// Copyright 2020 The libgav1 Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/dsp/motion_field_projection.h" #include "src/utils/cpu.h" #if LIBGAV1_ENABLE_NEON #include #include #include #include #include #include "src/dsp/constants.h" #include "src/dsp/dsp.h" #include "src/utils/common.h" #include "src/utils/constants.h" #include "src/utils/types.h" namespace libgav1 { namespace dsp { namespace { inline int16x8_t LoadDivision(const int8x8x2_t division_table, const int8x8_t reference_offset) { const int8x8_t kOne = vcreate_s8(0x0100010001000100); const int8x16_t kOneQ = vcombine_s8(kOne, kOne); const int8x8_t t = vadd_s8(reference_offset, reference_offset); const int8x8x2_t tt = vzip_s8(t, t); const int8x16_t t1 = vcombine_s8(tt.val[0], tt.val[1]); const int8x16_t idx = vaddq_s8(t1, kOneQ); const int8x8_t idx_low = vget_low_s8(idx); const int8x8_t idx_high = vget_high_s8(idx); const int16x4_t d0 = vreinterpret_s16_s8(vtbl2_s8(division_table, idx_low)); const int16x4_t d1 = vreinterpret_s16_s8(vtbl2_s8(division_table, idx_high)); return vcombine_s16(d0, d1); } inline int16x4_t MvProjection(const int16x4_t mv, const int16x4_t denominator, const int numerator) { const int32x4_t m0 = vmull_s16(mv, denominator); const int32x4_t m = vmulq_n_s32(m0, numerator); // Add the sign (0 or -1) to round towards zero. const int32x4_t add_sign = vsraq_n_s32(m, m, 31); return vqrshrn_n_s32(add_sign, 14); } inline int16x8_t MvProjectionClip(const int16x8_t mv, const int16x8_t denominator, const int numerator) { const int16x4_t mv0 = vget_low_s16(mv); const int16x4_t mv1 = vget_high_s16(mv); const int16x4_t s0 = MvProjection(mv0, vget_low_s16(denominator), numerator); const int16x4_t s1 = MvProjection(mv1, vget_high_s16(denominator), numerator); const int16x8_t projection = vcombine_s16(s0, s1); const int16x8_t projection_mv_clamp = vdupq_n_s16(kProjectionMvClamp); const int16x8_t clamp = vminq_s16(projection, projection_mv_clamp); return vmaxq_s16(clamp, vnegq_s16(projection_mv_clamp)); } inline int8x8_t Project_NEON(const int16x8_t delta, const int16x8_t dst_sign) { // Add 63 to negative delta so that it shifts towards zero. const int16x8_t delta_sign = vshrq_n_s16(delta, 15); const uint16x8_t delta_u = vreinterpretq_u16_s16(delta); const uint16x8_t delta_sign_u = vreinterpretq_u16_s16(delta_sign); const uint16x8_t delta_adjust_u = vsraq_n_u16(delta_u, delta_sign_u, 10); const int16x8_t delta_adjust = vreinterpretq_s16_u16(delta_adjust_u); const int16x8_t offset0 = vshrq_n_s16(delta_adjust, 6); const int16x8_t offset1 = veorq_s16(offset0, dst_sign); const int16x8_t offset2 = vsubq_s16(offset1, dst_sign); return vqmovn_s16(offset2); } inline void GetPosition( const int8x8x2_t division_table, const MotionVector* const mv, const int numerator, const int x8_start, const int x8_end, const int x8, const int8x8_t r_offsets, const int8x8_t source_reference_type8, const int8x8_t skip_r, const int8x8_t y8_floor8, const int8x8_t y8_ceiling8, const int16x8_t d_sign, const int delta, int8x8_t* const r, int8x8_t* const position_y8, int8x8_t* const position_x8, int64_t* const skip_64, int32x4_t mvs[2]) { const auto* const mv_int = reinterpret_cast(mv + x8); *r = vtbl1_s8(r_offsets, source_reference_type8); const int16x8_t denorm = LoadDivision(division_table, source_reference_type8); int16x8_t projection_mv[2]; mvs[0] = vld1q_s32(mv_int + 0); mvs[1] = vld1q_s32(mv_int + 4); // Deinterlace x and y components const int16x8_t mv0 = vreinterpretq_s16_s32(mvs[0]); const int16x8_t mv1 = vreinterpretq_s16_s32(mvs[1]); const int16x8x2_t mv_yx = vuzpq_s16(mv0, mv1); // numerator could be 0. projection_mv[0] = MvProjectionClip(mv_yx.val[0], denorm, numerator); projection_mv[1] = MvProjectionClip(mv_yx.val[1], denorm, numerator); // Do not update the motion vector if the block position is not valid or // if position_x8 is outside the current range of x8_start and x8_end. // Note that position_y8 will always be within the range of y8_start and // y8_end. // After subtracting the base, valid projections are within 8-bit. *position_y8 = Project_NEON(projection_mv[0], d_sign); const int8x8_t position_x = Project_NEON(projection_mv[1], d_sign); const int8x8_t k01234567 = vcreate_s8(uint64_t{0x0706050403020100}); *position_x8 = vqadd_s8(position_x, k01234567); const int8x16_t position_xy = vcombine_s8(*position_x8, *position_y8); const int x8_floor = std::max( x8_start - x8, delta - kProjectionMvMaxHorizontalOffset); // [-8, 8] const int x8_ceiling = std::min( x8_end - x8, delta + 8 + kProjectionMvMaxHorizontalOffset); // [0, 16] const int8x8_t x8_floor8 = vdup_n_s8(x8_floor); const int8x8_t x8_ceiling8 = vdup_n_s8(x8_ceiling); const int8x16_t floor_xy = vcombine_s8(x8_floor8, y8_floor8); const int8x16_t ceiling_xy = vcombine_s8(x8_ceiling8, y8_ceiling8); const uint8x16_t underflow = vcltq_s8(position_xy, floor_xy); const uint8x16_t overflow = vcgeq_s8(position_xy, ceiling_xy); const int8x16_t out = vreinterpretq_s8_u8(vorrq_u8(underflow, overflow)); const int8x8_t skip_low = vorr_s8(skip_r, vget_low_s8(out)); const int8x8_t skip = vorr_s8(skip_low, vget_high_s8(out)); *skip_64 = vget_lane_s64(vreinterpret_s64_s8(skip), 0); } template inline void Store(const int16x8_t position, const int8x8_t reference_offset, const int32x4_t mv, int8_t* dst_reference_offset, MotionVector* dst_mv) { const ptrdiff_t offset = vgetq_lane_s16(position, idx); auto* const d_mv = reinterpret_cast(&dst_mv[offset]); vst1q_lane_s32(d_mv, mv, idx & 3); vst1_lane_s8(&dst_reference_offset[offset], reference_offset, idx); } template inline void CheckStore(const int8_t* skips, const int16x8_t position, const int8x8_t reference_offset, const int32x4_t mv, int8_t* dst_reference_offset, MotionVector* dst_mv) { if (skips[idx] == 0) { Store(position, reference_offset, mv, dst_reference_offset, dst_mv); } } // 7.9.2. void MotionFieldProjectionKernel_NEON(const ReferenceInfo& reference_info, const int reference_to_current_with_sign, const int dst_sign, const int y8_start, const int y8_end, const int x8_start, const int x8_end, TemporalMotionField* const motion_field) { const ptrdiff_t stride = motion_field->mv.columns(); // The column range has to be offset by kProjectionMvMaxHorizontalOffset since // coordinates in that range could end up being position_x8 because of // projection. const int adjusted_x8_start = std::max(x8_start - kProjectionMvMaxHorizontalOffset, 0); const int adjusted_x8_end = std::min( x8_end + kProjectionMvMaxHorizontalOffset, static_cast(stride)); const int adjusted_x8_end8 = adjusted_x8_end & ~7; const int leftover = adjusted_x8_end - adjusted_x8_end8; const int8_t* const reference_offsets = reference_info.relative_distance_to.data(); const bool* const skip_references = reference_info.skip_references.data(); const int16_t* const projection_divisions = reference_info.projection_divisions.data(); const ReferenceFrameType* source_reference_types = &reference_info.motion_field_reference_frame[y8_start][0]; const MotionVector* mv = &reference_info.motion_field_mv[y8_start][0]; int8_t* dst_reference_offset = motion_field->reference_offset[y8_start]; MotionVector* dst_mv = motion_field->mv[y8_start]; const int16x8_t d_sign = vdupq_n_s16(dst_sign); static_assert(sizeof(int8_t) == sizeof(bool), ""); static_assert(sizeof(int8_t) == sizeof(ReferenceFrameType), ""); static_assert(sizeof(int32_t) == sizeof(MotionVector), ""); assert(dst_sign == 0 || dst_sign == -1); assert(stride == motion_field->reference_offset.columns()); assert((y8_start & 7) == 0); assert((adjusted_x8_start & 7) == 0); // The final position calculation is represented with int16_t. Valid // position_y8 from its base is at most 7. After considering the horizontal // offset which is at most |stride - 1|, we have the following assertion, // which means this optimization works for frame width up to 32K (each // position is a 8x8 block). assert(8 * stride <= 32768); const int8x8_t skip_reference = vld1_s8(reinterpret_cast(skip_references)); const int8x8_t r_offsets = vld1_s8(reference_offsets); const int8x16_t table = vreinterpretq_s8_s16(vld1q_s16(projection_divisions)); int8x8x2_t division_table; division_table.val[0] = vget_low_s8(table); division_table.val[1] = vget_high_s8(table); int y8 = y8_start; do { const int y8_floor = (y8 & ~7) - y8; // [-7, 0] const int y8_ceiling = std::min(y8_end - y8, y8_floor + 8); // [1, 8] const int8x8_t y8_floor8 = vdup_n_s8(y8_floor); const int8x8_t y8_ceiling8 = vdup_n_s8(y8_ceiling); int x8; for (x8 = adjusted_x8_start; x8 < adjusted_x8_end8; x8 += 8) { const int8x8_t source_reference_type8 = vld1_s8(reinterpret_cast(source_reference_types + x8)); const int8x8_t skip_r = vtbl1_s8(skip_reference, source_reference_type8); const int64_t early_skip = vget_lane_s64(vreinterpret_s64_s8(skip_r), 0); // Early termination #1 if all are skips. Chance is typically ~30-40%. if (early_skip == -1) continue; int64_t skip_64; int8x8_t r, position_x8, position_y8; int32x4_t mvs[2]; GetPosition(division_table, mv, reference_to_current_with_sign, x8_start, x8_end, x8, r_offsets, source_reference_type8, skip_r, y8_floor8, y8_ceiling8, d_sign, 0, &r, &position_y8, &position_x8, &skip_64, mvs); // Early termination #2 if all are skips. // Chance is typically ~15-25% after Early termination #1. if (skip_64 == -1) continue; const int16x8_t p_y = vmovl_s8(position_y8); const int16x8_t p_x = vmovl_s8(position_x8); const int16x8_t pos = vmlaq_n_s16(p_x, p_y, stride); const int16x8_t position = vaddq_s16(pos, vdupq_n_s16(x8)); if (skip_64 == 0) { // Store all. Chance is typically ~70-85% after Early termination #2. Store<0>(position, r, mvs[0], dst_reference_offset, dst_mv); Store<1>(position, r, mvs[0], dst_reference_offset, dst_mv); Store<2>(position, r, mvs[0], dst_reference_offset, dst_mv); Store<3>(position, r, mvs[0], dst_reference_offset, dst_mv); Store<4>(position, r, mvs[1], dst_reference_offset, dst_mv); Store<5>(position, r, mvs[1], dst_reference_offset, dst_mv); Store<6>(position, r, mvs[1], dst_reference_offset, dst_mv); Store<7>(position, r, mvs[1], dst_reference_offset, dst_mv); } else { // Check and store each. // Chance is typically ~15-30% after Early termination #2. // The compiler is smart enough to not create the local buffer skips[]. int8_t skips[8]; memcpy(skips, &skip_64, sizeof(skips)); CheckStore<0>(skips, position, r, mvs[0], dst_reference_offset, dst_mv); CheckStore<1>(skips, position, r, mvs[0], dst_reference_offset, dst_mv); CheckStore<2>(skips, position, r, mvs[0], dst_reference_offset, dst_mv); CheckStore<3>(skips, position, r, mvs[0], dst_reference_offset, dst_mv); CheckStore<4>(skips, position, r, mvs[1], dst_reference_offset, dst_mv); CheckStore<5>(skips, position, r, mvs[1], dst_reference_offset, dst_mv); CheckStore<6>(skips, position, r, mvs[1], dst_reference_offset, dst_mv); CheckStore<7>(skips, position, r, mvs[1], dst_reference_offset, dst_mv); } } // The following leftover processing cannot be moved out of the do...while // loop. Doing so may change the result storing orders of the same position. if (leftover > 0) { // Use SIMD only when leftover is at least 4, and there are at least 8 // elements in a row. if (leftover >= 4 && adjusted_x8_start < adjusted_x8_end8) { // Process the last 8 elements to avoid loading invalid memory. Some // elements may have been processed in the above loop, which is OK. const int delta = 8 - leftover; x8 = adjusted_x8_end - 8; const int8x8_t source_reference_type8 = vld1_s8( reinterpret_cast(source_reference_types + x8)); const int8x8_t skip_r = vtbl1_s8(skip_reference, source_reference_type8); const int64_t early_skip = vget_lane_s64(vreinterpret_s64_s8(skip_r), 0); // Early termination #1 if all are skips. if (early_skip != -1) { int64_t skip_64; int8x8_t r, position_x8, position_y8; int32x4_t mvs[2]; GetPosition(division_table, mv, reference_to_current_with_sign, x8_start, x8_end, x8, r_offsets, source_reference_type8, skip_r, y8_floor8, y8_ceiling8, d_sign, delta, &r, &position_y8, &position_x8, &skip_64, mvs); // Early termination #2 if all are skips. if (skip_64 != -1) { const int16x8_t p_y = vmovl_s8(position_y8); const int16x8_t p_x = vmovl_s8(position_x8); const int16x8_t pos = vmlaq_n_s16(p_x, p_y, stride); const int16x8_t position = vaddq_s16(pos, vdupq_n_s16(x8)); // Store up to 7 elements since leftover is at most 7. if (skip_64 == 0) { // Store all. Store<1>(position, r, mvs[0], dst_reference_offset, dst_mv); Store<2>(position, r, mvs[0], dst_reference_offset, dst_mv); Store<3>(position, r, mvs[0], dst_reference_offset, dst_mv); Store<4>(position, r, mvs[1], dst_reference_offset, dst_mv); Store<5>(position, r, mvs[1], dst_reference_offset, dst_mv); Store<6>(position, r, mvs[1], dst_reference_offset, dst_mv); Store<7>(position, r, mvs[1], dst_reference_offset, dst_mv); } else { // Check and store each. // The compiler is smart enough to not create the local buffer // skips[]. int8_t skips[8]; memcpy(skips, &skip_64, sizeof(skips)); CheckStore<1>(skips, position, r, mvs[0], dst_reference_offset, dst_mv); CheckStore<2>(skips, position, r, mvs[0], dst_reference_offset, dst_mv); CheckStore<3>(skips, position, r, mvs[0], dst_reference_offset, dst_mv); CheckStore<4>(skips, position, r, mvs[1], dst_reference_offset, dst_mv); CheckStore<5>(skips, position, r, mvs[1], dst_reference_offset, dst_mv); CheckStore<6>(skips, position, r, mvs[1], dst_reference_offset, dst_mv); CheckStore<7>(skips, position, r, mvs[1], dst_reference_offset, dst_mv); } } } } else { for (; x8 < adjusted_x8_end; ++x8) { const int source_reference_type = source_reference_types[x8]; if (skip_references[source_reference_type]) continue; MotionVector projection_mv; // reference_to_current_with_sign could be 0. GetMvProjection(mv[x8], reference_to_current_with_sign, projection_divisions[source_reference_type], &projection_mv); // Do not update the motion vector if the block position is not valid // or if position_x8 is outside the current range of x8_start and // x8_end. Note that position_y8 will always be within the range of // y8_start and y8_end. const int position_y8 = Project(0, projection_mv.mv[0], dst_sign); if (position_y8 < y8_floor || position_y8 >= y8_ceiling) continue; const int x8_base = x8 & ~7; const int x8_floor = std::max(x8_start, x8_base - kProjectionMvMaxHorizontalOffset); const int x8_ceiling = std::min(x8_end, x8_base + 8 + kProjectionMvMaxHorizontalOffset); const int position_x8 = Project(x8, projection_mv.mv[1], dst_sign); if (position_x8 < x8_floor || position_x8 >= x8_ceiling) continue; dst_mv[position_y8 * stride + position_x8] = mv[x8]; dst_reference_offset[position_y8 * stride + position_x8] = reference_offsets[source_reference_type]; } } } source_reference_types += stride; mv += stride; dst_reference_offset += stride; dst_mv += stride; } while (++y8 < y8_end); } } // namespace void MotionFieldProjectionInit_NEON() { Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8); assert(dsp != nullptr); dsp->motion_field_projection_kernel = MotionFieldProjectionKernel_NEON; } } // namespace dsp } // namespace libgav1 #else // !LIBGAV1_ENABLE_NEON namespace libgav1 { namespace dsp { void MotionFieldProjectionInit_NEON() {} } // namespace dsp } // namespace libgav1 #endif // LIBGAV1_ENABLE_NEON