// Copyright 2020 The libgav1 Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/dsp/cdef.h" #include "src/utils/cpu.h" #if LIBGAV1_TARGETING_SSE4_1 #include #include #include #include #include #include #include #include "src/dsp/constants.h" #include "src/dsp/dsp.h" #include "src/dsp/x86/common_sse4.h" #include "src/dsp/x86/transpose_sse4.h" #include "src/utils/common.h" #include "src/utils/constants.h" namespace libgav1 { namespace dsp { namespace low_bitdepth { namespace { #include "src/dsp/cdef.inc" // Used when calculating odd |cost[x]| values. // Holds elements 1 3 5 7 7 7 7 7 alignas(16) constexpr uint32_t kCdefDivisionTableOddPadded[] = { 420, 210, 140, 105, 105, 105, 105, 105}; // ---------------------------------------------------------------------------- // Refer to CdefDirection_C(). // // int32_t partial[8][15] = {}; // for (int i = 0; i < 8; ++i) { // for (int j = 0; j < 8; ++j) { // const int x = 1; // partial[0][i + j] += x; // partial[1][i + j / 2] += x; // partial[2][i] += x; // partial[3][3 + i - j / 2] += x; // partial[4][7 + i - j] += x; // partial[5][3 - i / 2 + j] += x; // partial[6][j] += x; // partial[7][i / 2 + j] += x; // } // } // // Using the code above, generate the position count for partial[8][15]. // // partial[0]: 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 // partial[1]: 2 4 6 8 8 8 8 8 6 4 2 0 0 0 0 // partial[2]: 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 // partial[3]: 2 4 6 8 8 8 8 8 6 4 2 0 0 0 0 // partial[4]: 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 // partial[5]: 2 4 6 8 8 8 8 8 6 4 2 0 0 0 0 // partial[6]: 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 // partial[7]: 2 4 6 8 8 8 8 8 6 4 2 0 0 0 0 // // The SIMD code shifts the input horizontally, then adds vertically to get the // correct partial value for the given position. // ---------------------------------------------------------------------------- // ---------------------------------------------------------------------------- // partial[0][i + j] += x; // // 00 01 02 03 04 05 06 07 00 00 00 00 00 00 00 // 00 10 11 12 13 14 15 16 17 00 00 00 00 00 00 // 00 00 20 21 22 23 24 25 26 27 00 00 00 00 00 // 00 00 00 30 31 32 33 34 35 36 37 00 00 00 00 // 00 00 00 00 40 41 42 43 44 45 46 47 00 00 00 // 00 00 00 00 00 50 51 52 53 54 55 56 57 00 00 // 00 00 00 00 00 00 60 61 62 63 64 65 66 67 00 // 00 00 00 00 00 00 00 70 71 72 73 74 75 76 77 // // partial[4] is the same except the source is reversed. LIBGAV1_ALWAYS_INLINE void AddPartial_D0_D4(__m128i* v_src_16, __m128i* partial_lo, __m128i* partial_hi) { // 00 01 02 03 04 05 06 07 *partial_lo = v_src_16[0]; // 00 00 00 00 00 00 00 00 *partial_hi = _mm_setzero_si128(); // 00 10 11 12 13 14 15 16 *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_src_16[1], 2)); // 17 00 00 00 00 00 00 00 *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_src_16[1], 14)); // 00 00 20 21 22 23 24 25 *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_src_16[2], 4)); // 26 27 00 00 00 00 00 00 *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_src_16[2], 12)); // 00 00 00 30 31 32 33 34 *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_src_16[3], 6)); // 35 36 37 00 00 00 00 00 *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_src_16[3], 10)); // 00 00 00 00 40 41 42 43 *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_src_16[4], 8)); // 44 45 46 47 00 00 00 00 *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_src_16[4], 8)); // 00 00 00 00 00 50 51 52 *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_src_16[5], 10)); // 53 54 55 56 57 00 00 00 *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_src_16[5], 6)); // 00 00 00 00 00 00 60 61 *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_src_16[6], 12)); // 62 63 64 65 66 67 00 00 *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_src_16[6], 4)); // 00 00 00 00 00 00 00 70 *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_src_16[7], 14)); // 71 72 73 74 75 76 77 00 *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_src_16[7], 2)); } // ---------------------------------------------------------------------------- // partial[1][i + j / 2] += x; // // A0 = src[0] + src[1], A1 = src[2] + src[3], ... // // A0 A1 A2 A3 00 00 00 00 00 00 00 00 00 00 00 // 00 B0 B1 B2 B3 00 00 00 00 00 00 00 00 00 00 // 00 00 C0 C1 C2 C3 00 00 00 00 00 00 00 00 00 // 00 00 00 D0 D1 D2 D3 00 00 00 00 00 00 00 00 // 00 00 00 00 E0 E1 E2 E3 00 00 00 00 00 00 00 // 00 00 00 00 00 F0 F1 F2 F3 00 00 00 00 00 00 // 00 00 00 00 00 00 G0 G1 G2 G3 00 00 00 00 00 // 00 00 00 00 00 00 00 H0 H1 H2 H3 00 00 00 00 // // partial[3] is the same except the source is reversed. LIBGAV1_ALWAYS_INLINE void AddPartial_D1_D3(__m128i* v_src_16, __m128i* partial_lo, __m128i* partial_hi) { __m128i v_d1_temp[8]; const __m128i v_zero = _mm_setzero_si128(); for (int i = 0; i < 8; ++i) { v_d1_temp[i] = _mm_hadd_epi16(v_src_16[i], v_zero); } *partial_lo = *partial_hi = v_zero; // A0 A1 A2 A3 00 00 00 00 *partial_lo = _mm_add_epi16(*partial_lo, v_d1_temp[0]); // 00 B0 B1 B2 B3 00 00 00 *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_d1_temp[1], 2)); // 00 00 C0 C1 C2 C3 00 00 *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_d1_temp[2], 4)); // 00 00 00 D0 D1 D2 D3 00 *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_d1_temp[3], 6)); // 00 00 00 00 E0 E1 E2 E3 *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_d1_temp[4], 8)); // 00 00 00 00 00 F0 F1 F2 *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_d1_temp[5], 10)); // F3 00 00 00 00 00 00 00 *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_d1_temp[5], 6)); // 00 00 00 00 00 00 G0 G1 *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_d1_temp[6], 12)); // G2 G3 00 00 00 00 00 00 *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_d1_temp[6], 4)); // 00 00 00 00 00 00 00 H0 *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_d1_temp[7], 14)); // H1 H2 H3 00 00 00 00 00 *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_d1_temp[7], 2)); } // ---------------------------------------------------------------------------- // partial[7][i / 2 + j] += x; // // 00 01 02 03 04 05 06 07 00 00 00 00 00 00 00 // 10 11 12 13 14 15 16 17 00 00 00 00 00 00 00 // 00 20 21 22 23 24 25 26 27 00 00 00 00 00 00 // 00 30 31 32 33 34 35 36 37 00 00 00 00 00 00 // 00 00 40 41 42 43 44 45 46 47 00 00 00 00 00 // 00 00 50 51 52 53 54 55 56 57 00 00 00 00 00 // 00 00 00 60 61 62 63 64 65 66 67 00 00 00 00 // 00 00 00 70 71 72 73 74 75 76 77 00 00 00 00 // // partial[5] is the same except the source is reversed. LIBGAV1_ALWAYS_INLINE void AddPartial_D5_D7(__m128i* v_src, __m128i* partial_lo, __m128i* partial_hi) { __m128i v_pair_add[4]; // Add vertical source pairs. v_pair_add[0] = _mm_add_epi16(v_src[0], v_src[1]); v_pair_add[1] = _mm_add_epi16(v_src[2], v_src[3]); v_pair_add[2] = _mm_add_epi16(v_src[4], v_src[5]); v_pair_add[3] = _mm_add_epi16(v_src[6], v_src[7]); // 00 01 02 03 04 05 06 07 // 10 11 12 13 14 15 16 17 *partial_lo = v_pair_add[0]; // 00 00 00 00 00 00 00 00 // 00 00 00 00 00 00 00 00 *partial_hi = _mm_setzero_si128(); // 00 20 21 22 23 24 25 26 // 00 30 31 32 33 34 35 36 *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_pair_add[1], 2)); // 27 00 00 00 00 00 00 00 // 37 00 00 00 00 00 00 00 *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_pair_add[1], 14)); // 00 00 40 41 42 43 44 45 // 00 00 50 51 52 53 54 55 *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_pair_add[2], 4)); // 46 47 00 00 00 00 00 00 // 56 57 00 00 00 00 00 00 *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_pair_add[2], 12)); // 00 00 00 60 61 62 63 64 // 00 00 00 70 71 72 73 74 *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_pair_add[3], 6)); // 65 66 67 00 00 00 00 00 // 75 76 77 00 00 00 00 00 *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_pair_add[3], 10)); } LIBGAV1_ALWAYS_INLINE void AddPartial(const uint8_t* src, ptrdiff_t stride, __m128i* partial_lo, __m128i* partial_hi) { // 8x8 input // 00 01 02 03 04 05 06 07 // 10 11 12 13 14 15 16 17 // 20 21 22 23 24 25 26 27 // 30 31 32 33 34 35 36 37 // 40 41 42 43 44 45 46 47 // 50 51 52 53 54 55 56 57 // 60 61 62 63 64 65 66 67 // 70 71 72 73 74 75 76 77 __m128i v_src[8]; for (auto& i : v_src) { i = LoadLo8(src); src += stride; } const __m128i v_zero = _mm_setzero_si128(); // partial for direction 2 // -------------------------------------------------------------------------- // partial[2][i] += x; // 00 10 20 30 40 50 60 70 00 00 00 00 00 00 00 00 // 01 11 21 33 41 51 61 71 00 00 00 00 00 00 00 00 // 02 12 22 33 42 52 62 72 00 00 00 00 00 00 00 00 // 03 13 23 33 43 53 63 73 00 00 00 00 00 00 00 00 // 04 14 24 34 44 54 64 74 00 00 00 00 00 00 00 00 // 05 15 25 35 45 55 65 75 00 00 00 00 00 00 00 00 // 06 16 26 36 46 56 66 76 00 00 00 00 00 00 00 00 // 07 17 27 37 47 57 67 77 00 00 00 00 00 00 00 00 const __m128i v_src_4_0 = _mm_unpacklo_epi64(v_src[0], v_src[4]); const __m128i v_src_5_1 = _mm_unpacklo_epi64(v_src[1], v_src[5]); const __m128i v_src_6_2 = _mm_unpacklo_epi64(v_src[2], v_src[6]); const __m128i v_src_7_3 = _mm_unpacklo_epi64(v_src[3], v_src[7]); const __m128i v_hsum_4_0 = _mm_sad_epu8(v_src_4_0, v_zero); const __m128i v_hsum_5_1 = _mm_sad_epu8(v_src_5_1, v_zero); const __m128i v_hsum_6_2 = _mm_sad_epu8(v_src_6_2, v_zero); const __m128i v_hsum_7_3 = _mm_sad_epu8(v_src_7_3, v_zero); const __m128i v_hsum_1_0 = _mm_unpacklo_epi16(v_hsum_4_0, v_hsum_5_1); const __m128i v_hsum_3_2 = _mm_unpacklo_epi16(v_hsum_6_2, v_hsum_7_3); const __m128i v_hsum_5_4 = _mm_unpackhi_epi16(v_hsum_4_0, v_hsum_5_1); const __m128i v_hsum_7_6 = _mm_unpackhi_epi16(v_hsum_6_2, v_hsum_7_3); partial_lo[2] = _mm_unpacklo_epi64(_mm_unpacklo_epi32(v_hsum_1_0, v_hsum_3_2), _mm_unpacklo_epi32(v_hsum_5_4, v_hsum_7_6)); __m128i v_src_16[8]; for (int i = 0; i < 8; ++i) { v_src_16[i] = _mm_cvtepu8_epi16(v_src[i]); } // partial for direction 6 // -------------------------------------------------------------------------- // partial[6][j] += x; // 00 01 02 03 04 05 06 07 00 00 00 00 00 00 00 00 // 10 11 12 13 14 15 16 17 00 00 00 00 00 00 00 00 // 20 21 22 23 24 25 26 27 00 00 00 00 00 00 00 00 // 30 31 32 33 34 35 36 37 00 00 00 00 00 00 00 00 // 40 41 42 43 44 45 46 47 00 00 00 00 00 00 00 00 // 50 51 52 53 54 55 56 57 00 00 00 00 00 00 00 00 // 60 61 62 63 64 65 66 67 00 00 00 00 00 00 00 00 // 70 71 72 73 74 75 76 77 00 00 00 00 00 00 00 00 partial_lo[6] = v_src_16[0]; for (int i = 1; i < 8; ++i) { partial_lo[6] = _mm_add_epi16(partial_lo[6], v_src_16[i]); } // partial for direction 0 AddPartial_D0_D4(v_src_16, &partial_lo[0], &partial_hi[0]); // partial for direction 1 AddPartial_D1_D3(v_src_16, &partial_lo[1], &partial_hi[1]); // partial for direction 7 AddPartial_D5_D7(v_src_16, &partial_lo[7], &partial_hi[7]); __m128i v_src_reverse[8]; const __m128i reverser = _mm_set_epi32(0x01000302, 0x05040706, 0x09080b0a, 0x0d0c0f0e); for (int i = 0; i < 8; ++i) { v_src_reverse[i] = _mm_shuffle_epi8(v_src_16[i], reverser); } // partial for direction 4 AddPartial_D0_D4(v_src_reverse, &partial_lo[4], &partial_hi[4]); // partial for direction 3 AddPartial_D1_D3(v_src_reverse, &partial_lo[3], &partial_hi[3]); // partial for direction 5 AddPartial_D5_D7(v_src_reverse, &partial_lo[5], &partial_hi[5]); } inline uint32_t SumVector_S32(__m128i a) { a = _mm_hadd_epi32(a, a); a = _mm_add_epi32(a, _mm_srli_si128(a, 4)); return _mm_cvtsi128_si32(a); } // |cost[0]| and |cost[4]| square the input and sum with the corresponding // element from the other end of the vector: // |kCdefDivisionTable[]| element: // cost[0] += (Square(partial[0][i]) + Square(partial[0][14 - i])) * // kCdefDivisionTable[i + 1]; // cost[0] += Square(partial[0][7]) * kCdefDivisionTable[8]; inline uint32_t Cost0Or4(const __m128i a, const __m128i b, const __m128i division_table[2]) { // Reverse and clear upper 2 bytes. const __m128i reverser = _mm_set_epi32(static_cast(0x80800100), 0x03020504, 0x07060908, 0x0b0a0d0c); // 14 13 12 11 10 09 08 ZZ const __m128i b_reversed = _mm_shuffle_epi8(b, reverser); // 00 14 01 13 02 12 03 11 const __m128i ab_lo = _mm_unpacklo_epi16(a, b_reversed); // 04 10 05 09 06 08 07 ZZ const __m128i ab_hi = _mm_unpackhi_epi16(a, b_reversed); // Square(partial[0][i]) + Square(partial[0][14 - i]) const __m128i square_lo = _mm_madd_epi16(ab_lo, ab_lo); const __m128i square_hi = _mm_madd_epi16(ab_hi, ab_hi); const __m128i c = _mm_mullo_epi32(square_lo, division_table[0]); const __m128i d = _mm_mullo_epi32(square_hi, division_table[1]); return SumVector_S32(_mm_add_epi32(c, d)); } inline uint32_t CostOdd(const __m128i a, const __m128i b, const __m128i division_table[2]) { // Reverse and clear upper 10 bytes. const __m128i reverser = _mm_set_epi32(static_cast(0x80808080), static_cast(0x80808080), static_cast(0x80800100), 0x03020504); // 10 09 08 ZZ ZZ ZZ ZZ ZZ const __m128i b_reversed = _mm_shuffle_epi8(b, reverser); // 00 10 01 09 02 08 03 ZZ const __m128i ab_lo = _mm_unpacklo_epi16(a, b_reversed); // 04 ZZ 05 ZZ 06 ZZ 07 ZZ const __m128i ab_hi = _mm_unpackhi_epi16(a, b_reversed); // Square(partial[0][i]) + Square(partial[0][10 - i]) const __m128i square_lo = _mm_madd_epi16(ab_lo, ab_lo); const __m128i square_hi = _mm_madd_epi16(ab_hi, ab_hi); const __m128i c = _mm_mullo_epi32(square_lo, division_table[0]); const __m128i d = _mm_mullo_epi32(square_hi, division_table[1]); return SumVector_S32(_mm_add_epi32(c, d)); } // Sum of squared elements. inline uint32_t SquareSum_S16(const __m128i a) { const __m128i square = _mm_madd_epi16(a, a); return SumVector_S32(square); } void CdefDirection_SSE4_1(const void* const source, ptrdiff_t stride, uint8_t* const direction, int* const variance) { assert(direction != nullptr); assert(variance != nullptr); const auto* src = static_cast(source); uint32_t cost[8]; __m128i partial_lo[8], partial_hi[8]; AddPartial(src, stride, partial_lo, partial_hi); cost[2] = kCdefDivisionTable[7] * SquareSum_S16(partial_lo[2]); cost[6] = kCdefDivisionTable[7] * SquareSum_S16(partial_lo[6]); const __m128i division_table[2] = {LoadUnaligned16(kCdefDivisionTable), LoadUnaligned16(kCdefDivisionTable + 4)}; cost[0] = Cost0Or4(partial_lo[0], partial_hi[0], division_table); cost[4] = Cost0Or4(partial_lo[4], partial_hi[4], division_table); const __m128i division_table_odd[2] = { LoadAligned16(kCdefDivisionTableOddPadded), LoadAligned16(kCdefDivisionTableOddPadded + 4)}; cost[1] = CostOdd(partial_lo[1], partial_hi[1], division_table_odd); cost[3] = CostOdd(partial_lo[3], partial_hi[3], division_table_odd); cost[5] = CostOdd(partial_lo[5], partial_hi[5], division_table_odd); cost[7] = CostOdd(partial_lo[7], partial_hi[7], division_table_odd); uint32_t best_cost = 0; *direction = 0; for (int i = 0; i < 8; ++i) { if (cost[i] > best_cost) { best_cost = cost[i]; *direction = i; } } *variance = (best_cost - cost[(*direction + 4) & 7]) >> 10; } // ------------------------------------------------------------------------- // CdefFilter // Load 4 vectors based on the given |direction|. inline void LoadDirection(const uint16_t* const src, const ptrdiff_t stride, __m128i* output, const int direction) { // Each |direction| describes a different set of source values. Expand this // set by negating each set. For |direction| == 0 this gives a diagonal line // from top right to bottom left. The first value is y, the second x. Negative // y values move up. // a b c d // {-1, 1}, {1, -1}, {-2, 2}, {2, -2} // c // a // 0 // b // d const int y_0 = kCdefDirections[direction][0][0]; const int x_0 = kCdefDirections[direction][0][1]; const int y_1 = kCdefDirections[direction][1][0]; const int x_1 = kCdefDirections[direction][1][1]; output[0] = LoadUnaligned16(src - y_0 * stride - x_0); output[1] = LoadUnaligned16(src + y_0 * stride + x_0); output[2] = LoadUnaligned16(src - y_1 * stride - x_1); output[3] = LoadUnaligned16(src + y_1 * stride + x_1); } // Load 4 vectors based on the given |direction|. Use when |block_width| == 4 to // do 2 rows at a time. void LoadDirection4(const uint16_t* const src, const ptrdiff_t stride, __m128i* output, const int direction) { const int y_0 = kCdefDirections[direction][0][0]; const int x_0 = kCdefDirections[direction][0][1]; const int y_1 = kCdefDirections[direction][1][0]; const int x_1 = kCdefDirections[direction][1][1]; output[0] = LoadHi8(LoadLo8(src - y_0 * stride - x_0), src - y_0 * stride + stride - x_0); output[1] = LoadHi8(LoadLo8(src + y_0 * stride + x_0), src + y_0 * stride + stride + x_0); output[2] = LoadHi8(LoadLo8(src - y_1 * stride - x_1), src - y_1 * stride + stride - x_1); output[3] = LoadHi8(LoadLo8(src + y_1 * stride + x_1), src + y_1 * stride + stride + x_1); } inline __m128i Constrain(const __m128i& pixel, const __m128i& reference, const __m128i& damping, const __m128i& threshold) { const __m128i diff = _mm_sub_epi16(pixel, reference); const __m128i abs_diff = _mm_abs_epi16(diff); // sign(diff) * Clip3(threshold - (std::abs(diff) >> damping), // 0, std::abs(diff)) const __m128i shifted_diff = _mm_srl_epi16(abs_diff, damping); // For bitdepth == 8, the threshold range is [0, 15] and the damping range is // [3, 6]. If pixel == kCdefLargeValue(0x4000), shifted_diff will always be // larger than threshold. Subtract using saturation will return 0 when pixel // == kCdefLargeValue. static_assert(kCdefLargeValue == 0x4000, "Invalid kCdefLargeValue"); const __m128i thresh_minus_shifted_diff = _mm_subs_epu16(threshold, shifted_diff); const __m128i clamp_abs_diff = _mm_min_epi16(thresh_minus_shifted_diff, abs_diff); // Restore the sign. return _mm_sign_epi16(clamp_abs_diff, diff); } inline __m128i ApplyConstrainAndTap(const __m128i& pixel, const __m128i& val, const __m128i& tap, const __m128i& damping, const __m128i& threshold) { const __m128i constrained = Constrain(val, pixel, damping, threshold); return _mm_mullo_epi16(constrained, tap); } template void CdefFilter_SSE4_1(const uint16_t* src, const ptrdiff_t src_stride, const int height, const int primary_strength, const int secondary_strength, const int damping, const int direction, void* dest, const ptrdiff_t dst_stride) { static_assert(width == 8 || width == 4, "Invalid CDEF width."); static_assert(enable_primary || enable_secondary, ""); constexpr bool clipping_required = enable_primary && enable_secondary; auto* dst = static_cast(dest); __m128i primary_damping_shift, secondary_damping_shift; // FloorLog2() requires input to be > 0. // 8-bit damping range: Y: [3, 6], UV: [2, 5]. if (enable_primary) { // primary_strength: [0, 15] -> FloorLog2: [0, 3] so a clamp is necessary // for UV filtering. primary_damping_shift = _mm_cvtsi32_si128(std::max(0, damping - FloorLog2(primary_strength))); } if (enable_secondary) { // secondary_strength: [0, 4] -> FloorLog2: [0, 2] so no clamp to 0 is // necessary. assert(damping - FloorLog2(secondary_strength) >= 0); secondary_damping_shift = _mm_cvtsi32_si128(damping - FloorLog2(secondary_strength)); } const __m128i primary_tap_0 = _mm_set1_epi16(kCdefPrimaryTaps[primary_strength & 1][0]); const __m128i primary_tap_1 = _mm_set1_epi16(kCdefPrimaryTaps[primary_strength & 1][1]); const __m128i secondary_tap_0 = _mm_set1_epi16(kCdefSecondaryTap0); const __m128i secondary_tap_1 = _mm_set1_epi16(kCdefSecondaryTap1); const __m128i cdef_large_value_mask = _mm_set1_epi16(static_cast(~kCdefLargeValue)); const __m128i primary_threshold = _mm_set1_epi16(primary_strength); const __m128i secondary_threshold = _mm_set1_epi16(secondary_strength); int y = height; do { __m128i pixel; if (width == 8) { pixel = LoadUnaligned16(src); } else { pixel = LoadHi8(LoadLo8(src), src + src_stride); } __m128i min = pixel; __m128i max = pixel; __m128i sum; if (enable_primary) { // Primary |direction|. __m128i primary_val[4]; if (width == 8) { LoadDirection(src, src_stride, primary_val, direction); } else { LoadDirection4(src, src_stride, primary_val, direction); } if (clipping_required) { min = _mm_min_epu16(min, primary_val[0]); min = _mm_min_epu16(min, primary_val[1]); min = _mm_min_epu16(min, primary_val[2]); min = _mm_min_epu16(min, primary_val[3]); // The source is 16 bits, however, we only really care about the lower // 8 bits. The upper 8 bits contain the "large" flag. After the final // primary max has been calculated, zero out the upper 8 bits. Use this // to find the "16 bit" max. const __m128i max_p01 = _mm_max_epu8(primary_val[0], primary_val[1]); const __m128i max_p23 = _mm_max_epu8(primary_val[2], primary_val[3]); const __m128i max_p = _mm_max_epu8(max_p01, max_p23); max = _mm_max_epu16(max, _mm_and_si128(max_p, cdef_large_value_mask)); } sum = ApplyConstrainAndTap(pixel, primary_val[0], primary_tap_0, primary_damping_shift, primary_threshold); sum = _mm_add_epi16( sum, ApplyConstrainAndTap(pixel, primary_val[1], primary_tap_0, primary_damping_shift, primary_threshold)); sum = _mm_add_epi16( sum, ApplyConstrainAndTap(pixel, primary_val[2], primary_tap_1, primary_damping_shift, primary_threshold)); sum = _mm_add_epi16( sum, ApplyConstrainAndTap(pixel, primary_val[3], primary_tap_1, primary_damping_shift, primary_threshold)); } else { sum = _mm_setzero_si128(); } if (enable_secondary) { // Secondary |direction| values (+/- 2). Clamp |direction|. __m128i secondary_val[8]; if (width == 8) { LoadDirection(src, src_stride, secondary_val, direction + 2); LoadDirection(src, src_stride, secondary_val + 4, direction - 2); } else { LoadDirection4(src, src_stride, secondary_val, direction + 2); LoadDirection4(src, src_stride, secondary_val + 4, direction - 2); } if (clipping_required) { min = _mm_min_epu16(min, secondary_val[0]); min = _mm_min_epu16(min, secondary_val[1]); min = _mm_min_epu16(min, secondary_val[2]); min = _mm_min_epu16(min, secondary_val[3]); min = _mm_min_epu16(min, secondary_val[4]); min = _mm_min_epu16(min, secondary_val[5]); min = _mm_min_epu16(min, secondary_val[6]); min = _mm_min_epu16(min, secondary_val[7]); const __m128i max_s01 = _mm_max_epu8(secondary_val[0], secondary_val[1]); const __m128i max_s23 = _mm_max_epu8(secondary_val[2], secondary_val[3]); const __m128i max_s45 = _mm_max_epu8(secondary_val[4], secondary_val[5]); const __m128i max_s67 = _mm_max_epu8(secondary_val[6], secondary_val[7]); const __m128i max_s = _mm_max_epu8(_mm_max_epu8(max_s01, max_s23), _mm_max_epu8(max_s45, max_s67)); max = _mm_max_epu16(max, _mm_and_si128(max_s, cdef_large_value_mask)); } sum = _mm_add_epi16( sum, ApplyConstrainAndTap(pixel, secondary_val[0], secondary_tap_0, secondary_damping_shift, secondary_threshold)); sum = _mm_add_epi16( sum, ApplyConstrainAndTap(pixel, secondary_val[1], secondary_tap_0, secondary_damping_shift, secondary_threshold)); sum = _mm_add_epi16( sum, ApplyConstrainAndTap(pixel, secondary_val[2], secondary_tap_1, secondary_damping_shift, secondary_threshold)); sum = _mm_add_epi16( sum, ApplyConstrainAndTap(pixel, secondary_val[3], secondary_tap_1, secondary_damping_shift, secondary_threshold)); sum = _mm_add_epi16( sum, ApplyConstrainAndTap(pixel, secondary_val[4], secondary_tap_0, secondary_damping_shift, secondary_threshold)); sum = _mm_add_epi16( sum, ApplyConstrainAndTap(pixel, secondary_val[5], secondary_tap_0, secondary_damping_shift, secondary_threshold)); sum = _mm_add_epi16( sum, ApplyConstrainAndTap(pixel, secondary_val[6], secondary_tap_1, secondary_damping_shift, secondary_threshold)); sum = _mm_add_epi16( sum, ApplyConstrainAndTap(pixel, secondary_val[7], secondary_tap_1, secondary_damping_shift, secondary_threshold)); } // Clip3(pixel + ((8 + sum - (sum < 0)) >> 4), min, max)) const __m128i sum_lt_0 = _mm_srai_epi16(sum, 15); // 8 + sum sum = _mm_add_epi16(sum, _mm_set1_epi16(8)); // (... - (sum < 0)) >> 4 sum = _mm_add_epi16(sum, sum_lt_0); sum = _mm_srai_epi16(sum, 4); // pixel + ... sum = _mm_add_epi16(sum, pixel); if (clipping_required) { // Clip3 sum = _mm_min_epi16(sum, max); sum = _mm_max_epi16(sum, min); } const __m128i result = _mm_packus_epi16(sum, sum); if (width == 8) { src += src_stride; StoreLo8(dst, result); dst += dst_stride; --y; } else { src += src_stride << 1; Store4(dst, result); dst += dst_stride; Store4(dst, _mm_srli_si128(result, 4)); dst += dst_stride; y -= 2; } } while (y != 0); } void Init8bpp() { Dsp* const dsp = dsp_internal::GetWritableDspTable(8); assert(dsp != nullptr); dsp->cdef_direction = CdefDirection_SSE4_1; dsp->cdef_filters[0][0] = CdefFilter_SSE4_1<4>; dsp->cdef_filters[0][1] = CdefFilter_SSE4_1<4, /*enable_primary=*/true, /*enable_secondary=*/false>; dsp->cdef_filters[0][2] = CdefFilter_SSE4_1<4, /*enable_primary=*/false>; dsp->cdef_filters[1][0] = CdefFilter_SSE4_1<8>; dsp->cdef_filters[1][1] = CdefFilter_SSE4_1<8, /*enable_primary=*/true, /*enable_secondary=*/false>; dsp->cdef_filters[1][2] = CdefFilter_SSE4_1<8, /*enable_primary=*/false>; } } // namespace } // namespace low_bitdepth void CdefInit_SSE4_1() { low_bitdepth::Init8bpp(); } } // namespace dsp } // namespace libgav1 #else // !LIBGAV1_TARGETING_SSE4_1 namespace libgav1 { namespace dsp { void CdefInit_SSE4_1() {} } // namespace dsp } // namespace libgav1 #endif // LIBGAV1_TARGETING_SSE4_1