// Copyright 2019 The libgav1 Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/dsp/intrapred.h" #include "src/utils/cpu.h" #if LIBGAV1_ENABLE_NEON #include #include #include #include #include "src/dsp/arm/common_neon.h" #include "src/dsp/constants.h" #include "src/dsp/dsp.h" #include "src/utils/common.h" namespace libgav1 { namespace dsp { namespace low_bitdepth { namespace { uint8x16_t Set2ValuesQ(const uint8_t* a) { uint16_t combined_values = a[0] | a[1] << 8; return vreinterpretq_u8_u16(vdupq_n_u16(combined_values)); } uint32_t SumVector(uint32x2_t a) { #if defined(__aarch64__) return vaddv_u32(a); #else const uint64x1_t b = vpaddl_u32(a); return vget_lane_u32(vreinterpret_u32_u64(b), 0); #endif // defined(__aarch64__) } uint32_t SumVector(uint32x4_t a) { #if defined(__aarch64__) return vaddvq_u32(a); #else const uint64x2_t b = vpaddlq_u32(a); const uint64x1_t c = vadd_u64(vget_low_u64(b), vget_high_u64(b)); return vget_lane_u32(vreinterpret_u32_u64(c), 0); #endif // defined(__aarch64__) } // Divide by the number of elements. uint32_t Average(const uint32_t sum, const int width, const int height) { return RightShiftWithRounding(sum, FloorLog2(width) + FloorLog2(height)); } // Subtract |val| from every element in |a|. void BlockSubtract(const uint32_t val, int16_t a[kCflLumaBufferStride][kCflLumaBufferStride], const int width, const int height) { assert(val <= INT16_MAX); const int16x8_t val_v = vdupq_n_s16(static_cast(val)); for (int y = 0; y < height; ++y) { if (width == 4) { const int16x4_t b = vld1_s16(a[y]); vst1_s16(a[y], vsub_s16(b, vget_low_s16(val_v))); } else if (width == 8) { const int16x8_t b = vld1q_s16(a[y]); vst1q_s16(a[y], vsubq_s16(b, val_v)); } else if (width == 16) { const int16x8_t b = vld1q_s16(a[y]); const int16x8_t c = vld1q_s16(a[y] + 8); vst1q_s16(a[y], vsubq_s16(b, val_v)); vst1q_s16(a[y] + 8, vsubq_s16(c, val_v)); } else /* block_width == 32 */ { const int16x8_t b = vld1q_s16(a[y]); const int16x8_t c = vld1q_s16(a[y] + 8); const int16x8_t d = vld1q_s16(a[y] + 16); const int16x8_t e = vld1q_s16(a[y] + 24); vst1q_s16(a[y], vsubq_s16(b, val_v)); vst1q_s16(a[y] + 8, vsubq_s16(c, val_v)); vst1q_s16(a[y] + 16, vsubq_s16(d, val_v)); vst1q_s16(a[y] + 24, vsubq_s16(e, val_v)); } } } template void CflSubsampler420_NEON( int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride], const int max_luma_width, const int max_luma_height, const void* const source, const ptrdiff_t stride) { const auto* src = static_cast(source); uint32_t sum; if (block_width == 4) { assert(max_luma_width >= 8); uint32x2_t running_sum = vdup_n_u32(0); for (int y = 0; y < block_height; ++y) { const uint8x8_t row0 = vld1_u8(src); const uint8x8_t row1 = vld1_u8(src + stride); uint16x4_t sum_row = vpadal_u8(vpaddl_u8(row0), row1); sum_row = vshl_n_u16(sum_row, 1); running_sum = vpadal_u16(running_sum, sum_row); vst1_s16(luma[y], vreinterpret_s16_u16(sum_row)); if (y << 1 < max_luma_height - 2) { // Once this threshold is reached the loop could be simplified. src += stride << 1; } } sum = SumVector(running_sum); } else if (block_width == 8) { const uint8x16_t x_index = {0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14}; const uint8x16_t x_max_index = vdupq_n_u8(max_luma_width - 2); const uint8x16_t x_mask = vcltq_u8(x_index, x_max_index); uint32x4_t running_sum = vdupq_n_u32(0); for (int y = 0; y < block_height; ++y) { const uint8x16_t x_max0 = Set2ValuesQ(src + max_luma_width - 2); const uint8x16_t x_max1 = Set2ValuesQ(src + max_luma_width - 2 + stride); uint8x16_t row0 = vld1q_u8(src); row0 = vbslq_u8(x_mask, row0, x_max0); uint8x16_t row1 = vld1q_u8(src + stride); row1 = vbslq_u8(x_mask, row1, x_max1); uint16x8_t sum_row = vpadalq_u8(vpaddlq_u8(row0), row1); sum_row = vshlq_n_u16(sum_row, 1); running_sum = vpadalq_u16(running_sum, sum_row); vst1q_s16(luma[y], vreinterpretq_s16_u16(sum_row)); if (y << 1 < max_luma_height - 2) { src += stride << 1; } } sum = SumVector(running_sum); } else /* block_width >= 16 */ { const uint8x16_t x_max_index = vdupq_n_u8(max_luma_width - 2); uint32x4_t running_sum = vdupq_n_u32(0); for (int y = 0; y < block_height; ++y) { uint8x16_t x_index = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}; const uint8x16_t x_max00 = vdupq_n_u8(src[max_luma_width - 2]); const uint8x16_t x_max01 = vdupq_n_u8(src[max_luma_width - 2 + 1]); const uint8x16_t x_max10 = vdupq_n_u8(src[stride + max_luma_width - 2]); const uint8x16_t x_max11 = vdupq_n_u8(src[stride + max_luma_width - 2 + 1]); for (int x = 0; x < block_width; x += 16) { const ptrdiff_t src_x_offset = x << 1; const uint8x16_t x_mask = vcltq_u8(x_index, x_max_index); const uint8x16x2_t row0 = vld2q_u8(src + src_x_offset); const uint8x16x2_t row1 = vld2q_u8(src + src_x_offset + stride); const uint8x16_t row_masked_00 = vbslq_u8(x_mask, row0.val[0], x_max00); const uint8x16_t row_masked_01 = vbslq_u8(x_mask, row0.val[1], x_max01); const uint8x16_t row_masked_10 = vbslq_u8(x_mask, row1.val[0], x_max10); const uint8x16_t row_masked_11 = vbslq_u8(x_mask, row1.val[1], x_max11); uint16x8_t sum_row_lo = vaddl_u8(vget_low_u8(row_masked_00), vget_low_u8(row_masked_01)); sum_row_lo = vaddw_u8(sum_row_lo, vget_low_u8(row_masked_10)); sum_row_lo = vaddw_u8(sum_row_lo, vget_low_u8(row_masked_11)); sum_row_lo = vshlq_n_u16(sum_row_lo, 1); running_sum = vpadalq_u16(running_sum, sum_row_lo); vst1q_s16(luma[y] + x, vreinterpretq_s16_u16(sum_row_lo)); uint16x8_t sum_row_hi = vaddl_u8(vget_high_u8(row_masked_00), vget_high_u8(row_masked_01)); sum_row_hi = vaddw_u8(sum_row_hi, vget_high_u8(row_masked_10)); sum_row_hi = vaddw_u8(sum_row_hi, vget_high_u8(row_masked_11)); sum_row_hi = vshlq_n_u16(sum_row_hi, 1); running_sum = vpadalq_u16(running_sum, sum_row_hi); vst1q_s16(luma[y] + x + 8, vreinterpretq_s16_u16(sum_row_hi)); x_index = vaddq_u8(x_index, vdupq_n_u8(32)); } if (y << 1 < max_luma_height - 2) { src += stride << 1; } } sum = SumVector(running_sum); } const uint32_t average = Average(sum, block_width, block_height); BlockSubtract(average, luma, block_width, block_height); } template void CflSubsampler444_NEON( int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride], const int max_luma_width, const int max_luma_height, const void* const source, const ptrdiff_t stride) { const auto* src = static_cast(source); uint32_t sum; if (block_width == 4) { assert(max_luma_width >= 4); uint32x4_t running_sum = vdupq_n_u32(0); uint8x8_t row = vdup_n_u8(0); for (int y = 0; y < block_height; y += 2) { row = Load4<0>(src, row); row = Load4<1>(src + stride, row); if (y < (max_luma_height - 1)) { src += stride << 1; } const uint16x8_t row_shifted = vshll_n_u8(row, 3); running_sum = vpadalq_u16(running_sum, row_shifted); vst1_s16(luma[y], vreinterpret_s16_u16(vget_low_u16(row_shifted))); vst1_s16(luma[y + 1], vreinterpret_s16_u16(vget_high_u16(row_shifted))); } sum = SumVector(running_sum); } else if (block_width == 8) { const uint8x8_t x_index = {0, 1, 2, 3, 4, 5, 6, 7}; const uint8x8_t x_max_index = vdup_n_u8(max_luma_width - 1); const uint8x8_t x_mask = vclt_u8(x_index, x_max_index); uint32x4_t running_sum = vdupq_n_u32(0); for (int y = 0; y < block_height; ++y) { const uint8x8_t x_max = vdup_n_u8(src[max_luma_width - 1]); const uint8x8_t row = vbsl_u8(x_mask, vld1_u8(src), x_max); const uint16x8_t row_shifted = vshll_n_u8(row, 3); running_sum = vpadalq_u16(running_sum, row_shifted); vst1q_s16(luma[y], vreinterpretq_s16_u16(row_shifted)); if (y < max_luma_height - 1) { src += stride; } } sum = SumVector(running_sum); } else /* block_width >= 16 */ { const uint8x16_t x_max_index = vdupq_n_u8(max_luma_width - 1); uint32x4_t running_sum = vdupq_n_u32(0); for (int y = 0; y < block_height; ++y) { uint8x16_t x_index = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; const uint8x16_t x_max = vdupq_n_u8(src[max_luma_width - 1]); for (int x = 0; x < block_width; x += 16) { const uint8x16_t x_mask = vcltq_u8(x_index, x_max_index); const uint8x16_t row = vbslq_u8(x_mask, vld1q_u8(src + x), x_max); const uint16x8_t row_shifted_low = vshll_n_u8(vget_low_u8(row), 3); const uint16x8_t row_shifted_high = vshll_n_u8(vget_high_u8(row), 3); running_sum = vpadalq_u16(running_sum, row_shifted_low); running_sum = vpadalq_u16(running_sum, row_shifted_high); vst1q_s16(luma[y] + x, vreinterpretq_s16_u16(row_shifted_low)); vst1q_s16(luma[y] + x + 8, vreinterpretq_s16_u16(row_shifted_high)); x_index = vaddq_u8(x_index, vdupq_n_u8(16)); } if (y < max_luma_height - 1) { src += stride; } } sum = SumVector(running_sum); } const uint32_t average = Average(sum, block_width, block_height); BlockSubtract(average, luma, block_width, block_height); } // Saturate |dc + ((alpha * luma) >> 6))| to uint8_t. inline uint8x8_t Combine8(const int16x8_t luma, const int alpha, const int16x8_t dc) { const int16x8_t la = vmulq_n_s16(luma, alpha); // Subtract the sign bit to round towards zero. const int16x8_t sub_sign = vsraq_n_s16(la, la, 15); // Shift and accumulate. const int16x8_t result = vrsraq_n_s16(dc, sub_sign, 6); return vqmovun_s16(result); } // The range of luma/alpha is not really important because it gets saturated to // uint8_t. Saturated int16_t >> 6 outranges uint8_t. template inline void CflIntraPredictor4xN_NEON( void* const dest, const ptrdiff_t stride, const int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride], const int alpha) { auto* dst = static_cast(dest); const int16x8_t dc = vdupq_n_s16(dst[0]); for (int y = 0; y < block_height; y += 2) { const int16x4_t luma_row0 = vld1_s16(luma[y]); const int16x4_t luma_row1 = vld1_s16(luma[y + 1]); const uint8x8_t sum = Combine8(vcombine_s16(luma_row0, luma_row1), alpha, dc); StoreLo4(dst, sum); dst += stride; StoreHi4(dst, sum); dst += stride; } } template inline void CflIntraPredictor8xN_NEON( void* const dest, const ptrdiff_t stride, const int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride], const int alpha) { auto* dst = static_cast(dest); const int16x8_t dc = vdupq_n_s16(dst[0]); for (int y = 0; y < block_height; ++y) { const int16x8_t luma_row = vld1q_s16(luma[y]); const uint8x8_t sum = Combine8(luma_row, alpha, dc); vst1_u8(dst, sum); dst += stride; } } template inline void CflIntraPredictor16xN_NEON( void* const dest, const ptrdiff_t stride, const int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride], const int alpha) { auto* dst = static_cast(dest); const int16x8_t dc = vdupq_n_s16(dst[0]); for (int y = 0; y < block_height; ++y) { const int16x8_t luma_row_0 = vld1q_s16(luma[y]); const int16x8_t luma_row_1 = vld1q_s16(luma[y] + 8); const uint8x8_t sum_0 = Combine8(luma_row_0, alpha, dc); const uint8x8_t sum_1 = Combine8(luma_row_1, alpha, dc); vst1_u8(dst, sum_0); vst1_u8(dst + 8, sum_1); dst += stride; } } template inline void CflIntraPredictor32xN_NEON( void* const dest, const ptrdiff_t stride, const int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride], const int alpha) { auto* dst = static_cast(dest); const int16x8_t dc = vdupq_n_s16(dst[0]); for (int y = 0; y < block_height; ++y) { const int16x8_t luma_row_0 = vld1q_s16(luma[y]); const int16x8_t luma_row_1 = vld1q_s16(luma[y] + 8); const int16x8_t luma_row_2 = vld1q_s16(luma[y] + 16); const int16x8_t luma_row_3 = vld1q_s16(luma[y] + 24); const uint8x8_t sum_0 = Combine8(luma_row_0, alpha, dc); const uint8x8_t sum_1 = Combine8(luma_row_1, alpha, dc); const uint8x8_t sum_2 = Combine8(luma_row_2, alpha, dc); const uint8x8_t sum_3 = Combine8(luma_row_3, alpha, dc); vst1_u8(dst, sum_0); vst1_u8(dst + 8, sum_1); vst1_u8(dst + 16, sum_2); vst1_u8(dst + 24, sum_3); dst += stride; } } void Init8bpp() { Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8); assert(dsp != nullptr); dsp->cfl_subsamplers[kTransformSize4x4][kSubsamplingType420] = CflSubsampler420_NEON<4, 4>; dsp->cfl_subsamplers[kTransformSize4x8][kSubsamplingType420] = CflSubsampler420_NEON<4, 8>; dsp->cfl_subsamplers[kTransformSize4x16][kSubsamplingType420] = CflSubsampler420_NEON<4, 16>; dsp->cfl_subsamplers[kTransformSize8x4][kSubsamplingType420] = CflSubsampler420_NEON<8, 4>; dsp->cfl_subsamplers[kTransformSize8x8][kSubsamplingType420] = CflSubsampler420_NEON<8, 8>; dsp->cfl_subsamplers[kTransformSize8x16][kSubsamplingType420] = CflSubsampler420_NEON<8, 16>; dsp->cfl_subsamplers[kTransformSize8x32][kSubsamplingType420] = CflSubsampler420_NEON<8, 32>; dsp->cfl_subsamplers[kTransformSize16x4][kSubsamplingType420] = CflSubsampler420_NEON<16, 4>; dsp->cfl_subsamplers[kTransformSize16x8][kSubsamplingType420] = CflSubsampler420_NEON<16, 8>; dsp->cfl_subsamplers[kTransformSize16x16][kSubsamplingType420] = CflSubsampler420_NEON<16, 16>; dsp->cfl_subsamplers[kTransformSize16x32][kSubsamplingType420] = CflSubsampler420_NEON<16, 32>; dsp->cfl_subsamplers[kTransformSize32x8][kSubsamplingType420] = CflSubsampler420_NEON<32, 8>; dsp->cfl_subsamplers[kTransformSize32x16][kSubsamplingType420] = CflSubsampler420_NEON<32, 16>; dsp->cfl_subsamplers[kTransformSize32x32][kSubsamplingType420] = CflSubsampler420_NEON<32, 32>; dsp->cfl_subsamplers[kTransformSize4x4][kSubsamplingType444] = CflSubsampler444_NEON<4, 4>; dsp->cfl_subsamplers[kTransformSize4x8][kSubsamplingType444] = CflSubsampler444_NEON<4, 8>; dsp->cfl_subsamplers[kTransformSize4x16][kSubsamplingType444] = CflSubsampler444_NEON<4, 16>; dsp->cfl_subsamplers[kTransformSize8x4][kSubsamplingType444] = CflSubsampler444_NEON<8, 4>; dsp->cfl_subsamplers[kTransformSize8x8][kSubsamplingType444] = CflSubsampler444_NEON<8, 8>; dsp->cfl_subsamplers[kTransformSize8x16][kSubsamplingType444] = CflSubsampler444_NEON<8, 16>; dsp->cfl_subsamplers[kTransformSize8x32][kSubsamplingType444] = CflSubsampler444_NEON<8, 32>; dsp->cfl_subsamplers[kTransformSize16x4][kSubsamplingType444] = CflSubsampler444_NEON<16, 4>; dsp->cfl_subsamplers[kTransformSize16x8][kSubsamplingType444] = CflSubsampler444_NEON<16, 8>; dsp->cfl_subsamplers[kTransformSize16x16][kSubsamplingType444] = CflSubsampler444_NEON<16, 16>; dsp->cfl_subsamplers[kTransformSize16x32][kSubsamplingType444] = CflSubsampler444_NEON<16, 32>; dsp->cfl_subsamplers[kTransformSize32x8][kSubsamplingType444] = CflSubsampler444_NEON<32, 8>; dsp->cfl_subsamplers[kTransformSize32x16][kSubsamplingType444] = CflSubsampler444_NEON<32, 16>; dsp->cfl_subsamplers[kTransformSize32x32][kSubsamplingType444] = CflSubsampler444_NEON<32, 32>; dsp->cfl_intra_predictors[kTransformSize4x4] = CflIntraPredictor4xN_NEON<4>; dsp->cfl_intra_predictors[kTransformSize4x8] = CflIntraPredictor4xN_NEON<8>; dsp->cfl_intra_predictors[kTransformSize4x16] = CflIntraPredictor4xN_NEON<16>; dsp->cfl_intra_predictors[kTransformSize8x4] = CflIntraPredictor8xN_NEON<4>; dsp->cfl_intra_predictors[kTransformSize8x8] = CflIntraPredictor8xN_NEON<8>; dsp->cfl_intra_predictors[kTransformSize8x16] = CflIntraPredictor8xN_NEON<16>; dsp->cfl_intra_predictors[kTransformSize8x32] = CflIntraPredictor8xN_NEON<32>; dsp->cfl_intra_predictors[kTransformSize16x4] = CflIntraPredictor16xN_NEON<4>; dsp->cfl_intra_predictors[kTransformSize16x8] = CflIntraPredictor16xN_NEON<8>; dsp->cfl_intra_predictors[kTransformSize16x16] = CflIntraPredictor16xN_NEON<16>; dsp->cfl_intra_predictors[kTransformSize16x32] = CflIntraPredictor16xN_NEON<32>; dsp->cfl_intra_predictors[kTransformSize32x8] = CflIntraPredictor32xN_NEON<8>; dsp->cfl_intra_predictors[kTransformSize32x16] = CflIntraPredictor32xN_NEON<16>; dsp->cfl_intra_predictors[kTransformSize32x32] = CflIntraPredictor32xN_NEON<32>; // Max Cfl predictor size is 32x32. } } // namespace } // namespace low_bitdepth void IntraPredCflInit_NEON() { low_bitdepth::Init8bpp(); } } // namespace dsp } // namespace libgav1 #else // !LIBGAV1_ENABLE_NEON namespace libgav1 { namespace dsp { void IntraPredCflInit_NEON() {} } // namespace dsp } // namespace libgav1 #endif // LIBGAV1_ENABLE_NEON