[5], taps[5]); sum = vmlal_s16(sum, ssrc[6], taps[6]); sum = vmlal_s16(sum, ssrc[7], taps[7]); } else if (filter_index == 3) { // 2 taps. sum = vmull_s16(ssrc[0], taps[0]); sum = vmlal_s16(sum, ssrc[1], taps[1]); } else { // 4 taps. sum = vmull_s16(ssrc[0], taps[0]); sum = vmlal_s16(sum, ssrc[1], taps[1]); sum = vmlal_s16(sum, ssrc[2], taps[2]); sum = vmlal_s16(sum, ssrc[3], taps[3]); } return sum; } template void FilterHorizontalWidth8AndUp(const uint16_t* LIBGAV1_RESTRICT src, const ptrdiff_t src_stride, void* LIBGAV1_RESTRICT const dest, const ptrdiff_t pred_stride, const int width, const int height, const int16x4_t* const v_tap) { auto* dest16 = static_cast(dest); const uint16x4_t v_max_bitdepth = vdup_n_u16((1 << kBitdepth10) - 1); if (is_2d) { int x = 0; do { const uint16_t* s = src + x; int y = height; do { // Increasing loop counter x is better. const uint16x8_t src_long = vld1q_u16(s); const uint16x8_t src_long_hi = vld1q_u16(s + 8); uint16x8_t v_src[8]; int32x4x2_t v_sum; if (filter_index < 2) { v_src[0] = src_long; v_src[1] = vextq_u16(src_long, src_long_hi, 1); v_src[2] = vextq_u16(src_long, src_long_hi, 2); v_src[3] = vextq_u16(src_long, src_long_hi, 3); v_src[4] = vextq_u16(src_long, src_long_hi, 4); v_src[5] = vextq_u16(src_long, src_long_hi, 5); v_sum = SumOnePassTaps(v_src, v_tap + 1); } else if (filter_index == 2) { v_src[0] = src_long; v_src[1] = vextq_u16(src_long, src_long_hi, 1); v_src[2] = vextq_u16(src_long, src_long_hi, 2); v_src[3] = vextq_u16(src_long, src_long_hi, 3); v_src[4] = vextq_u16(src_long, src_long_hi, 4); v_src[5] = vextq_u16(src_long, src_long_hi, 5); v_src[6] = vextq_u16(src_long, src_long_hi, 6); v_src[7] = vextq_u16(src_long, src_long_hi, 7); v_sum = SumOnePassTaps(v_src, v_tap); } else if (filter_index == 3) { v_src[0] = src_long; v_src[1] = vextq_u16(src_long, src_long_hi, 1); v_sum = SumOnePassTaps(v_src, v_tap + 3); } else { // filter_index > 3 v_src[0] = src_long; v_src[1] = vextq_u16(src_long, src_long_hi, 1); v_src[2] = vextq_u16(src_long, src_long_hi, 2); v_src[3] = vextq_u16(src_long, src_long_hi, 3); v_sum = SumOnePassTaps(v_src, v_tap + 2); } const int16x4_t d0 = vqrshrn_n_s32(v_sum.val[0], kInterRoundBitsHorizontal - 1); const int16x4_t d1 = vqrshrn_n_s32(v_sum.val[1], kInterRoundBitsHorizontal - 1); vst1_u16(&dest16[0], vreinterpret_u16_s16(d0)); vst1_u16(&dest16[4], vreinterpret_u16_s16(d1)); s += src_stride; dest16 += 8; } while (--y != 0); x += 8; } while (x < width); return; } int y = height; do { int x = 0; do { const uint16x8_t src_long = vld1q_u16(src + x); const uint16x8_t src_long_hi = vld1q_u16(src + x + 8); uint16x8_t v_src[8]; int32x4x2_t v_sum; if (filter_index < 2) { v_src[0] = src_long; v_src[1] = vextq_u16(src_long, src_long_hi, 1); v_src[2] = vextq_u16(src_long, src_long_hi, 2); v_src[3] = vextq_u16(src_long, src_long_hi, 3); v_src[4] = vextq_u16(src_long, src_long_hi, 4); v_src[5] = vextq_u16(src_long, src_long_hi, 5); v_sum = SumOnePassTaps(v_src, v_tap + 1); } else if (filter_index == 2) { v_src[0] = src_long; v_src[1] = vextq_u16(src_long, src_long_hi, 1); v_src[2] = vextq_u16(src_long, src_long_hi, 2); v_src[3] = vextq_u16(src_long, src_long_hi, 3); v_src[4] = vextq_u16(src_long, src_long_hi, 4); v_src[5] = vextq_u16(src_long, src_long_hi, 5); v_src[6] = vextq_u16(src_long, src_long_hi, 6); v_src[7] = vextq_u16(src_long, src_long_hi, 7); v_sum = SumOnePassTaps(v_src, v_tap); } else if (filter_index == 3) { v_src[0] = src_long; v_src[1] = vextq_u16(src_long, src_long_hi, 1); v_sum = SumOnePassTaps(v_src, v_tap + 3); } else { // filter_index > 3 v_src[0] = src_long; v_src[1] = vextq_u16(src_long, src_long_hi, 1); v_src[2] = vextq_u16(src_long, src_long_hi, 2); v_src[3] = vextq_u16(src_long, src_long_hi, 3); v_sum = SumOnePassTaps(v_src, v_tap + 2); } if (is_compound) { const int16x4_t v_compound_offset = vdup_n_s16(kCompoundOffset); const int16x4_t d0 = vqrshrn_n_s32(v_sum.val[0], kInterRoundBitsHorizontal - 1); const int16x4_t d1 = vqrshrn_n_s32(v_sum.val[1], kInterRoundBitsHorizontal - 1); vst1_u16(&dest16[x], vreinterpret_u16_s16(vadd_s16(d0, v_compound_offset))); vst1_u16(&dest16[x + 4], vreinterpret_u16_s16(vadd_s16(d1, v_compound_offset))); } else { // Normally the Horizontal pass does the downshift in two passes: // kInterRoundBitsHorizontal - 1 and then (kFilterBits - // kInterRoundBitsHorizontal). Each one uses a rounding shift. // Combining them requires adding the rounding offset from the skipped // shift. const int32x4_t v_first_shift_rounding_bit = vdupq_n_s32(1 << (kInterRoundBitsHorizontal - 2)); v_sum.val[0] = vaddq_s32(v_sum.val[0], v_first_shift_rounding_bit); v_sum.val[1] = vaddq_s32(v_sum.val[1], v_first_shift_rounding_bit); const uint16x4_t d0 = vmin_u16( vqrshrun_n_s32(v_sum.val[0], kFilterBits - 1), v_max_bitdepth); const uint16x4_t d1 = vmin_u16( vqrshrun_n_s32(v_sum.val[1], kFilterBits - 1), v_max_bitdepth); vst1_u16(&dest16[x], d0); vst1_u16(&dest16[x + 4], d1); } x += 8; } while (x < width); src += src_stride; dest16 += pred_stride; } while (--y != 0); } template void FilterHorizontalWidth4(const uint16_t* LIBGAV1_RESTRICT src, const ptrdiff_t src_stride, void* LIBGAV1_RESTRICT const dest, const ptrdiff_t pred_stride, const int height, const int16x4_t* const v_tap) { auto* dest16 = static_cast(dest); const uint16x4_t v_max_bitdepth = vdup_n_u16((1 << kBitdepth10) - 1); int y = height; do { const uint16x8_t v_zero = vdupq_n_u16(0); uint16x4_t v_src[4]; int32x4_t v_sum; const uint16x8_t src_long = vld1q_u16(src); v_src[0] = vget_low_u16(src_long); if (filter_index == 3) { v_src[1] = vget_low_u16(vextq_u16(src_long, v_zero, 1)); v_sum = SumOnePassTaps(v_src, v_tap + 3); } else { v_src[1] = vget_low_u16(vextq_u16(src_long, v_zero, 1)); v_src[2] = vget_low_u16(vextq_u16(src_long, v_zero, 2)); v_src[3] = vget_low_u16(vextq_u16(src_long, v_zero, 3)); v_sum = SumOnePassTaps(v_src, v_tap + 2); } if (is_compound || is_2d) { const int16x4_t d0 = vqrshrn_n_s32(v_sum, kInterRoundBitsHorizontal - 1); if (is_compound && !is_2d) { vst1_u16(&dest16[0], vreinterpret_u16_s16( vadd_s16(d0, vdup_n_s16(kCompoundOffset)))); } else { vst1_u16(&dest16[0], vreinterpret_u16_s16(d0)); } } else { const int32x4_t v_first_shift_rounding_bit = vdupq_n_s32(1 << (kInterRoundBitsHorizontal - 2)); v_sum = vaddq_s32(v_sum, v_first_shift_rounding_bit); const uint16x4_t d0 = vmin_u16(vqrshrun_n_s32(v_sum, kFilterBits - 1), v_max_bitdepth); vst1_u16(&dest16[0], d0); } src += src_stride; dest16 += pred_stride; } while (--y != 0); } template void FilterHorizontalWidth2(const uint16_t* LIBGAV1_RESTRICT src, const ptrdiff_t src_stride, void* LIBGAV1_RESTRICT const dest, const ptrdiff_t pred_stride, const int height, const int16x4_t* const v_tap) { auto* dest16 = static_cast(dest); const uint16x4_t v_max_bitdepth = vdup_n_u16((1 << kBitdepth10) - 1); int y = height >> 1; do { const int16x8_t v_zero = vdupq_n_s16(0); const int16x8_t input0 = vreinterpretq_s16_u16(vld1q_u16(src)); const int16x8_t input1 = vreinterpretq_s16_u16(vld1q_u16(src + src_stride)); const int16x8x2_t input = vzipq_s16(input0, input1); int32x4_t v_sum; if (filter_index == 3) { v_sum = vmull_s16(vget_low_s16(input.val[0]), v_tap[3]); v_sum = vmlal_s16(v_sum, vget_low_s16(vextq_s16(input.val[0], input.val[1], 2)), v_tap[4]); } else { v_sum = vmull_s16(vget_low_s16(input.val[0]), v_tap[2]); v_sum = vmlal_s16(v_sum, vget_low_s16(vextq_s16(input.val[0], v_zero, 2)), v_tap[3]); v_sum = vmlal_s16(v_sum, vget_low_s16(vextq_s16(input.val[0], v_zero, 4)), v_tap[4]); v_sum = vmlal_s16(v_sum, vget_low_s16(vextq_s16(input.val[0], input.val[1], 6)), v_tap[5]); } if (is_2d) { const uint16x4_t d0 = vreinterpret_u16_s16( vqrshrn_n_s32(v_sum, kInterRoundBitsHorizontal - 1)); dest16[0] = vget_lane_u16(d0, 0); dest16[1] = vget_lane_u16(d0, 2); dest16 += pred_stride; dest16[0] = vget_lane_u16(d0, 1); dest16[1] = vget_lane_u16(d0, 3); dest16 += pred_stride; } else { // Normally the Horizontal pass does the downshift in two passes: // kInterRoundBitsHorizontal - 1 and then (kFilterBits - // kInterRoundBitsHorizontal). Each one uses a rounding shift. // Combining them requires adding the rounding offset from the skipped // shift. const int32x4_t v_first_shift_rounding_bit = vdupq_n_s32(1 << (kInterRoundBitsHorizontal - 2)); v_sum = vaddq_s32(v_sum, v_first_shift_rounding_bit); const uint16x4_t d0 = vmin_u16(vqrshrun_n_s32(v_sum, kFilterBits - 1), v_max_bitdepth); dest16[0] = vget_lane_u16(d0, 0); dest16[1] = vget_lane_u16(d0, 2); dest16 += pred_stride; dest16[0] = vget_lane_u16(d0, 1); dest16[1] = vget_lane_u16(d0, 3); dest16 += pred_stride; } src += src_stride << 1; } while (--y != 0); // The 2d filters have an odd |height| because the horizontal pass // generates context for the vertical pass. if (is_2d) { assert(height % 2 == 1); const int16x8_t input = vreinterpretq_s16_u16(vld1q_u16(src)); int32x4_t v_sum; if (filter_index == 3) { v_sum = vmull_s16(vget_low_s16(input), v_tap[3]); v_sum = vmlal_s16(v_sum, vget_low_s16(vextq_s16(input, input, 1)), v_tap[4]); } else { v_sum = vmull_s16(vget_low_s16(input), v_tap[2]); v_sum = vmlal_s16(v_sum, vget_low_s16(vextq_s16(input, input, 1)), v_tap[3]); v_sum = vmlal_s16(v_sum, vget_low_s16(vextq_s16(input, input, 2)), v_tap[4]); v_sum = vmlal_s16(v_sum, vget_low_s16(vextq_s16(input, input, 3)), v_tap[5]); } const uint16x4_t d0 = vreinterpret_u16_s16( vqrshrn_n_s32(v_sum, kInterRoundBitsHorizontal - 1)); Store2<0>(dest16, d0); } } template void FilterHorizontal(const uint16_t* LIBGAV1_RESTRICT const src, const ptrdiff_t src_stride, void* LIBGAV1_RESTRICT const dest, const ptrdiff_t pred_stride, const int width, const int height, const int16x4_t* const v_tap) { assert(width < 8 || filter_index <= 3); // Don't simplify the redundant if conditions with the template parameters, // which helps the compiler generate compact code. if (width >= 8 && filter_index <= 3) { FilterHorizontalWidth8AndUp( src, src_stride, dest, pred_stride, width, height, v_tap); return; } // Horizontal passes only needs to account for number of taps 2 and 4 when // |width| <= 4. assert(width <= 4); assert(filter_index >= 3 && filter_index <= 5); if (filter_index >= 3 && filter_index <= 5) { if (width == 4) { FilterHorizontalWidth4( src, src_stride, dest, pred_stride, height, v_tap); return; } assert(width == 2); if (!is_compound) { FilterHorizontalWidth2(src, src_stride, dest, pred_stride, height, v_tap); } } } template LIBGAV1_ALWAYS_INLINE void DoHorizontalPass( const uint16_t* LIBGAV1_RESTRICT const src, const ptrdiff_t src_stride, void* LIBGAV1_RESTRICT const dst, const ptrdiff_t dst_stride, const int width, const int height, const int filter_id, const int filter_index) { // Duplicate the absolute value for each tap. Negative taps are corrected // by using the vmlsl_u8 instruction. Positive taps use vmlal_u8. int16x4_t v_tap[kSubPixelTaps]; assert(filter_id != 0); for (int k = 0; k < kSubPixelTaps; ++k) { v_tap[k] = vdup_n_s16(kHalfSubPixelFilters[filter_index][filter_id][k]); } if (filter_index == 2) { // 8 tap. FilterHorizontal<2, is_compound, is_2d>(src, src_stride, dst, dst_stride, width, height, v_tap); } else if (filter_index == 1) { // 6 tap. FilterHorizontal<1, is_compound, is_2d>(src + 1, src_stride, dst, dst_stride, width, height, v_tap); } else if (filter_index == 0) { // 6 tap. FilterHorizontal<0, is_compound, is_2d>(src + 1, src_stride, dst, dst_stride, width, height, v_tap); } else if (filter_index == 4) { // 4 tap. FilterHorizontal<4, is_compound, is_2d>(src + 2, src_stride, dst, dst_stride, width, height, v_tap); } else if (filter_index == 5) { // 4 tap. FilterHorizontal<5, is_compound, is_2d>(src + 2, src_stride, dst, dst_stride, width, height, v_tap); } else { // 2 tap. FilterHorizontal<3, is_compound, is_2d>(src + 3, src_stride, dst, dst_stride, width, height, v_tap); } } void ConvolveHorizontal_NEON( const void* LIBGAV1_RESTRICT const reference, const ptrdiff_t reference_stride, const int horizontal_filter_index, const int /*vertical_filter_index*/, const int horizontal_filter_id, const int /*vertical_filter_id*/, const int width, const int height, void* LIBGAV1_RESTRICT const prediction, const ptrdiff_t pred_stride) { const int filter_index = GetFilterIndex(horizontal_filter_index, width); // Set |src| to the outermost tap. const auto* const src = static_cast(reference) - kHorizontalOffset; auto* const dest = static_cast(prediction); const ptrdiff_t src_stride = reference_stride >> 1; const ptrdiff_t dst_stride = pred_stride >> 1; DoHorizontalPass(src, src_stride, dest, dst_stride, width, height, horizontal_filter_id, filter_index); } void ConvolveCompoundHorizontal_NEON( const void* LIBGAV1_RESTRICT const reference, const ptrdiff_t reference_stride, const int horizontal_filter_index, const int /*vertical_filter_index*/, const int horizontal_filter_id, const int /*vertical_filter_id*/, const int width, const int height, void* LIBGAV1_RESTRICT const prediction, const ptrdiff_t /*pred_stride*/) { const int filter_index = GetFilterIndex(horizontal_filter_index, width); const auto* const src = static_cast(reference) - kHorizontalOffset; auto* const dest = static_cast(prediction); const ptrdiff_t src_stride = reference_stride >> 1; DoHorizontalPass(src, src_stride, dest, width, width, height, horizontal_filter_id, filter_index); } template void FilterVertical(const uint16_t* LIBGAV1_RESTRICT const src, const ptrdiff_t src_stride, void* LIBGAV1_RESTRICT const dst, const ptrdiff_t dst_stride, const int width, const int height, const int16x4_t* const taps) { const int num_taps = GetNumTapsInFilter(filter_index); const int next_row = num_taps - 1; const uint16x4_t v_max_bitdepth = vdup_n_u16((1 << kBitdepth10) - 1); auto* const dst16 = static_cast(dst); assert(width >= 8); int x = 0; do { const uint16_t* src_x = src + x; uint16x8_t srcs[8]; srcs[0] = vld1q_u16(src_x); src_x += src_stride; if (num_taps >= 4) { srcs[1] = vld1q_u16(src_x); src_x += src_stride; srcs[2] = vld1q_u16(src_x); src_x += src_stride; if (num_taps >= 6) { srcs[3] = vld1q_u16(src_x); src_x += src_stride; srcs[4] = vld1q_u16(src_x); src_x += src_stride; if (num_taps == 8) { srcs[5] = vld1q_u16(src_x); src_x += src_stride; srcs[6] = vld1q_u16(src_x); src_x += src_stride; } } } // Decreasing the y loop counter produces worse code with clang. // Don't unroll this loop since it generates too much code and the decoder // is even slower. int y = 0; do { srcs[next_row] = vld1q_u16(src_x); src_x += src_stride; const int32x4x2_t v_sum = SumOnePassTaps(srcs, taps); if (is_compound) { const int16x4_t v_compound_offset = vdup_n_s16(kCompoundOffset); const int16x4_t d0 = vqrshrn_n_s32(v_sum.val[0], kInterRoundBitsHorizontal - 1); const int16x4_t d1 = vqrshrn_n_s32(v_sum.val[1], kInterRoundBitsHorizontal - 1); vst1_u16(dst16 + x + y * dst_stride, vreinterpret_u16_s16(vadd_s16(d0, v_compound_offset))); vst1_u16(dst16 + x + 4 + y * dst_stride, vreinterpret_u16_s16(vadd_s16(d1, v_compound_offset))); } else { const uint16x4_t d0 = vmin_u16( vqrshrun_n_s32(v_sum.val[0], kFilterBits - 1), v_max_bitdepth); const uint16x4_t d1 = vmin_u16( vqrshrun_n_s32(v_sum.val[1], kFilterBits - 1), v_max_bitdepth); vst1_u16(dst16 + x + y * dst_stride, d0); vst1_u16(dst16 + x + 4 + y * dst_stride, d1); } srcs[0] = srcs[1]; if (num_taps >= 4) { srcs[1] = srcs[2]; srcs[2] = srcs[3]; if (num_taps >= 6) { srcs[3] = srcs[4]; srcs[4] = srcs[5]; if (num_taps == 8) { srcs[5] = srcs[6]; srcs[6] = srcs[7]; } } } } while (++y < height); x += 8; } while (x < width); } template void FilterVertical4xH(const uint16_t* LIBGAV1_RESTRICT src, const ptrdiff_t src_stride, void* LIBGAV1_RESTRICT const dst, const ptrdiff_t dst_stride, const int height, const int16x4_t* const taps) { const int num_taps = GetNumTapsInFilter(filter_index); const int next_row = num_taps - 1; const uint16x4_t v_max_bitdepth = vdup_n_u16((1 << kBitdepth10) - 1); auto* dst16 = static_cast(dst); uint16x4_t srcs[9]; srcs[0] = vld1_u16(src); src += src_stride; if (num_taps >= 4) { srcs[1] = vld1_u16(src); src += src_stride; srcs[2] = vld1_u16(src); src += src_stride; if (num_taps >= 6) { srcs[3] = vld1_u16(src); src += src_stride; srcs[4] = vld1_u16(src); src += src_stride; if (num_taps == 8) { srcs[5] = vld1_u16(src); src += src_stride; srcs[6] = vld1_u16(src); src += src_stride; } } } int y = height; do { srcs[next_row] = vld1_u16(src); src += src_stride; srcs[num_taps] = vld1_u16(src); src += src_stride; const int32x4_t v_sum = SumOnePassTaps(srcs, taps); const int32x4_t v_sum_1 = SumOnePassTaps(srcs + 1, taps); if (is_compound) { const int16x4_t d0 = vqrshrn_n_s32(v_sum, kInterRoundBitsHorizontal - 1); const int16x4_t d1 = vqrshrn_n_s32(v_sum_1, kInterRoundBitsHorizontal - 1); vst1_u16(dst16, vreinterpret_u16_s16(vadd_s16(d0, vdup_n_s16(kCompoundOffset)))); dst16 += dst_stride; vst1_u16(dst16, vreinterpret_u16_s16(vadd_s16(d1, vdup_n_s16(kCompoundOffset)))); dst16 += dst_stride; } else { const uint16x4_t d0 = vmin_u16(vqrshrun_n_s32(v_sum, kFilterBits - 1), v_max_bitdepth); const uint16x4_t d1 = vmin_u16(vqrshrun_n_s32(v_sum_1, kFilterBits - 1), v_max_bitdepth); vst1_u16(dst16, d0); dst16 += dst_stride; vst1_u16(dst16, d1); dst16 += dst_stride; } srcs[0] = srcs[2]; if (num_taps >= 4) { srcs[1] = srcs[3]; srcs[2] = srcs[4]; if (num_taps >= 6) { srcs[3] = srcs[5]; srcs[4] = srcs[6]; if (num_taps == 8) { srcs[5] = srcs[7]; srcs[6] = srcs[8]; } } } y -= 2; } while (y != 0); } template void FilterVertical2xH(const uint16_t* LIBGAV1_RESTRICT src, const ptrdiff_t src_stride, void* LIBGAV1_RESTRICT const dst, const ptrdiff_t dst_stride, const int height, const int16x4_t* const taps) { const int num_taps = GetNumTapsInFilter(filter_index); const int next_row = num_taps - 1; const uint16x4_t v_max_bitdepth = vdup_n_u16((1 << kBitdepth10) - 1); auto* dst16 = static_cast(dst); const uint16x4_t v_zero = vdup_n_u16(0); uint16x4_t srcs[9]; srcs[0] = Load2<0>(src, v_zero); src += src_stride; if (num_taps >= 4) { srcs[0] = Load2<1>(src, srcs[0]); src += src_stride; srcs[2] = Load2<0>(src, v_zero); src += src_stride; srcs[1] = vext_u16(srcs[0], srcs[2], 2); if (num_taps >= 6) { srcs[2] = Load2<1>(src, srcs[2]); src += src_stride; srcs[4] = Load2<0>(src, v_zero); src += src_stride; srcs[3] = vext_u16(srcs[2], srcs[4], 2); if (num_taps == 8) { srcs[4] = Load2<1>(src, srcs[4]); src += src_stride; srcs[6] = Load2<0>(src, v_zero); src += src_stride; srcs[5] = vext_u16(srcs[4], srcs[6], 2); } } } int y = height; do { srcs[next_row - 1] = Load2<1>(src, srcs[next_row - 1]); src += src_stride; srcs[num_taps] = Load2<0>(src, v_zero); src += src_stride; srcs[next_row] = vext_u16(srcs[next_row - 1], srcs[num_taps], 2); const int32x4_t v_sum = SumOnePassTaps(srcs, taps); const uint16x4_t d0 = vmin_u16(vqrshrun_n_s32(v_sum, kFilterBits - 1), v_max_bitdepth); Store2<0>(dst16, d0); dst16 += dst_stride; Store2<1>(dst16, d0); dst16 += dst_stride; srcs[0] = srcs[2]; if (num_taps >= 4) { srcs[1] = srcs[3]; srcs[2] = srcs[4]; if (num_taps >= 6) { srcs[3] = srcs[5]; srcs[4] = srcs[6]; if (num_taps == 8) { srcs[5] = srcs[7]; srcs[6] = srcs[8]; } } } y -= 2; } while (y != 0); } template int16x8_t SimpleSum2DVerticalTaps(const int16x8_t* const src, const int16x8_t taps) { const int16x4_t taps_lo = vget_low_s16(taps); const int16x4_t taps_hi = vget_high_s16(taps); int32x4_t sum_lo, sum_hi; if (num_taps == 8) { sum_lo = vmull_lane_s16(vget_low_s16(src[0]), taps_lo, 0); sum_hi = vmull_lane_s16(vget_high_s16(src[0]), taps_lo, 0); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[1]), taps_lo, 1); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[1]), taps_lo, 1); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[2]), taps_lo, 2); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[2]), taps_lo, 2); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[3]), taps_lo, 3); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[3]), taps_lo, 3); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[4]), taps_hi, 0); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[4]), taps_hi, 0); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[5]), taps_hi, 1); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[5]), taps_hi, 1); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[6]), taps_hi, 2); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[6]), taps_hi, 2); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[7]), taps_hi, 3); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[7]), taps_hi, 3); } else if (num_taps == 6) { sum_lo = vmull_lane_s16(vget_low_s16(src[0]), taps_lo, 1); sum_hi = vmull_lane_s16(vget_high_s16(src[0]), taps_lo, 1); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[1]), taps_lo, 2); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[1]), taps_lo, 2); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[2]), taps_lo, 3); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[2]), taps_lo, 3); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[3]), taps_hi, 0); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[3]), taps_hi, 0); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[4]), taps_hi, 1); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[4]), taps_hi, 1); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[5]), taps_hi, 2); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[5]), taps_hi, 2); } else if (num_taps == 4) { sum_lo = vmull_lane_s16(vget_low_s16(src[0]), taps_lo, 2); sum_hi = vmull_lane_s16(vget_high_s16(src[0]), taps_lo, 2); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[1]), taps_lo, 3); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[1]), taps_lo, 3); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[2]), taps_hi, 0); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[2]), taps_hi, 0); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[3]), taps_hi, 1); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[3]), taps_hi, 1); } else if (num_taps == 2) { sum_lo = vmull_lane_s16(vget_low_s16(src[0]), taps_lo, 3); sum_hi = vmull_lane_s16(vget_high_s16(src[0]), taps_lo, 3); sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[1]), taps_hi, 0); sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[1]), taps_hi, 0); } if (is_compound) { // Output is compound, so leave signed and do not saturate. Offset will // accurately bring the value back into positive range. return vcombine_s16( vrshrn_n_s32(sum_lo, kInterRoundBitsCompoundVertical - 1), vrshrn_n_s32(sum_hi, kInterRoundBitsCompoundVertical - 1)); } // Output is pixel, so saturate to clip at 0. return vreinterpretq_s16_u16( vcombine_u16(vqrshrun_n_s32(sum_lo, kInterRoundBitsVertical - 1), vqrshrun_n_s32(sum_hi, kInterRoundBitsVertical - 1))); } template void Filter2DVerticalWidth8AndUp(const int16_t* LIBGAV1_RESTRICT src, void* LIBGAV1_RESTRICT const dst, const ptrdiff_t dst_stride, const int width, const int height, const int16x8_t taps) { assert(width >= 8); constexpr int next_row = num_taps - 1; const uint16x8_t v_max_bitdepth = vdupq_n_u16((1 << kBitdepth10) - 1); auto* const dst16 = static_cast(dst); int x = 0; do { int16x8_t srcs[9]; srcs[0] = vld1q_s16(src); src += 8; if (num_taps >= 4) { srcs[1] = vld1q_s16(src); src += 8; srcs[2] = vld1q_s16(src); src += 8; if (num_taps >= 6) { srcs[3] = vld1q_s16(src); src += 8; srcs[4] = vld1q_s16(src); src += 8; if (num_taps == 8) { srcs[5] = vld1q_s16(src); src += 8; srcs[6] = vld1q_s16(src); src += 8; } } } uint16_t* d16 = dst16 + x; int y = height; do { srcs[next_row] = vld1q_s16(src); src += 8; srcs[next_row + 1] = vld1q_s16(src); src += 8; const int16x8_t sum0 = SimpleSum2DVerticalTaps(srcs + 0, taps); const int16x8_t sum1 = SimpleSum2DVerticalTaps(srcs + 1, taps); if (is_compound) { const int16x8_t v_compound_offset = vdupq_n_s16(kCompoundOffset); vst1q_u16(d16, vreinterpretq_u16_s16(vaddq_s16(sum0, v_compound_offset))); d16 += dst_stride; vst1q_u16(d16, vreinterpretq_u16_s16(vaddq_s16(sum1, v_compound_offset))); d16 += dst_stride; } else { vst1q_u16(d16, vminq_u16(vreinterpretq_u16_s16(sum0), v_max_bitdepth)); d16 += dst_stride; vst1q_u16(d16, vminq_u16(vreinterpretq_u16_s16(sum1), v_max_bitdepth)); d16 += dst_stride; } srcs[0] = srcs[2]; if (num_taps >= 4) { srcs[1] = srcs[3]; srcs[2] = srcs[4]; if (num_taps >= 6) { srcs[3] = srcs[5]; srcs[4] = srcs[6]; if (num_taps == 8) { srcs[5] = srcs[7]; srcs[6] = srcs[8]; } } } y -= 2; } while (y != 0); x += 8; } while (x < width); } // Take advantage of |src_stride| == |width| to process two rows at a time. template void Filter2DVerticalWidth4(const int16_t* LIBGAV1_RESTRICT src, void* LIBGAV1_RESTRICT const dst, const ptrdiff_t dst_stride, const int height, const int16x8_t taps) { const uint16x8_t v_max_bitdepth = vdupq_n_u16((1 << kBitdepth10) - 1); auto* dst16 = static_cast(dst); int16x8_t srcs[9]; srcs[0] = vld1q_s16(src); src += 8; if (num_taps >= 4) { srcs[2] = vld1q_s16(src); src += 8; srcs[1] = vcombine_s16(vget_high_s16(srcs[0]), vget_low_s16(srcs[2])); if (num_taps >= 6) { srcs[4] = vld1q_s16(src); src += 8; srcs[3] = vcombine_s16(vget_high_s16(srcs[2]), vget_low_s16(srcs[4])); if (num_taps == 8) { srcs[6] = vld1q_s16(src); src += 8; srcs[5] = vcombine_s16(vget_high_s16(srcs[4]), vget_low_s16(srcs[6])); } } } int y = height; do { srcs[num_taps] = vld1q_s16(src); src += 8; srcs[num_taps - 1] = vcombine_s16(vget_high_s16(srcs[num_taps - 2]), vget_low_s16(srcs[num_taps])); const int16x8_t sum = SimpleSum2DVerticalTaps(srcs, taps); if (is_compound) { const int16x8_t v_compound_offset = vdupq_n_s16(kCompoundOffset); vst1q_u16(dst16, vreinterpretq_u16_s16(vaddq_s16(sum, v_compound_offset))); dst16 += 4 << 1; } else { const uint16x8_t d0 = vminq_u16(vreinterpretq_u16_s16(sum), v_max_bitdepth); vst1_u16(dst16, vget_low_u16(d0)); dst16 += dst_stride; vst1_u16(dst16, vget_high_u16(d0)); dst16 += dst_stride; } srcs[0] = srcs[2]; if (num_taps >= 4) { srcs[1] = srcs[3]; srcs[2] = srcs[4]; if (num_taps >= 6) { srcs[3] = srcs[5]; srcs[4] = srcs[6]; if (num_taps == 8) { srcs[5] = srcs[7]; srcs[6] = srcs[8]; } } } y -= 2; } while (y != 0); } // Take advantage of |src_stride| == |width| to process four rows at a time. template void Filter2DVerticalWidth2(const int16_t* LIBGAV1_RESTRICT src, void* LIBGAV1_RESTRICT const dst, const ptrdiff_t dst_stride, const int height, const int16x8_t taps) { constexpr int next_row = (num_taps < 6) ? 4 : 8; const uint16x8_t v_max_bitdepth = vdupq_n_u16((1 << kBitdepth10) - 1); auto* dst16 = static_cast(dst); int16x8_t srcs[9]; srcs[0] = vld1q_s16(src); src += 8; if (num_taps >= 6) { srcs[4] = vld1q_s16(src); src += 8; srcs[1] = vextq_s16(srcs[0], srcs[4], 2); if (num_taps == 8) { srcs[2] = vcombine_s16(vget_high_s16(srcs[0]), vget_low_s16(srcs[4])); srcs[3] = vextq_s16(srcs[0], srcs[4], 6); } } int y = height; do { srcs[next_row] = vld1q_s16(src); src += 8; if (num_taps == 2) { srcs[1] = vextq_s16(srcs[0], srcs[4], 2); } else if (num_taps == 4) { srcs[1] = vextq_s16(srcs[0], srcs[4], 2); srcs[2] = vcombine_s16(vget_high_s16(srcs[0]), vget_low_s16(srcs[4])); srcs[3] = vextq_s16(srcs[0], srcs[4], 6); } else if (num_taps == 6) { srcs[2] = vcombine_s16(vget_high_s16(srcs[0]), vget_low_s16(srcs[4])); srcs[3] = vextq_s16(srcs[0], srcs[4], 6); srcs[5] = vextq_s16(srcs[4], srcs[8], 2); } else if (num_taps == 8) { srcs[5] = vextq_s16(srcs[4], srcs[8], 2); srcs[6] = vcombine_s16(vget_high_s16(srcs[4]), vget_low_s16(srcs[8])); srcs[7] = vextq_s16(srcs[4], srcs[8], 6); } const int16x8_t sum = SimpleSum2DVerticalTaps(srcs, taps); const uint16x8_t d0 = vminq_u16(vreinterpretq_u16_s16(sum), v_max_bitdepth); Store2<0>(dst16, d0); dst16 += dst_stride; Store2<1>(dst16, d0); // When |height| <= 4 the taps are restricted to 2 and 4 tap variants. // Therefore we don't need to check this condition when |height| > 4. if (num_taps <= 4 && height == 2) return; dst16 += dst_stride; Store2<2>(dst16, d0); dst16 += dst_stride; Store2<3>(dst16, d0); dst16 += dst_stride; srcs[0] = srcs[4]; if (num_taps == 6) { srcs[1] = srcs[5]; srcs[4] = srcs[8]; } else if (num_taps == 8) { srcs[1] = srcs[5]; srcs[2] = srcs[6]; srcs[3] = srcs[7]; srcs[4] = srcs[8]; } y -= 4; } while (y != 0); } template void Filter2DVertical(const int16_t* LIBGAV1_RESTRICT const intermediate_result, const int width, const int height, const int16x8_t taps, void* LIBGAV1_RESTRICT const prediction, const ptrdiff_t pred_stride) { auto* const dest = static_cast(prediction); if (width >= 8) { Filter2DVerticalWidth8AndUp( intermediate_result, dest, pred_stride, width, height, taps); } else if (width == 4) { Filter2DVerticalWidth4(intermediate_result, dest, pred_stride, height, taps); } else { assert(width == 2); Filter2DVerticalWidth2(intermediate_result, dest, pred_stride, height, taps); } } void Convolve2D_NEON(const void* LIBGAV1_RESTRICT const reference, const ptrdiff_t reference_stride, const int horizontal_filter_index, const int vertical_filter_index, const int horizontal_filter_id, const int vertical_filter_id, const int width, const int height, void* LIBGAV1_RESTRICT const prediction, const ptrdiff_t pred_stride) { const int horiz_filter_index = GetFilterIndex(horizontal_filter_index, width); const int vert_filter_index = GetFilterIndex(vertical_filter_index, height); const int vertical_taps = GetNumTapsInFilter(vert_filter_index); // The output of the horizontal filter is guaranteed to fit in 16 bits. int16_t intermediate_result[kMaxSuperBlockSizeInPixels * (kMaxSuperBlockSizeInPixels + kSubPixelTaps - 1)]; #if LIBGAV1_MSAN // Quiet msan warnings. Set with random non-zero value to aid in debugging. memset(intermediate_result, 0x43, sizeof(intermediate_result)); #endif const int intermediate_height = height + vertical_taps - 1; const ptrdiff_t src_stride = reference_stride >> 1; const auto* const src = static_cast(reference) - (vertical_taps / 2 - 1) * src_stride - kHorizontalOffset; const ptrdiff_t dest_stride = pred_stride >> 1; DoHorizontalPass( src, src_stride, intermediate_result, width, width, intermediate_height, horizontal_filter_id, horiz_filter_index); assert(vertical_filter_id != 0); const int16x8_t taps = vmovl_s8( vld1_s8(kHalfSubPixelFilters[vert_filter_index][vertical_filter_id])); if (vertical_taps == 8) { Filter2DVertical<8>(intermediate_result, width, height, taps, prediction, dest_stride); } else if (vertical_taps == 6) { Filter2DVertical<6>(intermediate_result, width, height, taps, prediction, dest_stride); } else if (vertical_taps == 4) { Filter2DVertical<4>(intermediate_result, width, height, taps, prediction, dest_stride); } else { // |vertical_taps| == 2 Filter2DVertical<2>(intermediate_result, width, height, taps, prediction, dest_stride); } } template void Compound2DVertical( const int16_t* LIBGAV1_RESTRICT const intermediate_result, const int width, const int height, const int16x8_t taps, void* LIBGAV1_RESTRICT const prediction) { auto* const dest = static_cast(prediction); if (width == 4) { Filter2DVerticalWidth4( intermediate_result, dest, width, height, taps); } else { Filter2DVerticalWidth8AndUp( intermediate_result, dest, width, width, height, taps); } } void ConvolveCompound2D_NEON( const void* LIBGAV1_RESTRICT const reference, const ptrdiff_t reference_stride, const int horizontal_filter_index, const int vertical_filter_index, const int horizontal_filter_id, const int vertical_filter_id, const int width, const int height, void* LIBGAV1_RESTRICT const prediction, const ptrdiff_t /*pred_stride*/) { // The output of the horizontal filter, i.e. the intermediate_result, is // guaranteed to fit in int16_t. int16_t intermediate_result[(kMaxSuperBlockSizeInPixels * (kMaxSuperBlockSizeInPixels + kSubPixelTaps - 1))]; // Horizontal filter. // Filter types used for width <= 4 are different from those for width > 4. // When width > 4, the valid filter index range is always [0, 3]. // When width <= 4, the valid filter index range is always [4, 5]. // Similarly for height. const int horiz_filter_index = GetFilterIndex(horizontal_filter_index, width); const int vert_filter_index = GetFilterIndex(vertical_filter_index, height); const int vertical_taps = GetNumTapsInFilter(vert_filter_index); const int intermediate_height = height + vertical_taps - 1; const ptrdiff_t src_stride = reference_stride >> 1; const auto* const src = static_cast(reference) - (vertical_taps / 2 - 1) * src_stride - kHorizontalOffset; DoHorizontalPass( src, src_stride, intermediate_result, width, width, intermediate_height, horizontal_filter_id, horiz_filter_index); // Vertical filter. assert(vertical_filter_id != 0); const int16x8_t taps = vmovl_s8( vld1_s8(kHalfSubPixelFilters[vert_filter_index][vertical_filter_id])); if (vertical_taps == 8) { Compound2DVertical<8>(intermediate_result, width, height, taps, prediction); } else if (vertical_taps == 6) { Compound2DVertical<6>(intermediate_result, width, height, taps, prediction); } else if (vertical_taps == 4) { Compound2DVertical<4>(intermediate_result, width, height, taps, prediction); } else { // |vertical_taps| == 2 Compound2DVertical<2>(intermediate_result, width, height, taps, prediction); } } void ConvolveVertical_NEON( const void* LIBGAV1_RESTRICT const reference, const ptrdiff_t reference_stride, const int /*horizontal_filter_index*/, const int vertical_filter_index, const int /*horizontal_filter_id*/, const int vertical_filter_id, const int width, const int height, void* LIBGAV1_RESTRICT const prediction, const ptrdiff_t pred_stride) { const int filter_index = GetFilterIndex(vertical_filter_index, height); const int vertical_taps = GetNumTapsInFilter(filter_index); const ptrdiff_t src_stride = reference_stride >> 1; const auto* src = static_cast(reference) - (vertical_taps / 2 - 1) * src_stride; auto* const dest = static_cast(prediction); const ptrdiff_t dest_stride = pred_stride >> 1; assert(vertical_filter_id != 0); int16x4_t taps[8]; for (int k = 0; k < kSubPixelTaps; ++k) { taps[k] = vdup_n_s16(kHalfSubPixelFilters[filter_index][vertical_filter_id][k]); } if (filter_index == 0) { // 6 tap. if (width == 2) { FilterVertical2xH<0>(src, src_stride, dest, dest_stride, height, taps + 1); } else if (width == 4) { FilterVertical4xH<0>(src, src_stride, dest, dest_stride, height, taps + 1); } else { FilterVertical<0>(src, src_stride, dest, dest_stride, width, height, taps + 1); } } else if ((static_cast(filter_index == 1) & (static_cast(vertical_filter_id == 1) | static_cast(vertical_filter_id == 7) | static_cast(vertical_filter_id == 8) | static_cast(vertical_filter_id == 9) | static_cast(vertical_filter_id == 15))) != 0) { // 6 tap. if (width == 2) { FilterVertical2xH<1>(src, src_stride, dest, dest_stride, height, taps + 1); } else if (width == 4) { FilterVertical4xH<1>(src, src_stride, dest, dest_stride, height, taps + 1); } else { FilterVertical<1>(src, src_stride, dest, dest_stride, width, height, taps + 1); } } else if (filter_index == 2) { // 8 tap. if (width == 2) { FilterVertical2xH<2>(src, src_stride, dest, dest_stride, height, taps); } else if (width == 4) { FilterVertical4xH<2>(src, src_stride, dest, dest_stride, height, taps); } else { FilterVertical<2>(src, src_stride, dest, dest_stride, width, height, taps); } } else if (filter_index == 3) { // 2 tap. if (width == 2) { FilterVertical2xH<3>(src, src_stride, dest, dest_stride, height, taps + 3); } else if (width == 4) { FilterVertical4xH<3>(src, src_stride, dest, dest_stride, height, taps + 3); } else { FilterVertical<3>(src, src_stride, dest, dest_stride, width, height, taps + 3); } } else { // 4 tap. When |filter_index| == 1 the |vertical_filter_id| values listed // below map to 4 tap filters. assert(filter_index == 5 || filter_index == 4 || (filter_index == 1 && (vertical_filter_id == 0 || vertical_filter_id == 2 || vertical_filter_id == 3 || vertical_filter_id == 4 || vertical_filter_id == 5 || vertical_filter_id == 6 || vertical_filter_id == 10 || vertical_filter_id == 11 || vertical_filter_id == 12 || vertical_filter_id == 13 || vertical_filter_id == 14))); // According to GetNumTapsInFilter() this has 6 taps but here we are // treating it as though it has 4. if (filter_index == 1) src += src_stride; if (width == 2) { FilterVertical2xH<5>(src, src_stride, dest, dest_stride, height, taps + 2); } else if (width == 4) { FilterVertical4xH<5>(src, src_stride, dest, dest_stride, height, taps + 2); } else { FilterVertical<5>(src, src_stride, dest, dest_stride, width, height, taps + 2); } } } void ConvolveCompoundVertical_NEON( const void* LIBGAV1_RESTRICT const reference, const ptrdiff_t reference_stride, const int /*horizontal_filter_index*/, const int vertical_filter_index, const int /*horizontal_filter_id*/, const int vertical_filter_id, const int width, const int height, void* LIBGAV1_RESTRICT const prediction, const ptrdiff_t /*pred_stride*/) { const int filter_index = GetFilterIndex(vertical_filter_index, height); const int vertical_taps = GetNumTapsInFilter(filter_index); const ptrdiff_t src_stride = reference_stride >> 1; const auto* src = static_cast(reference) - (vertical_taps / 2 - 1) * src_stride; auto* const dest = static_cast(prediction); assert(vertical_filter_id != 0); int16x4_t taps[8]; for (int k = 0; k < kSubPixelTaps; ++k) { taps[k] = vdup_n_s16(kHalfSubPixelFilters[filter_index][vertical_filter_id][k]); } if (filter_index == 0) { // 6 tap. if (width == 4) { FilterVertical4xH<0, /*is_compound=*/true>(src, src_stride, dest, 4, height, taps + 1); } else { FilterVertical<0, /*is_compound=*/true>(src, src_stride, dest, width, width, height, taps + 1); } } else if ((static_cast(filter_index == 1) & (static_cast(vertical_filter_id == 1) | static_cast(vertical_filter_id == 7) | static_cast(vertical_filter_id == 8) | static_cast(vertical_filter_id == 9) | static_cast(vertical_filter_id == 15))) != 0) { // 6 tap. if (width == 4) { FilterVertical4xH<1, /*is_compound=*/true>(src, src_stride, dest, 4, height, taps + 1); } else { FilterVertical<1, /*is_compound=*/true>(src, src_stride, dest, width, width, height, taps + 1); } } else if (filter_index == 2) { // 8 tap. if (width == 4) { FilterVertical4xH<2, /*is_compound=*/true>(src, src_stride, dest, 4, height, taps); } else { FilterVertical<2, /*is_compound=*/true>(src, src_stride, dest, width, width, height, taps); } } else if (filter_index == 3) { // 2 tap. if (width == 4) { FilterVertical4xH<3, /*is_compound=*/true>(src, src_stride, dest, 4, height, taps + 3); } else { FilterVertical<3, /*is_compound=*/true>(src, src_stride, dest, width, width, height, taps + 3); } } else { // 4 tap. When |filter_index| == 1 the |filter_id| values listed below map // to 4 tap filters. assert(filter_index == 5 || filter_index == 4 || (filter_index == 1 && (vertical_filter_id == 2 || vertical_filter_id == 3 || vertical_filter_id == 4 || vertical_filter_id == 5 || vertical_filter_id == 6 || vertical_filter_id == 10 || vertical_filter_id == 11 || vertical_filter_id == 12 || vertical_filter_id == 13 || vertical_filter_id == 14))); // According to GetNumTapsInFilter() this has 6 taps but here we are // treating it as though it has 4. if (filter_index == 1) src += src_stride; if (width == 4) { FilterVertical4xH<5, /*is_compound=*/true>(src, src_stride, dest, 4, height, taps + 2); } else { FilterVertical<5, /*is_compound=*/true>(src, src_stride, dest, width, width, height, taps + 2); } } } void ConvolveCompoundCopy_NEON( const void* const reference, const ptrdiff_t reference_stride, const int /*horizontal_filter_index*/, const int /*vertical_filter_index*/, const int /*horizontal_filter_id*/, const int /*vertical_filter_id*/, const int width, const int height, void* const prediction, const ptrdiff_t /*pred_stride*/) { const auto* src = static_cast(reference); const ptrdiff_t src_stride = reference_stride >> 1; auto* dest = static_cast(prediction); constexpr int final_shift = kInterRoundBitsVertical - kInterRoundBitsCompoundVertical; const uint16x8_t offset = vdupq_n_u16((1 << kBitdepth10) + (1 << (kBitdepth10 - 1))); if (width >= 16) { int y = height; do { int x = 0; int w = width; do { const uint16x8_t v_src_lo = vld1q_u16(&src[x]); const uint16x8_t v_src_hi = vld1q_u16(&src[x + 8]); const uint16x8_t v_sum_lo = vaddq_u16(v_src_lo, offset); const uint16x8_t v_sum_hi = vaddq_u16(v_src_hi, offset); const uint16x8_t v_dest_lo = vshlq_n_u16(v_sum_lo, final_shift); const uint16x8_t v_dest_hi = vshlq_n_u16(v_sum_hi, final_shift); vst1q_u16(&dest[x], v_dest_lo); vst1q_u16(&dest[x + 8], v_dest_hi); x += 16; w -= 16; } while (w != 0); src += src_stride; dest += width; } while (--y != 0); } else if (width == 8) { int y = height; do { const uint16x8_t v_src_lo = vld1q_u16(&src[0]); const uint16x8_t v_src_hi = vld1q_u16(&src[src_stride]); const uint16x8_t v_sum_lo = vaddq_u16(v_src_lo, offset); const uint16x8_t v_sum_hi = vaddq_u16(v_src_hi, offset); const uint16x8_t v_dest_lo = vshlq_n_u16(v_sum_lo, final_shift); const uint16x8_t v_dest_hi = vshlq_n_u16(v_sum_hi, final_shift); vst1q_u16(&dest[0], v_dest_lo); vst1q_u16(&dest[8], v_dest_hi); src += src_stride << 1; dest += 16; y -= 2; } while (y != 0); } else { // width == 4 int y = height; do { const uint16x4_t v_src_lo = vld1_u16(&src[0]); const uint16x4_t v_src_hi = vld1_u16(&src[src_stride]); const uint16x4_t v_sum_lo = vadd_u16(v_src_lo, vget_low_u16(offset)); const uint16x4_t v_sum_hi = vadd_u16(v_src_hi, vget_low_u16(offset)); const uint16x4_t v_dest_lo = vshl_n_u16(v_sum_lo, final_shift); const uint16x4_t v_dest_hi = vshl_n_u16(v_sum_hi, final_shift); vst1_u16(&dest[0], v_dest_lo); vst1_u16(&dest[4], v_dest_hi); src += src_stride << 1; dest += 8; y -= 2; } while (y != 0); } } inline void HalfAddHorizontal(const uint16_t* LIBGAV1_RESTRICT const src, uint16_t* LIBGAV1_RESTRICT const dst) { const uint16x8_t left = vld1q_u16(src); const uint16x8_t right = vld1q_u16(src + 1); vst1q_u16(dst, vrhaddq_u16(left, right)); } inline void HalfAddHorizontal16(const uint16_t* LIBGAV1_RESTRICT const src, uint16_t* LIBGAV1_RESTRICT const dst) { HalfAddHorizontal(src, dst); HalfAddHorizontal(src + 8, dst + 8); } template inline void IntraBlockCopyHorizontal(const uint16_t* LIBGAV1_RESTRICT src, const ptrdiff_t src_stride, const int height, uint16_t* LIBGAV1_RESTRICT dst, const ptrdiff_t dst_stride) { const ptrdiff_t src_remainder_stride = src_stride - (width - 16); const ptrdiff_t dst_remainder_stride = dst_stride - (width - 16); int y = height; do { HalfAddHorizontal16(src, dst); if (width >= 32) { src += 16; dst += 16; HalfAddHorizontal16(src, dst); if (width >= 64) { src += 16; dst += 16; HalfAddHorizontal16(src, dst); src += 16; dst += 16; HalfAddHorizontal16(src, dst); if (width == 128) { src += 16; dst += 16; HalfAddHorizontal16(src, dst); src += 16; dst += 16; HalfAddHorizontal16(src, dst); src += 16; dst += 16; HalfAddHorizontal16(src, dst); src += 16; dst += 16; HalfAddHorizontal16(src, dst); } } } src += src_remainder_stride; dst += dst_remainder_stride; } while (--y != 0); } void ConvolveIntraBlockCopyHorizontal_NEON( const void* LIBGAV1_RESTRICT const reference, const ptrdiff_t reference_stride, const int /*horizontal_filter_index*/, const int /*vertical_filter_index*/, const int /*subpixel_x*/, const int /*subpixel_y*/, const int width, const int height, void* LIBGAV1_RESTRICT const prediction, const ptrdiff_t pred_stride) { assert(width >= 4 && width <= kMaxSuperBlockSizeInPixels); assert(height >= 4 && height <= kMaxSuperBlockSizeInPixels); const auto* src = static_cast(reference); auto* dest = static_cast(prediction); const ptrdiff_t src_stride = reference_stride >> 1; const ptrdiff_t dst_stride = pred_stride >> 1; if (width == 128) { IntraBlockCopyHorizontal<128>(src, src_stride, height, dest, dst_stride); } else if (width == 64) { IntraBlockCopyHorizontal<64>(src, src_stride, height, dest, dst_stride); } else if (width == 32) { IntraBlockCopyHorizontal<32>(src, src_stride, height, dest, dst_stride); } else if (width == 16) { IntraBlockCopyHorizontal<16>(src, src_stride, height, dest, dst_stride); } else if (width == 8) { int y = height; do { HalfAddHorizontal(src, dest); src += src_stride; dest += dst_stride; } while (--y != 0); } else { // width == 4 int y = height; do { uint16x4x2_t left; uint16x4x2_t right; left.val[0] = vld1_u16(src); right.val[0] = vld1_u16(src + 1); src += src_stride; left.val[1] = vld1_u16(src); right.val[1] = vld1_u16(src + 1); src += src_stride; vst1_u16(dest, vrhadd_u16(left.val[0], right.val[0])); dest += dst_stride; vst1_u16(dest, vrhadd_u16(left.val[1], right.val[1])); dest += dst_stride; y -= 2; } while (y != 0); } } template inline void IntraBlockCopyVertical(const uint16_t* LIBGAV1_RESTRICT src, const ptrdiff_t src_stride, const int height, uint16_t* LIBGAV1_RESTRICT dst, const ptrdiff_t dst_stride) { const ptrdiff_t src_remainder_stride = src_stride - (width - 8); const ptrdiff_t dst_remainder_stride = dst_stride - (width - 8); uint16x8_t row[8], below[8]; row[0] = vld1q_u16(src); if (width >= 16) { src += 8; row[1] = vld1q_u16(src); if (width >= 32) { src += 8; row[2] = vld1q_u16(src); src += 8; row[3] = vld1q_u16(src); if (width == 64) { src += 8; row[4] = vld1q_u16(src); src += 8; row[5] = vld1q_u16(src); src += 8; row[6] = vld1q_u16(src); src += 8; row[7] = vld1q_u16(src); } } } src += src_remainder_stride; int y = height; do { below[0] = vld1q_u16(src); if (width >= 16) { src += 8; below[1] = vld1q_u16(src); if (width >= 32) { src += 8; below[2] = vld1q_u16(src); src += 8; below[3] = vld1q_u16(src); if (width == 64) { src += 8; below[4] = vld1q_u16(src); src += 8; below[5] = vld1q_u16(src); src += 8; below[6] = vld1q_u16(src); src += 8; below[7] = vld1q_u16(src); } } } src += src_remainder_stride; vst1q_u16(dst, vrhaddq_u16(row[0], below[0])); row[0] = below[0]; if (width >= 16) { dst += 8; vst1q_u16(dst, vrhaddq_u16(row[1], below[1])); row[1] = below[1]; if (width >= 32) { dst += 8; vst1q_u16(dst, vrhaddq_u16(row[2], below[2])); row[2] = below[2]; dst += 8; vst1q_u16(dst, vrhaddq_u16(row[3], below[3])); row[3] = below[3]; if (width >= 64) { dst += 8; vst1q_u16(dst, vrhaddq_u16(row[4], below[4])); row[4] = below[4]; dst += 8; vst1q_u16(dst, vrhaddq_u16(row[5], below[5])); row[5] = below[5]; dst += 8; vst1q_u16(dst, vrhaddq_u16(row[6], below[6])); row[6] = below[6]; dst += 8; vst1q_u16(dst, vrhaddq_u16(row[7], below[7])); row[7] = below[7]; } } } dst += dst_remainder_stride; } while (--y != 0); } void ConvolveIntraBlockCopyVertical_NEON( const void* LIBGAV1_RESTRICT const reference, const ptrdiff_t reference_stride, const int /*horizontal_filter_index*/, const int /*vertical_filter_index*/, const int /*horizontal_filter_id*/, const int /*vertical_filter_id*/, const int width, const int height, void* LIBGAV1_RESTRICT const prediction, const ptrdiff_t pred_stride) { assert(width >= 4 && width <= kMaxSuperBlockSizeInPixels); assert(height >= 4 && height <= kMaxSuperBlockSizeInPixels); const auto* src = static_cast(reference); auto* dest = static_cast(prediction); const ptrdiff_t src_stride = reference_stride >> 1; const ptrdiff_t dst_stride = pred_stride >> 1; if (width == 128) { // Due to register pressure, process two 64xH. for (int i = 0; i < 2; ++i) { IntraBlockCopyVertical<64>(src, src_stride, height, dest, dst_stride); src += 64; dest += 64; } } else if (width == 64) { IntraBlockCopyVertical<64>(src, src_stride, height, dest, dst_stride); } else if (width == 32) { IntraBlockCopyVertical<32>(src, src_stride, height, dest, dst_stride); } else if (width == 16) { IntraBlockCopyVertical<16>(src, src_stride, height, dest, dst_stride); } else if (width == 8) { IntraBlockCopyVertical<8>(src, src_stride, height, dest, dst_stride); } else { // width == 4 uint16x4_t row = vld1_u16(src); src += src_stride; int y = height; do { const uint16x4_t below = vld1_u16(src); src += src_stride; vst1_u16(dest, vrhadd_u16(row, below)); dest += dst_stride; row = below; } while (--y != 0); } } template inline void IntraBlockCopy2D(const uint16_t* LIBGAV1_RESTRICT src, const ptrdiff_t src_stride, const int height, uint16_t* LIBGAV1_RESTRICT dst, const ptrdiff_t dst_stride) { const ptrdiff_t src_remainder_stride = src_stride - (width - 8); const ptrdiff_t dst_remainder_stride = dst_stride - (width - 8); uint16x8_t row[16]; row[0] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); if (width >= 16) { src += 8; row[1] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); if (width >= 32) { src += 8; row[2] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); src += 8; row[3] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); if (width >= 64) { src += 8; row[4] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); src += 8; row[5] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); src += 8; row[6] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); src += 8; row[7] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); if (width == 128) { src += 8; row[8] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); src += 8; row[9] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); src += 8; row[10] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); src += 8; row[11] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); src += 8; row[12] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); src += 8; row[13] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); src += 8; row[14] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); src += 8; row[15] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); } } } } src += src_remainder_stride; int y = height; do { const uint16x8_t below_0 = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[0], below_0), 2)); row[0] = below_0; if (width >= 16) { src += 8; dst += 8; const uint16x8_t below_1 = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[1], below_1), 2)); row[1] = below_1; if (width >= 32) { src += 8; dst += 8; const uint16x8_t below_2 = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[2], below_2), 2)); row[2] = below_2; src += 8; dst += 8; const uint16x8_t below_3 = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[3], below_3), 2)); row[3] = below_3; if (width >= 64) { src += 8; dst += 8; const uint16x8_t below_4 = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[4], below_4), 2)); row[4] = below_4; src += 8; dst += 8; const uint16x8_t below_5 = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[5], below_5), 2)); row[5] = below_5; src += 8; dst += 8; const uint16x8_t below_6 = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[6], below_6), 2)); row[6] = below_6; src += 8; dst += 8; const uint16x8_t below_7 = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[7], below_7), 2)); row[7] = below_7; if (width == 128) { src += 8; dst += 8; const uint16x8_t below_8 = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[8], below_8), 2)); row[8] = below_8; src += 8; dst += 8; const uint16x8_t below_9 = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[9], below_9), 2)); row[9] = below_9; src += 8; dst += 8; const uint16x8_t below_10 = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[10], below_10), 2)); row[10] = below_10; src += 8; dst += 8; const uint16x8_t below_11 = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[11], below_11), 2)); row[11] = below_11; src += 8; dst += 8; const uint16x8_t below_12 = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[12], below_12), 2)); row[12] = below_12; src += 8; dst += 8; const uint16x8_t below_13 = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[13], below_13), 2)); row[13] = below_13; src += 8; dst += 8; const uint16x8_t below_14 = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[14], below_14), 2)); row[14] = below_14; src += 8; dst += 8; const uint16x8_t below_15 = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[15], below_15), 2)); row[15] = below_15; } } } } src += src_remainder_stride; dst += dst_remainder_stride; } while (--y != 0); } void ConvolveIntraBlockCopy2D_NEON( const void* LIBGAV1_RESTRICT const reference, const ptrdiff_t reference_stride, const int /*horizontal_filter_index*/, const int /*vertical_filter_index*/, const int /*horizontal_filter_id*/, const int /*vertical_filter_id*/, const int width, const int height, void* LIBGAV1_RESTRICT const prediction, const ptrdiff_t pred_stride) { assert(width >= 4 && width <= kMaxSuperBlockSizeInPixels); assert(height >= 4 && height <= kMaxSuperBlockSizeInPixels); const auto* src = static_cast(reference); auto* dest = static_cast(prediction); const ptrdiff_t src_stride = reference_stride >> 1; const ptrdiff_t dst_stride = pred_stride >> 1; // Note: allow vertical access to height + 1. Because this function is only // for u/v plane of intra block copy, such access is guaranteed to be within // the prediction block. if (width == 128) { IntraBlockCopy2D<128>(src, src_stride, height, dest, dst_stride); } else if (width == 64) { IntraBlockCopy2D<64>(src, src_stride, height, dest, dst_stride); } else if (width == 32) { IntraBlockCopy2D<32>(src, src_stride, height, dest, dst_stride); } else if (width == 16) { IntraBlockCopy2D<16>(src, src_stride, height, dest, dst_stride); } else if (width == 8) { IntraBlockCopy2D<8>(src, src_stride, height, dest, dst_stride); } else { // width == 4 uint16x4_t row0 = vadd_u16(vld1_u16(src), vld1_u16(src + 1)); src += src_stride; int y = height; do { const uint16x4_t row1 = vadd_u16(vld1_u16(src), vld1_u16(src + 1)); src += src_stride; const uint16x4_t row2 = vadd_u16(vld1_u16(src), vld1_u16(src + 1)); src += src_stride; const uint16x4_t result_01 = vrshr_n_u16(vadd_u16(row0, row1), 2); const uint16x4_t result_12 = vrshr_n_u16(vadd_u16(row1, row2), 2); vst1_u16(dest, result_01); dest += dst_stride; vst1_u16(dest, result_12); dest += dst_stride; row0 = row2; y -= 2; } while (y != 0); } } // ----------------------------------------------------------------------------- // Scaled Convolve // There are many opportunities for overreading in scaled convolve, because the // range of starting points for filter windows is anywhere from 0 to 16 for 8 // destination pixels, and the window sizes range from 2 to 8. To accommodate // this range concisely, we use |grade_x| to mean the most steps in src that can // be traversed in a single |step_x| increment, i.e. 1 or 2. When grade_x is 2, // we are guaranteed to exceed 8 whole steps in src for every 8 |step_x| // increments. The first load covers the initial elements of src_x, while the // final load covers the taps. template inline uint8x16x3_t LoadSrcVals(const uint16_t* const src_x) { uint8x16x3_t ret; // When fractional step size is less than or equal to 1, the rightmost // starting value for a filter may be at position 7. For an 8-tap filter, the // rightmost value for the final tap may be at position 14. Therefore we load // 2 vectors of eight 16-bit values. ret.val[0] = vreinterpretq_u8_u16(vld1q_u16(src_x)); ret.val[1] = vreinterpretq_u8_u16(vld1q_u16(src_x + 8)); #if LIBGAV1_MSAN // Initialize to quiet msan warnings when grade_x <= 1. ret.val[2] = vdupq_n_u8(0); #endif if (grade_x > 1) { // When fractional step size is greater than 1 (up to 2), the rightmost // starting value for a filter may be at position 15. For an 8-tap filter, // the rightmost value for the final tap may be at position 22. Therefore we // load 3 vectors of eight 16-bit values. ret.val[2] = vreinterpretq_u8_u16(vld1q_u16(src_x + 16)); } return ret; } // Assemble 4 values corresponding to one tap position across multiple filters. // This is a simple case because maximum offset is 8 and only smaller filters // work on 4xH. inline uint16x4_t PermuteSrcVals(const uint8x16x3_t src_bytes, const uint8x8_t indices) { const uint8x16x2_t src_bytes2 = {src_bytes.val[0], src_bytes.val[1]}; return vreinterpret_u16_u8(VQTbl2U8(src_bytes2, indices)); } // Assemble 8 values corresponding to one tap position across multiple filters. // This requires a lot of workaround on A32 architectures, so it may be worth // using an overall different algorithm for that architecture. template inline uint16x8_t PermuteSrcVals(const uint8x16x3_t src_bytes, const uint8x16_t indices) { if (grade_x == 1) { const uint8x16x2_t src_bytes2 = {src_bytes.val[0], src_bytes.val[1]}; return vreinterpretq_u16_u8(VQTbl2QU8(src_bytes2, indices)); } return vreinterpretq_u16_u8(VQTbl3QU8(src_bytes, indices)); } // Pre-transpose the 2 tap filters in |kAbsHalfSubPixelFilters|[3] // Although the taps need to be converted to 16-bit values, they must be // arranged by table lookup, which is more expensive for larger types than // lengthening in-loop. |tap_index| refers to the index within a kernel applied // to a single value. inline int8x16_t GetPositive2TapFilter(const int tap_index) { assert(tap_index < 2); alignas( 16) static constexpr int8_t kAbsHalfSubPixel2TapFilterColumns[2][16] = { {64, 60, 56, 52, 48, 44, 40, 36, 32, 28, 24, 20, 16, 12, 8, 4}, {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60}}; return vld1q_s8(kAbsHalfSubPixel2TapFilterColumns[tap_index]); } template inline void ConvolveKernelHorizontal2Tap( const uint16_t* LIBGAV1_RESTRICT const src, const ptrdiff_t src_stride, const int width, const int subpixel_x, const int step_x, const int intermediate_height, int16_t* LIBGAV1_RESTRICT intermediate) { // Account for the 0-taps that precede the 2 nonzero taps in the spec. const int kernel_offset = 3; const int ref_x = subpixel_x >> kScaleSubPixelBits; const int step_x8 = step_x << 3; const int8x16_t filter_taps0 = GetPositive2TapFilter(0); const int8x16_t filter_taps1 = GetPositive2TapFilter(1); const uint16x8_t index_steps = vmulq_n_u16( vmovl_u8(vcreate_u8(0x0706050403020100)), static_cast(step_x)); const uint8x8_t filter_index_mask = vdup_n_u8(kSubPixelMask); int p = subpixel_x; if (width <= 4) { const uint16_t* src_y = src; // Only add steps to the 10-bit truncated p to avoid overflow. const uint16x8_t p_fraction = vdupq_n_u16(p & 1023); const uint16x8_t subpel_index_offsets = vaddq_u16(index_steps, p_fraction); const uint8x8_t filter_indices = vand_u8(vshrn_n_u16(subpel_index_offsets, 6), filter_index_mask); // Each lane of lane of taps[k] corresponds to one output value along the // row, containing kSubPixelFilters[filter_index][filter_id][k], where // filter_id depends on x. const int16x4_t taps[2] = { vget_low_s16(vmovl_s8(VQTbl1S8(filter_taps0, filter_indices))), vget_low_s16(vmovl_s8(VQTbl1S8(filter_taps1, filter_indices)))}; // Lower byte of Nth value is at position 2*N. // Narrowing shift is not available here because the maximum shift // parameter is 8. const uint8x8_t src_indices0 = vshl_n_u8( vmovn_u16(vshrq_n_u16(subpel_index_offsets, kScaleSubPixelBits)), 1); // Upper byte of Nth value is at position 2*N+1. const uint8x8_t src_indices1 = vadd_u8(src_indices0, vdup_n_u8(1)); // Only 4 values needed. const uint8x8_t src_indices = InterleaveLow8(src_indices0, src_indices1); const uint8x8_t src_lookup[2] = {src_indices, vadd_u8(src_indices, vdup_n_u8(2))}; int y = intermediate_height; do { const uint16_t* src_x = src_y + (p >> kScaleSubPixelBits) - ref_x + kernel_offset; // Load a pool of samples to select from using stepped indices. const uint8x16x3_t src_bytes = LoadSrcVals<1>(src_x); // Each lane corresponds to a different filter kernel. const uint16x4_t src[2] = {PermuteSrcVals(src_bytes, src_lookup[0]), PermuteSrcVals(src_bytes, src_lookup[1])}; vst1_s16(intermediate, vrshrn_n_s32(SumOnePassTaps(src, taps), kInterRoundBitsHorizontal - 1)); src_y = AddByteStride(src_y, src_stride); intermediate += kIntermediateStride; } while (--y != 0); return; } // |width| >= 8 int16_t* intermediate_x = intermediate; int x = 0; do { const uint16_t* src_x = src + (p >> kScaleSubPixelBits) - ref_x + kernel_offset; // Only add steps to the 10-bit truncated p to avoid overflow. const uint16x8_t p_fraction = vdupq_n_u16(p & 1023); const uint16x8_t subpel_index_offsets = vaddq_u16(index_steps, p_fraction); const uint8x8_t filter_indices = vand_u8(vshrn_n_u16(subpel_index_offsets, kFilterIndexShift), filter_index_mask); // Each lane of lane of taps[k] corresponds to one output value along the // row, containing kSubPixelFilters[filter_index][filter_id][k], where // filter_id depends on x. const int16x8_t taps[2] = { vmovl_s8(VQTbl1S8(filter_taps0, filter_indices)), vmovl_s8(VQTbl1S8(filter_taps1, filter_indices))}; const int16x4_t taps_low[2] = {vget_low_s16(taps[0]), vget_low_s16(taps[1])}; const int16x4_t taps_high[2] = {vget_high_s16(taps[0]), vget_high_s16(taps[1])}; // Lower byte of Nth value is at position 2*N. const uint8x8_t src_indices0 = vshl_n_u8( vmovn_u16(vshrq_n_u16(subpel_index_offsets, kScaleSubPixelBits)), 1); // Upper byte of Nth value is at position 2*N+1. const uint8x8_t src_indices1 = vadd_u8(src_indices0, vdup_n_u8(1)); const uint8x8x2_t src_indices_zip = vzip_u8(src_indices0, src_indices1); const uint8x16_t src_indices = vcombine_u8(src_indices_zip.val[0], src_indices_zip.val[1]); const uint8x16_t src_lookup[2] = {src_indices, vaddq_u8(src_indices, vdupq_n_u8(2))}; int y = intermediate_height; do { // Load a pool of samples to select from using stepped indices. const uint8x16x3_t src_bytes = LoadSrcVals(src_x); // Each lane corresponds to a different filter kernel. const uint16x8_t src[2] = { PermuteSrcVals(src_bytes, src_lookup[0]), PermuteSrcVals(src_bytes, src_lookup[1])}; const uint16x4_t src_low[2] = {vget_low_u16(src[0]), vget_low_u16(src[1])}; const uint16x4_t src_high[2] = {vget_high_u16(src[0]), vget_high_u16(src[1])}; vst1_s16(intermediate_x, vrshrn_n_s32(SumOnePassTaps( src_low, taps_low), kInterRoundBitsHorizontal - 1)); vst1_s16( intermediate_x + 4, vrshrn_n_s32(SumOnePassTaps(src_high, taps_high), kInterRoundBitsHorizontal - 1)); // Avoid right shifting the stride. src_x = AddByteStride(src_x, src_stride); intermediate_x += kIntermediateStride; } while (--y != 0); x += 8; p += step_x8; } while (x < width); } // Pre-transpose the 4 tap filters in |kAbsHalfSubPixelFilters|[5]. inline int8x16_t GetPositive4TapFilter(const int tap_index) { assert(tap_index < 4); alignas( 16) static constexpr int8_t kSubPixel4TapPositiveFilterColumns[4][16] = { {0, 15, 13, 11, 10, 9, 8, 7, 6, 6, 5, 4, 3, 2, 2, 1}, {64, 31, 31, 31, 30, 29, 28, 27, 26, 24, 23, 22, 21, 20, 18, 17}, {0, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 31, 31}, {0, 1, 2, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 13, 15}}; return vld1q_s8(kSubPixel4TapPositiveFilterColumns[tap_index]); } // This filter is only possible when width <= 4. inline void ConvolveKernelHorizontalPositive4Tap( const uint16_t* LIBGAV1_RESTRICT const src, const ptrdiff_t src_stride, const int subpixel_x, const int step_x, const int intermediate_height, int16_t* LIBGAV1_RESTRICT intermediate) { // Account for the 0-taps that precede the 2 nonzero taps in the spec. const int kernel_offset = 2; const int ref_x = subpixel_x >> kScaleSubPixelBits; const int8x16_t filter_taps0 = GetPositive4TapFilter(0); const int8x16_t filter_taps1 = GetPositive4TapFilter(1); const int8x16_t filter_taps2 = GetPositive4TapFilter(2); const int8x16_t filter_taps3 = GetPositive4TapFilter(3); const uint16x8_t index_steps = vmulq_n_u16( vmovl_u8(vcreate_u8(0x0706050403020100)), static_cast(step_x)); const uint8x8_t filter_index_mask = vdup_n_u8(kSubPixelMask); int p = subpixel_x; // Only add steps to the 10-bit truncated p to avoid overflow. const uint16x8_t p_fraction = vdupq_n_u16(p & 1023); const uint16x8_t subpel_index_offsets = vaddq_u16(index_steps, p_fraction); const uint8x8_t filter_indices = vand_u8(vshrn_n_u16(subpel_index_offsets, 6), filter_index_mask); // Each lane of lane of taps[k] corresponds to one output value along the row, // containing kSubPixelFilters[filter_index][filter_id][k], where filter_id // depends on x. const int16x4_t taps[4] = { vget_low_s16(vmovl_s8(VQTbl1S8(filter_taps0, filter_indices))), vget_low_s16(vmovl_s8(VQTbl1S8(filter_taps1, filter_indices))), vget_low_s16(vmovl_s8(VQTbl1S8(filter_taps2, filter_indices))), vget_low_s16(vmovl_s8(VQTbl1S8(filter_taps3, filter_indices)))}; // Lower byte of Nth value is at position 2*N. // Narrowing shift is not available here because the maximum shift // parameter is 8. const uint8x8_t src_indices0 = vshl_n_u8( vmovn_u16(vshrq_n_u16(subpel_index_offsets, kScaleSubPixelBits)), 1); // Upper byte of Nth value is at position 2*N+1. const uint8x8_t src_indices1 = vadd_u8(src_indices0, vdup_n_u8(1)); // Only 4 values needed. const uint8x8_t src_indices_base = InterleaveLow8(src_indices0, src_indices1); uint8x8_t src_lookup[4]; const uint8x8_t two = vdup_n_u8(2); src_lookup[0] = src_indices_base; for (int i = 1; i < 4; ++i) { src_lookup[i] = vadd_u8(src_lookup[i - 1], two); } const uint16_t* src_y = src + (p >> kScaleSubPixelBits) - ref_x + kernel_offset; int y = intermediate_height; do { // Load a pool of samples to select from using stepped indices. const uint8x16x3_t src_bytes = LoadSrcVals<1>(src_y); // Each lane corresponds to a different filter kernel. const uint16x4_t src[4] = {PermuteSrcVals(src_bytes, src_lookup[0]), PermuteSrcVals(src_bytes, src_lookup[1]), PermuteSrcVals(src_bytes, src_lookup[2]), PermuteSrcVals(src_bytes, src_lookup[3])}; vst1_s16(intermediate, vrshrn_n_s32(SumOnePassTaps(src, taps), kInterRoundBitsHorizontal - 1)); src_y = AddByteStride(src_y, src_stride); intermediate += kIntermediateStride; } while (--y != 0); } // Pre-transpose the 4 tap filters in |kAbsHalfSubPixelFilters|[4]. inline int8x16_t GetSigned4TapFilter(const int tap_index) { assert(tap_index < 4); alignas(16) static constexpr int8_t kAbsHalfSubPixel4TapSignedFilterColumns[4][16] = { {-0, -2, -4, -5, -6, -6, -7, -6, -6, -5, -5, -5, -4, -3, -2, -1}, {64, 63, 61, 58, 55, 51, 47, 42, 38, 33, 29, 24, 19, 14, 9, 4}, {0, 4, 9, 14, 19, 24, 29, 33, 38, 42, 47, 51, 55, 58, 61, 63}, {-0, -1, -2, -3, -4, -5, -5, -5, -6, -6, -7, -6, -6, -5, -4, -2}}; return vld1q_s8(kAbsHalfSubPixel4TapSignedFilterColumns[tap_index]); } // This filter is only possible when width <= 4. inline void ConvolveKernelHorizontalSigned4Tap( const uint16_t* LIBGAV1_RESTRICT const src, const ptrdiff_t src_stride, const int subpixel_x, const int step_x, const int intermediate_height, int16_t* LIBGAV1_RESTRICT intermediate) { const int kernel_offset = 2; const int ref_x = subpixel_x >> kScaleSubPixelBits; const uint8x8_t filter_index_mask = vdup_n_u8(kSubPixelMask); const int8x16_t filter_taps0 = GetSigned4TapFilter(0); const int8x16_t filter_taps1 = GetSigned4TapFilter(1); const int8x16_t filter_taps2 = GetSigned4TapFilter(2); const int8x16_t filter_taps3 = GetSigned4TapFilter(3); const uint16x8_t index_steps = vmulq_n_u16( vmovl_u8(vcreate_u8(0x0706050403020100)), static_cast(step_x)); const int p = subpixel_x; // Only add steps to the 10-bit truncated p to avoid overflow. const uint16x8_t p_fraction = vdupq_n_u16(p & 1023); const uint16x8_t subpel_index_offsets = vaddq_u16(index_steps, p_fraction); const uint8x8_t filter_indices = vand_u8(vshrn_n_u16(subpel_index_offsets, 6), filter_index_mask); // Each lane of lane of taps[k] corresponds to one output value along the row, // containing kSubPixelFilters[filter_index][filter_id][k], where filter_id // depends on x. const int16x4_t taps[4] = { vget_low_s16(vmovl_s8(VQTbl1S8(filter_taps0, filter_indices))), vget_low_s16(vmovl_s8(VQTbl1S8(filter_taps1, filter_indices))), vget_low_s16(vmovl_s8(VQTbl1S8(filter_taps2, filter_indices))), vget_low_s16(vmovl_s8(VQTbl1S8(filter_taps3, filter_indices)))}; // Lower byte of Nth value is at position 2*N. // Narrowing shift is not available here because the maximum shift // parameter is 8. const uint8x8_t src_indices0 = vshl_n_u8( vmovn_u16(vshrq_n_u16(subpel_index_offsets, kScaleSubPixelBits)), 1); // Upper byte of Nth value is at position 2*N+1. const uint8x8_t src_indices1 = vadd_u8(src_indices0, vdup_n_u8(1)); // Only 4 values needed. const uint8x8_t src_indices_base = InterleaveLow8(src_indices0, src_indices1); uint8x8_t src_lookup[4]; const uint8x8_t two = vdup_n_u8(2); src_lookup[0] = src_indices_base; for (int i = 1; i < 4; ++i) { src_lookup[i] = vadd_u8(src_lookup[i - 1], two); } const uint16_t* src_y = src + (p >> kScaleSubPixelBits) - ref_x + kernel_offset; int y = intermediate_height; do { // Load a pool of samples to select from using stepped indices. const uint8x16x3_t src_bytes = LoadSrcVals<1>(src_y); // Each lane corresponds to a different filter kernel. const uint16x4_t src[4] = {PermuteSrcVals(src_bytes, src_lookup[0]), PermuteSrcVals(src_bytes, src_lookup[1]), PermuteSrcVals(src_bytes, src_lookup[2]), PermuteSrcVals(src_bytes, src_lookup[3])}; vst1_s16(intermediate, vrshrn_n_s32(SumOnePassTaps(src, taps), kInterRoundBitsHorizontal - 1)); src_y = AddByteStride(src_y, src_stride); intermediate += kIntermediateStride; } while (--y != 0); } // Pre-transpose the 6 tap filters in |kAbsHalfSubPixelFilters|[0]. inline int8x16_t GetSigned6TapFilter(const int tap_index) { assert(tap_index < 6); alignas(16) static constexpr int8_t kAbsHalfSubPixel6TapSignedFilterColumns[6][16] = { {0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0}, {-0, -3, -5, -6, -7, -7, -8, -7, -7, -6, -6, -6, -5, -4, -2, -1}, {64, 63, 61, 58, 55, 51, 47, 42, 38, 33, 29, 24, 19, 14, 9, 4}, {0, 4, 9, 14, 19, 24, 29, 33, 38, 42, 47, 51, 55, 58, 61, 63}, {-0, -1, -2, -4, -5, -6, -6, -6, -7, -7, -8, -7, -7, -6, -5, -3}, {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}}; return vld1q_s8(kAbsHalfSubPixel6TapSignedFilterColumns[tap_index]); } // This filter is only possible when width >= 8. template inline void ConvolveKernelHorizontalSigned6Tap( const uint16_t* LIBGAV1_RESTRICT const src, const ptrdiff_t src_stride, const int width, const int subpixel_x, const int step_x, const int intermediate_height, int16_t* LIBGAV1_RESTRICT const intermediate) { const int kernel_offset = 1; const uint8x8_t filter_index_mask = vdup_n_u8(kSubPixelMask); const int ref_x = subpixel_x >> kScaleSubPixelBits; const int step_x8 = step_x << 3; int8x16_t filter_taps[6]; for (int i = 0; i < 6; ++i) { filter_taps[i] = GetSigned6TapFilter(i); } const uint16x8_t index_steps = vmulq_n_u16( vmovl_u8(vcreate_u8(0x0706050403020100)), static_cast(step_x)); int16_t* intermediate_x = intermediate; int x = 0; int p = subpixel_x; do { const uint16_t* src_x = src + (p >> kScaleSubPixelBits) - ref_x + kernel_offset; // Only add steps to the 10-bit truncated p to avoid overflow. const uint16x8_t p_fraction = vdupq_n_u16(p & 1023); const uint16x8_t subpel_index_offsets = vaddq_u16(index_steps, p_fraction); const uint8x8_t filter_indices = vand_u8(vshrn_n_u16(subpel_index_offsets, kFilterIndexShift), filter_index_mask); // Each lane of lane of taps_(low|high)[k] corresponds to one output value // along the row, containing kSubPixelFilters[filter_index][filter_id][k], // where filter_id depends on x. int16x4_t taps_low[6]; int16x4_t taps_high[6]; for (int i = 0; i < 6; ++i) { const int16x8_t taps_i = vmovl_s8(VQTbl1S8(filter_taps[i], filter_indices)); taps_low[i] = vget_low_s16(taps_i); taps_high[i] = vget_high_s16(taps_i); } // Lower byte of Nth value is at position 2*N. const uint8x8_t src_indices0 = vshl_n_u8( vmovn_u16(vshrq_n_u16(subpel_index_offsets, kScaleSubPixelBits)), 1); // Upper byte of Nth value is at position 2*N+1. const uint8x8_t src_indices1 = vadd_u8(src_indices0, vdup_n_u8(1)); const uint8x8x2_t src_indices_zip = vzip_u8(src_indices0, src_indices1); const uint8x16_t src_indices_base = vcombine_u8(src_indices_zip.val[0], src_indices_zip.val[1]); uint8x16_t src_lookup[6]; const uint8x16_t two = vdupq_n_u8(2); src_lookup[0] = src_indices_base; for (int i = 1; i < 6; ++i) { src_lookup[i] = vaddq_u8(src_lookup[i - 1], two); } int y = intermediate_height; do { // Load a pool of samples to select from using stepped indices. const uint8x16x3_t src_bytes = LoadSrcVals(src_x); uint16x4_t src_low[6]; uint16x4_t src_high[6]; for (int i = 0; i < 6; ++i) { const uint16x8_t src_i = PermuteSrcVals(src_bytes, src_lookup[i]); src_low[i] = vget_low_u16(src_i); src_high[i] = vget_high_u16(src_i); } vst1_s16(intermediate_x, vrshrn_n_s32(SumOnePassTaps( src_low, taps_low), kInterRoundBitsHorizontal - 1)); vst1_s16( intermediate_x + 4, vrshrn_n_s32(SumOnePassTaps(src_high, taps_high), kInterRoundBitsHorizontal - 1)); // Avoid right shifting the stride. src_x = AddByteStride(src_x, src_stride); intermediate_x += kIntermediateStride; } while (--y != 0); x += 8; p += step_x8; } while (x < width); } // Pre-transpose the 6 tap filters in |kAbsHalfSubPixelFilters|[1]. This filter // has mixed positive and negative outer taps depending on the filter id. inline int8x16_t GetMixed6TapFilter(const int tap_index) { assert(tap_index < 6); alignas(16) static constexpr int8_t kAbsHalfSubPixel6TapMixedFilterColumns[6][16] = { {0, 1, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0}, {0, 14, 13, 11, 10, 9, 8, 8, 7, 6, 5, 4, 3, 2, 2, 1}, {64, 31, 31, 31, 30, 29, 28, 27, 26, 24, 23, 22, 21, 20, 18, 17}, {0, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 31, 31}, {0, 1, 2, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 11, 13, 14}, {0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 1}}; return vld1q_s8(kAbsHalfSubPixel6TapMixedFilterColumns[tap_index]); } // This filter is only possible when width >= 8. template inline void ConvolveKernelHorizontalMixed6Tap( const uint16_t* LIBGAV1_RESTRICT const src, const ptrdiff_t src_stride, const int width, const int subpixel_x, const int step_x, const int intermediate_height, int16_t* LIBGAV1_RESTRICT const intermediate) { const int kernel_offset = 1; const uint8x8_t filter_index_mask = vdup_n_u8(kSubPixelMask); const int ref_x = subpixel_x >> kScaleSubPixelBits; const int step_x8 = step_x << 3; int8x16_t filter_taps[6]; for (int i = 0; i < 6; ++i) { filter_taps[i] = GetMixed6TapFilter(i); } const uint16x8_t index_steps = vmulq_n_u16( vmovl_u8(vcreate_u8(0x0706050403020100)), static_cast(step_x)); int16_t* intermediate_x = intermediate; int x = 0; int p = subpixel_x; do { const uint16_t* src_x = src + (p >> kScaleSubPixelBits) - ref_x + kernel_offset; // Only add steps to the 10-bit truncated p to avoid overflow. const uint16x8_t p_fraction = vdupq_n_u16(p & 1023); const uint16x8_t subpel_index_offsets = vaddq_u16(index_steps, p_fraction); const uint8x8_t filter_indices = vand_u8(vshrn_n_u16(subpel_index_offsets, kFilterIndexShift), filter_index_mask); // Each lane of lane of taps_(low|high)[k] corresponds to one output value // along the row, containing kSubPixelFilters[filter_index][filter_id][k], // where filter_id depends on x. int16x4_t taps_low[6]; int16x4_t taps_high[6]; for (int i = 0; i < 6; ++i) { const int16x8_t taps = vmovl_s8(VQTbl1S8(filter_taps[i], filter_indices)); taps_low[i] = vget_low_s16(taps); taps_high[i] = vget_high_s16(taps); } // Lower byte of Nth value is at position 2*N. const uint8x8_t src_indices0 = vshl_n_u8( vmovn_u16(vshrq_n_u16(subpel_index_offsets, kScaleSubPixelBits)), 1); // Upper byte of Nth value is at position 2*N+1. const uint8x8_t src_indices1 = vadd_u8(src_indices0, vdup_n_u8(1)); const uint8x8x2_t src_indices_zip = vzip_u8(src_indices0, src_indices1); const uint8x16_t src_indices_base = vcombine_u8(src_indices_zip.val[0], src_indices_zip.val[1]); uint8x16_t src_lookup[6]; const uint8x16_t two = vdupq_n_u8(2); src_lookup[0] = src_indices_base; for (int i = 1; i < 6; ++i) { src_lookup[i] = vaddq_u8(src_lookup[i - 1], two); } int y = intermediate_height; do { // Load a pool of samples to select from using stepped indices. const uint8x16x3_t src_bytes = LoadSrcVals(src_x); uint16x4_t src_low[6]; uint16x4_t src_high[6]; for (int i = 0; i < 6; ++i) { const uint16x8_t src_i = PermuteSrcVals(src_bytes, src_lookup[i]); src_low[i] = vget_low_u16(src_i); src_high[i] = vget_high_u16(src_i); } vst1_s16(intermediate_x, vrshrn_n_s32(SumOnePassTaps( src_low, taps_low), kInterRoundBitsHorizontal - 1)); vst1_s16( intermediate_x + 4, vrshrn_n_s32(SumOnePassTaps(src_high, taps_high), kInterRoundBitsHorizontal - 1)); // Avoid right shifting the stride. src_x = AddByteStride(src_x, src_stride); intermediate_x += kIntermediateStride; } while (--y != 0); x += 8; p += step_x8; } while (x < width); } // Pre-transpose the 8 tap filters in |kAbsHalfSubPixelFilters|[2]. inline int8x16_t GetSigned8TapFilter(const int tap_index) { assert(tap_index < 8); alignas(16) static constexpr int8_t kAbsHalfSubPixel8TapSignedFilterColumns[8][16] = { {-0, -1, -1, -1, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -0}, {0, 1, 3, 4, 5, 5, 5, 5, 6, 5, 4, 4, 3, 3, 2, 1}, {-0, -3, -6, -9, -11, -11, -12, -12, -12, -11, -10, -9, -7, -5, -3, -1}, {64, 63, 62, 60, 58, 54, 50, 45, 40, 35, 30, 24, 19, 13, 8, 4}, {0, 4, 8, 13, 19, 24, 30, 35, 40, 45, 50, 54, 58, 60, 62, 63}, {-0, -1, -3, -5, -7, -9, -10, -11, -12, -12, -12, -11, -11, -9, -6, -3}, {0, 1, 2, 3, 3, 4, 4, 5, 6, 5, 5, 5, 5, 4, 3, 1}, {-0, -0, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -1, -1, -1}}; return vld1q_s8(kAbsHalfSubPixel8TapSignedFilterColumns[tap_index]); } // This filter is only possible when width >= 8. template inline void ConvolveKernelHorizontalSigned8Tap( const uint16_t* LIBGAV1_RESTRICT const src, const ptrdiff_t src_stride, const int width, const int subpixel_x, const int step_x, const int intermediate_height, int16_t* LIBGAV1_RESTRICT const intermediate) { const uint8x8_t filter_index_mask = vdup_n_u8(kSubPixelMask); const int ref_x = subpixel_x >> kScaleSubPixelBits; const int step_x8 = step_x << 3; int8x16_t filter_taps[8]; for (int i = 0; i < 8; ++i) { filter_taps[i] = GetSigned8TapFilter(i); } const uint16x8_t index_steps = vmulq_n_u16( vmovl_u8(vcreate_u8(0x0706050403020100)), static_cast(step_x)); int16_t* intermediate_x = intermediate; int x = 0; int p = subpixel_x; do { const uint16_t* src_x = src + (p >> kScaleSubPixelBits) - ref_x; // Only add steps to the 10-bit truncated p to avoid overflow. const uint16x8_t p_fraction = vdupq_n_u16(p & 1023); const uint16x8_t subpel_index_offsets = vaddq_u16(index_steps, p_fraction); const uint8x8_t filter_indices = vand_u8(vshrn_n_u16(subpel_index_offsets, kFilterIndexShift), filter_index_mask); // Lower byte of Nth value is at position 2*N. const uint8x8_t src_indices0 = vshl_n_u8( vmovn_u16(vshrq_n_u16(subpel_index_offsets, kScaleSubPixelBits)), 1); // Upper byte of Nth value is at position 2*N+1. const uint8x8_t src_indices1 = vadd_u8(src_indices0, vdup_n_u8(1)); const uint8x8x2_t src_indices_zip = vzip_u8(src_indices0, src_indices1); const uint8x16_t src_indices_base = vcombine_u8(src_indices_zip.val[0], src_indices_zip.val[1]); uint8x16_t src_lookup[8]; const uint8x16_t two = vdupq_n_u8(2); src_lookup[0] = src_indices_base; for (int i = 1; i < 8; ++i) { src_lookup[i] = vaddq_u8(src_lookup[i - 1], two); } // Each lane of lane of taps_(low|high)[k] corresponds to one output value // along the row, containing kSubPixelFilters[filter_index][filter_id][k], // where filter_id depends on x. int16x4_t taps_low[8]; int16x4_t taps_high[8]; for (int i = 0; i < 8; ++i) { const int16x8_t taps = vmovl_s8(VQTbl1S8(filter_taps[i], filter_indices)); taps_low[i] = vget_low_s16(taps); taps_high[i] = vget_high_s16(taps); } int y = intermediate_height; do { // Load a pool of samples to select from using stepped indices. const uint8x16x3_t src_bytes = LoadSrcVals(src_x); uint16x4_t src_low[8]; uint16x4_t src_high[8]; for (int i = 0; i < 8; ++i) { const uint16x8_t src_i = PermuteSrcVals(src_bytes, src_lookup[i]); src_low[i] = vget_low_u16(src_i); src_high[i] = vget_high_u16(src_i); } vst1_s16(intermediate_x, vrshrn_n_s32(SumOnePassTaps( src_low, taps_low), kInterRoundBitsHorizontal - 1)); vst1_s16( intermediate_x + 4, vrshrn_n_s32(SumOnePassTaps(src_high, taps_high), kInterRoundBitsHorizontal - 1)); // Avoid right shifting the stride. src_x = AddByteStride(src_x, src_stride); intermediate_x += kIntermediateStride; } while (--y != 0); x += 8; p += step_x8; } while (x < width); } // Process 16 bit inputs and output 32 bits. template inline int16x4_t Sum2DVerticalTaps4(const int16x4_t* const src, const int16x8_t taps) { const int16x4_t taps_lo = vget_low_s16(taps); const int16x4_t taps_hi = vget_high_s16(taps); int32x4_t sum; if (num_taps == 8) { sum = vmull_lane_s16(src[0], taps_lo, 0); sum = vmlal_lane_s16(sum, src[1], taps_lo, 1); sum = vmlal_lane_s16(sum, src[2], taps_lo, 2); sum = vmlal_lane_s16(sum, src[3], taps_lo, 3); sum = vmlal_lane_s16(sum, src[4], taps_hi, 0); sum = vmlal_lane_s16(sum, src[5], taps_hi, 1); sum = vmlal_lane_s16(sum, src[6], taps_hi, 2); sum = vmlal_lane_s16(sum, src[7], taps_hi, 3); } else if (num_taps == 6) { sum = vmull_lane_s16(src[0], taps_lo, 1); sum = vmlal_lane_s16(sum, src[1], taps_lo, 2); sum = vmlal_lane_s16(sum, src[2], taps_lo, 3); sum = vmlal_lane_s16(sum, src[3], taps_hi, 0); sum = vmlal_lane_s16(sum, src[4], taps_hi, 1); sum = vmlal_lane_s16(sum, src[5], taps_hi, 2); } else if (num_taps == 4) { sum = vmull_lane_s16(src[0], taps_lo, 2); sum = vmlal_lane_s16(sum, src[1], taps_lo, 3); sum = vmlal_lane_s16(sum, src[2], taps_hi, 0); sum = vmlal_lane_s16(sum, src[3], taps_hi, 1); } else if (num_taps == 2) { sum = vmull_lane_s16(src[0], taps_lo, 3); sum = vmlal_lane_s16(sum, src[1], taps_hi, 0); } if (is_compound) { return vrshrn_n_s32(sum, kInterRoundBitsCompoundVertical - 1); } return vreinterpret_s16_u16(vqrshrun_n_s32(sum, kInterRoundBitsVertical - 1)); } template void ConvolveVerticalScale2Or4xH(const int16_t* LIBGAV1_RESTRICT const src, const int subpixel_y, const int filter_index, const int step_y, const int height, void* LIBGAV1_RESTRICT const dest, const ptrdiff_t dest_stride) { static_assert(width == 2 || width == 4, ""); // We increment stride with the 8-bit pointer and then reinterpret to avoid // shifting |dest_stride|. auto* dest_y = static_cast(dest); // In compound mode, |dest_stride| is based on the size of uint16_t, rather // than bytes. auto* compound_dest_y = static_cast(dest); // This stride always corresponds to int16_t. constexpr ptrdiff_t src_stride = kIntermediateStride; const int16_t* src_y = src; int16x4_t s[num_taps + grade_y]; int p = subpixel_y & 1023; int prev_p = p; int y = height; do { for (int i = 0; i < num_taps; ++i) { s[i] = vld1_s16(src_y + i * src_stride); } int filter_id = (p >> 6) & kSubPixelMask; int16x8_t filter = vmovl_s8(vld1_s8(kHalfSubPixelFilters[filter_index][filter_id])); int16x4_t sums = Sum2DVerticalTaps4(s, filter); if (is_compound) { assert(width != 2); // This offset potentially overflows into the sign bit, but should yield // the correct unsigned value. const uint16x4_t result = vreinterpret_u16_s16(vadd_s16(sums, vdup_n_s16(kCompoundOffset))); vst1_u16(compound_dest_y, result); compound_dest_y += dest_stride; } else { const uint16x4_t result = vmin_u16(vreinterpret_u16_s16(sums), vdup_n_u16((1 << kBitdepth10) - 1)); if (width == 2) { Store2<0>(dest_y, result); } else { vst1_u16(dest_y, result); } dest_y = AddByteStride(dest_y, dest_stride); } p += step_y; const int p_diff = (p >> kScaleSubPixelBits) - (prev_p >> kScaleSubPixelBits); prev_p = p; // Here we load extra source in case it is needed. If |p_diff| == 0, these // values will be unused, but it's faster to load than to branch. s[num_taps] = vld1_s16(src_y + num_taps * src_stride); if (grade_y > 1) { s[num_taps + 1] = vld1_s16(src_y + (num_taps + 1) * src_stride); } filter_id = (p >> 6) & kSubPixelMask; filter = vmovl_s8(vld1_s8(kHalfSubPixelFilters[filter_index][filter_id])); sums = Sum2DVerticalTaps4(&s[p_diff], filter); if (is_compound) { assert(width != 2); const uint16x4_t result = vreinterpret_u16_s16(vadd_s16(sums, vdup_n_s16(kCompoundOffset))); vst1_u16(compound_dest_y, result); compound_dest_y += dest_stride; } else { const uint16x4_t result = vmin_u16(vreinterpret_u16_s16(sums), vdup_n_u16((1 << kBitdepth10) - 1)); if (width == 2) { Store2<0>(dest_y, result); } else { vst1_u16(dest_y, result); } dest_y = AddByteStride(dest_y, dest_stride); } p += step_y; src_y = src + (p >> kScaleSubPixelBits) * src_stride; prev_p = p; y -= 2; } while (y != 0); } template void ConvolveVerticalScale(const int16_t* LIBGAV1_RESTRICT const source, const int intermediate_height, const int width, const int subpixel_y, const int filter_index, const int step_y, const int height, void* LIBGAV1_RESTRICT const dest, const ptrdiff_t dest_stride) { // This stride always corresponds to int16_t. constexpr ptrdiff_t src_stride = kIntermediateStride; int16x8_t s[num_taps + 2]; const int16_t* src = source; int x = 0; do { const int16_t* src_y = src; int p = subpixel_y & 1023; int prev_p = p; // We increment stride with the 8-bit pointer and then reinterpret to avoid // shifting |dest_stride|. auto* dest_y = static_cast(dest) + x; // In compound mode, |dest_stride| is based on the size of uint16_t, rather // than bytes. auto* compound_dest_y = static_cast(dest) + x; int y = height; do { for (int i = 0; i < num_taps; ++i) { s[i] = vld1q_s16(src_y + i * src_stride); } int filter_id = (p >> 6) & kSubPixelMask; int16x8_t filter = vmovl_s8(vld1_s8(kHalfSubPixelFilters[filter_index][filter_id])); int16x8_t sums = SimpleSum2DVerticalTaps(s, filter); if (is_compound) { // This offset potentially overflows int16_t, but should yield the // correct unsigned value. const uint16x8_t result = vreinterpretq_u16_s16( vaddq_s16(sums, vdupq_n_s16(kCompoundOffset))); vst1q_u16(compound_dest_y, result); compound_dest_y += dest_stride; } else { const uint16x8_t result = vminq_u16( vreinterpretq_u16_s16(sums), vdupq_n_u16((1 << kBitdepth10) - 1)); vst1q_u16(dest_y, result); dest_y = AddByteStride(dest_y, dest_stride); } p += step_y; const int p_diff = (p >> kScaleSubPixelBits) - (prev_p >> kScaleSubPixelBits); prev_p = p; // Here we load extra source in case it is needed. If |p_diff| == 0, these // values will be unused, but it's faster to load than to branch. s[num_taps] = vld1q_s16(src_y + num_taps * src_stride); if (grade_y > 1) { s[num_taps + 1] = vld1q_s16(src_y + (num_taps + 1) * src_stride); } filter_id = (p >> 6) & kSubPixelMask; filter = vmovl_s8(vld1_s8(kHalfSubPixelFilters[filter_index][filter_id])); sums = SimpleSum2DVerticalTaps(&s[p_diff], filter); if (is_compound) { assert(width != 2); const uint16x8_t result = vreinterpretq_u16_s16( vaddq_s16(sums, vdupq_n_s16(kCompoundOffset))); vst1q_u16(compound_dest_y, result); compound_dest_y += dest_stride; } else { const uint16x8_t result = vminq_u16( vreinterpretq_u16_s16(sums), vdupq_n_u16((1 << kBitdepth10) - 1)); vst1q_u16(dest_y, result); dest_y = AddByteStride(dest_y, dest_stride); } p += step_y; src_y = src + (p >> kScaleSubPixelBits) * src_stride; prev_p = p; y -= 2; } while (y != 0); src += kIntermediateStride * intermediate_height; x += 8; } while (x < width); } template void ConvolveScale2D_NEON(const void* LIBGAV1_RESTRICT const reference, const ptrdiff_t reference_stride, const int horizontal_filter_index, const int vertical_filter_index, const int subpixel_x, const int subpixel_y, const int step_x, const int step_y, const int width, const int height, void* LIBGAV1_RESTRICT const prediction, const ptrdiff_t pred_stride) { const int horiz_filter_index = GetFilterIndex(horizontal_filter_index, width); const int vert_filter_index = GetFilterIndex(vertical_filter_index, height); assert(step_x <= 2048); assert(step_y <= 2048); const int num_vert_taps = GetNumTapsInFilter(vert_filter_index); const int intermediate_height = (((height - 1) * step_y + (1 << kScaleSubPixelBits) - 1) >> kScaleSubPixelBits) + num_vert_taps; int16_t intermediate_result[kIntermediateAllocWidth * (2 * kIntermediateAllocWidth + 8)]; #if LIBGAV1_MSAN // Quiet msan warnings. Set with random non-zero value to aid in debugging. memset(intermediate_result, 0x54, sizeof(intermediate_result)); #endif // Horizontal filter. // Filter types used for width <= 4 are different from those for width > 4. // When width > 4, the valid filter index range is always [0, 3]. // When width <= 4, the valid filter index range is always [3, 5]. // The same applies to height and vertical filter index. int filter_index = GetFilterIndex(horizontal_filter_index, width); int16_t* intermediate = intermediate_result; const ptrdiff_t src_stride = reference_stride; const auto* src = static_cast(reference); const int vert_kernel_offset = (8 - num_vert_taps) / 2; src = AddByteStride(src, vert_kernel_offset * src_stride); // Derive the maximum value of |step_x| at which all source values fit in one // 16-byte (8-value) load. Final index is src_x + |num_taps| - 1 < 16 // step_x*7 is the final base subpel index for the shuffle mask for filter // inputs in each iteration on large blocks. When step_x is large, we need a // larger structure and use a larger table lookup in order to gather all // filter inputs. const int num_horiz_taps = GetNumTapsInFilter(horiz_filter_index); // |num_taps| - 1 is the shuffle index of the final filter input. const int kernel_start_ceiling = 16 - num_horiz_taps; // This truncated quotient |grade_x_threshold| selects |step_x| such that: // (step_x * 7) >> kScaleSubPixelBits < single load limit const int grade_x_threshold = (kernel_start_ceiling << kScaleSubPixelBits) / 7; switch (filter_index) { case 0: if (step_x > grade_x_threshold) { ConvolveKernelHorizontalSigned6Tap<2>( src, src_stride, width, subpixel_x, step_x, intermediate_height, intermediate); } else { ConvolveKernelHorizontalSigned6Tap<1>( src, src_stride, width, subpixel_x, step_x, intermediate_height, intermediate); } break; case 1: if (step_x > grade_x_threshold) { ConvolveKernelHorizontalMixed6Tap<2>(src, src_stride, width, subpixel_x, step_x, intermediate_height, intermediate); } else { ConvolveKernelHorizontalMixed6Tap<1>(src, src_stride, width, subpixel_x, step_x, intermediate_height, intermediate); } break; case 2: if (step_x > grade_x_threshold) { ConvolveKernelHorizontalSigned8Tap<2>( src, src_stride, width, subpixel_x, step_x, intermediate_height, intermediate); } else { ConvolveKernelHorizontalSigned8Tap<1>( src, src_stride, width, subpixel_x, step_x, intermediate_height, intermediate); } break; case 3: if (step_x > grade_x_threshold) { ConvolveKernelHorizontal2Tap<2>(src, src_stride, width, subpixel_x, step_x, intermediate_height, intermediate); } else { ConvolveKernelHorizontal2Tap<1>(src, src_stride, width, subpixel_x, step_x, intermediate_height, intermediate); } break; case 4: assert(width <= 4); ConvolveKernelHorizontalSigned4Tap(src, src_stride, subpixel_x, step_x, intermediate_height, intermediate); break; default: assert(filter_index == 5); ConvolveKernelHorizontalPositive4Tap(src, src_stride, subpixel_x, step_x, intermediate_height, intermediate); } // Vertical filter. filter_index = GetFilterIndex(vertical_filter_index, height); intermediate = intermediate_result; switch (filter_index) { case 0: case 1: if (step_y <= 1024) { if (!is_compound && width == 2) { ConvolveVerticalScale2Or4xH<6, 1, 2, is_compound>( intermediate, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } else if (width == 4) { ConvolveVerticalScale2Or4xH<6, 1, 4, is_compound>( intermediate, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } else { ConvolveVerticalScale<6, 1, is_compound>( intermediate, intermediate_height, width, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } } else { if (!is_compound && width == 2) { ConvolveVerticalScale2Or4xH<6, 2, 2, is_compound>( intermediate, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } else if (width == 4) { ConvolveVerticalScale2Or4xH<6, 2, 4, is_compound>( intermediate, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } else { ConvolveVerticalScale<6, 2, is_compound>( intermediate, intermediate_height, width, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } } break; case 2: if (step_y <= 1024) { if (!is_compound && width == 2) { ConvolveVerticalScale2Or4xH<8, 1, 2, is_compound>( intermediate, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } else if (width == 4) { ConvolveVerticalScale2Or4xH<8, 1, 4, is_compound>( intermediate, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } else { ConvolveVerticalScale<8, 1, is_compound>( intermediate, intermediate_height, width, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } } else { if (!is_compound && width == 2) { ConvolveVerticalScale2Or4xH<8, 2, 2, is_compound>( intermediate, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } else if (width == 4) { ConvolveVerticalScale2Or4xH<8, 2, 4, is_compound>( intermediate, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } else { ConvolveVerticalScale<8, 2, is_compound>( intermediate, intermediate_height, width, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } } break; case 3: if (step_y <= 1024) { if (!is_compound && width == 2) { ConvolveVerticalScale2Or4xH<2, 1, 2, is_compound>( intermediate, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } else if (width == 4) { ConvolveVerticalScale2Or4xH<2, 1, 4, is_compound>( intermediate, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } else { ConvolveVerticalScale<2, 1, is_compound>( intermediate, intermediate_height, width, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } } else { if (!is_compound && width == 2) { ConvolveVerticalScale2Or4xH<2, 2, 2, is_compound>( intermediate, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } else if (width == 4) { ConvolveVerticalScale2Or4xH<2, 2, 4, is_compound>( intermediate, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } else { ConvolveVerticalScale<2, 2, is_compound>( intermediate, intermediate_height, width, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } } break; default: assert(filter_index == 4 || filter_index == 5); assert(height <= 4); if (step_y <= 1024) { if (!is_compound && width == 2) { ConvolveVerticalScale2Or4xH<4, 1, 2, is_compound>( intermediate, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } else if (width == 4) { ConvolveVerticalScale2Or4xH<4, 1, 4, is_compound>( intermediate, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } else { ConvolveVerticalScale<4, 1, is_compound>( intermediate, intermediate_height, width, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } } else { if (!is_compound && width == 2) { ConvolveVerticalScale2Or4xH<4, 2, 2, is_compound>( intermediate, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } else if (width == 4) { ConvolveVerticalScale2Or4xH<4, 2, 4, is_compound>( intermediate, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } else { ConvolveVerticalScale<4, 2, is_compound>( intermediate, intermediate_height, width, subpixel_y, filter_index, step_y, height, prediction, pred_stride); } } } } void Init10bpp() { Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth10); assert(dsp != nullptr); dsp->convolve[0][0][0][1] = ConvolveHorizontal_NEON; dsp->convolve[0][0][1][0] = ConvolveVertical_NEON; dsp->convolve[0][0][1][1] = Convolve2D_NEON; dsp->convolve[0][1][0][0] = ConvolveCompoundCopy_NEON; dsp->convolve[0][1][0][1] = ConvolveCompoundHorizontal_NEON; dsp->convolve[0][1][1][0] = ConvolveCompoundVertical_NEON; dsp->convolve[0][1][1][1] = ConvolveCompound2D_NEON; dsp->convolve[1][0][0][1] = ConvolveIntraBlockCopyHorizontal_NEON; dsp->convolve[1][0][1][0] = ConvolveIntraBlockCopyVertical_NEON; dsp->convolve[1][0][1][1] = ConvolveIntraBlockCopy2D_NEON; dsp->convolve_scale[0] = ConvolveScale2D_NEON; dsp->convolve_scale[1] = ConvolveScale2D_NEON; } } // namespace void ConvolveInit10bpp_NEON() { Init10bpp(); } } // namespace dsp } // namespace libgav1 #else // !(LIBGAV1_ENABLE_NEON && LIBGAV1_MAX_BITDEPTH >= 10) namespace libgav1 { namespace dsp { void ConvolveInit10bpp_NEON() {} } // namespace dsp } // namespace libgav1 #endif // LIBGAV1_ENABLE_NEON && LIBGAV1_MAX_BITDEPTH >= 10