// Copyright 2019 The libgav1 Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/dsp/intra_edge.h" #include "src/utils/cpu.h" #if LIBGAV1_TARGETING_SSE4_1 #include #include #include #include #include #include "src/dsp/constants.h" #include "src/dsp/dsp.h" #include "src/dsp/x86/common_sse4.h" #include "src/utils/common.h" namespace libgav1 { namespace dsp { namespace { constexpr int kKernelTaps = 5; constexpr int kKernels[3][kKernelTaps] = { {0, 4, 8, 4, 0}, {0, 5, 6, 5, 0}, {2, 4, 4, 4, 2}}; constexpr int kMaxEdgeBufferSize = 129; // This function applies the kernel [0, 4, 8, 4, 0] to 12 values. // Assumes |edge| has 16 packed byte values. Produces 12 filter outputs to // write as overlapping sets of 8-bytes. inline void ComputeKernel1Store12(uint8_t* dest, const uint8_t* source) { const __m128i edge_lo = LoadUnaligned16(source); const __m128i edge_hi = _mm_srli_si128(edge_lo, 6); // Samples matched with the '4' tap, expanded to 16-bit. const __m128i outers_lo = _mm_cvtepu8_epi16(edge_lo); const __m128i outers_hi = _mm_cvtepu8_epi16(edge_hi); // Samples matched with the '8' tap, expanded to 16-bit. const __m128i centers_lo = _mm_srli_si128(outers_lo, 2); const __m128i centers_hi = _mm_srli_si128(outers_hi, 2); // Apply the taps by shifting. const __m128i outers4_lo = _mm_slli_epi16(outers_lo, 2); const __m128i outers4_hi = _mm_slli_epi16(outers_hi, 2); const __m128i centers8_lo = _mm_slli_epi16(centers_lo, 3); const __m128i centers8_hi = _mm_slli_epi16(centers_hi, 3); // Move latter 4x values down to add with first 4x values for each output. const __m128i partial_sums_lo = _mm_add_epi16(outers4_lo, _mm_srli_si128(outers4_lo, 4)); const __m128i partial_sums_hi = _mm_add_epi16(outers4_hi, _mm_srli_si128(outers4_hi, 4)); // Move 6x values down to add for the final kernel sum for each output. const __m128i sums_lo = RightShiftWithRounding_U16( _mm_add_epi16(partial_sums_lo, centers8_lo), 4); const __m128i sums_hi = RightShiftWithRounding_U16( _mm_add_epi16(partial_sums_hi, centers8_hi), 4); const __m128i result_lo = _mm_packus_epi16(sums_lo, sums_lo); const __m128i result_hi = _mm_packus_epi16(sums_hi, sums_hi); const __m128i result = _mm_alignr_epi8(result_hi, _mm_slli_si128(result_lo, 10), 10); StoreUnaligned16(dest, result); } // This function applies the kernel [0, 5, 6, 5, 0] to 12 values. // Assumes |edge| has 8 packed byte values, and that the 2 invalid values will // be overwritten or safely discarded. inline void ComputeKernel2Store12(uint8_t* dest, const uint8_t* source) { const __m128i edge_lo = LoadUnaligned16(source); const __m128i edge_hi = _mm_srli_si128(edge_lo, 6); const __m128i outers_lo = _mm_cvtepu8_epi16(edge_lo); const __m128i centers_lo = _mm_srli_si128(outers_lo, 2); const __m128i outers_hi = _mm_cvtepu8_epi16(edge_hi); const __m128i centers_hi = _mm_srli_si128(outers_hi, 2); // Samples matched with the '5' tap, expanded to 16-bit. Add x + 4x. const __m128i outers5_lo = _mm_add_epi16(outers_lo, _mm_slli_epi16(outers_lo, 2)); const __m128i outers5_hi = _mm_add_epi16(outers_hi, _mm_slli_epi16(outers_hi, 2)); // Samples matched with the '6' tap, expanded to 16-bit. Add 2x + 4x. const __m128i centers6_lo = _mm_add_epi16(_mm_slli_epi16(centers_lo, 1), _mm_slli_epi16(centers_lo, 2)); const __m128i centers6_hi = _mm_add_epi16(_mm_slli_epi16(centers_hi, 1), _mm_slli_epi16(centers_hi, 2)); // Move latter 5x values down to add with first 5x values for each output. const __m128i partial_sums_lo = _mm_add_epi16(outers5_lo, _mm_srli_si128(outers5_lo, 4)); // Move 6x values down to add for the final kernel sum for each output. const __m128i sums_lo = RightShiftWithRounding_U16( _mm_add_epi16(centers6_lo, partial_sums_lo), 4); // Shift latter 5x values to add with first 5x values for each output. const __m128i partial_sums_hi = _mm_add_epi16(outers5_hi, _mm_srli_si128(outers5_hi, 4)); // Move 6x values down to add for the final kernel sum for each output. const __m128i sums_hi = RightShiftWithRounding_U16( _mm_add_epi16(centers6_hi, partial_sums_hi), 4); // First 6 values are valid outputs. const __m128i result_lo = _mm_packus_epi16(sums_lo, sums_lo); const __m128i result_hi = _mm_packus_epi16(sums_hi, sums_hi); const __m128i result = _mm_alignr_epi8(result_hi, _mm_slli_si128(result_lo, 10), 10); StoreUnaligned16(dest, result); } // This function applies the kernel [2, 4, 4, 4, 2] to 8 values. inline void ComputeKernel3Store8(uint8_t* dest, const uint8_t* source) { const __m128i edge_lo = LoadUnaligned16(source); const __m128i edge_hi = _mm_srli_si128(edge_lo, 4); // Finish |edge_lo| life cycle quickly. // Multiply for 2x. const __m128i source2_lo = _mm_slli_epi16(_mm_cvtepu8_epi16(edge_lo), 1); // Multiply 2x by 2 and align. const __m128i source4_lo = _mm_srli_si128(_mm_slli_epi16(source2_lo, 1), 2); // Finish |source2| life cycle quickly. // Move latter 2x values down to add with first 2x values for each output. __m128i sum = _mm_add_epi16(source2_lo, _mm_srli_si128(source2_lo, 8)); // First 4x values already aligned to add with running total. sum = _mm_add_epi16(sum, source4_lo); // Move second 4x values down to add with running total. sum = _mm_add_epi16(sum, _mm_srli_si128(source4_lo, 2)); // Move third 4x values down to add with running total. sum = _mm_add_epi16(sum, _mm_srli_si128(source4_lo, 4)); // Multiply for 2x. const __m128i source2_hi = _mm_slli_epi16(_mm_cvtepu8_epi16(edge_hi), 1); // Multiply 2x by 2 and align. const __m128i source4_hi = _mm_srli_si128(_mm_slli_epi16(source2_hi, 1), 2); // Move latter 2x values down to add with first 2x values for each output. __m128i sum_hi = _mm_add_epi16(source2_hi, _mm_srli_si128(source2_hi, 8)); // First 4x values already aligned to add with running total. sum_hi = _mm_add_epi16(sum_hi, source4_hi); // Move second 4x values down to add with running total. sum_hi = _mm_add_epi16(sum_hi, _mm_srli_si128(source4_hi, 2)); // Move third 4x values down to add with running total. sum_hi = _mm_add_epi16(sum_hi, _mm_srli_si128(source4_hi, 4)); // Because we have only 8 values here, it is safe to align before packing down // to 8-bit without losing data. sum = _mm_alignr_epi8(sum_hi, _mm_slli_si128(sum, 8), 8); sum = RightShiftWithRounding_U16(sum, 4); StoreLo8(dest, _mm_packus_epi16(sum, sum)); } void IntraEdgeFilter_SSE4_1(void* buffer, int size, int strength) { uint8_t edge[kMaxEdgeBufferSize + 4]; memcpy(edge, buffer, size); auto* dst_buffer = static_cast(buffer); // Only process |size| - 1 elements. Nothing to do in this case. if (size == 1) return; int i = 0; switch (strength) { case 1: // To avoid overwriting, we stop short from the total write size plus the // initial offset. In this case 12 valid values are written in two blocks // of 8 bytes each. for (; i < size - 17; i += 12) { ComputeKernel1Store12(dst_buffer + i + 1, edge + i); } break; case 2: // See the comment for case 1. for (; i < size - 17; i += 12) { ComputeKernel2Store12(dst_buffer + i + 1, edge + i); } break; default: assert(strength == 3); // The first filter input is repeated for taps of value 2 and 4. dst_buffer[1] = RightShiftWithRounding( (6 * edge[0] + 4 * edge[1] + 4 * edge[2] + 2 * edge[3]), 4); // In this case, one block of 8 bytes is written in each iteration, with // an offset of 2. for (; i < size - 10; i += 8) { ComputeKernel3Store8(dst_buffer + i + 2, edge + i); } } const int kernel_index = strength - 1; for (int final_index = Clip3(i, 1, size - 2); final_index < size; ++final_index) { int sum = 0; for (int j = 0; j < kKernelTaps; ++j) { const int k = Clip3(final_index + j - 2, 0, size - 1); sum += kKernels[kernel_index][j] * edge[k]; } dst_buffer[final_index] = RightShiftWithRounding(sum, 4); } } constexpr int kMaxUpsampleSize = 16; // Applies the upsampling kernel [-1, 9, 9, -1] to alternating pixels, and // interleaves the results with the original values. This implementation assumes // that it is safe to write the maximum number of upsampled pixels (32) to the // edge buffer, even when |size| is small. void IntraEdgeUpsampler_SSE4_1(void* buffer, int size) { assert(size % 4 == 0 && size <= kMaxUpsampleSize); auto* const pixel_buffer = static_cast(buffer); uint8_t temp[kMaxUpsampleSize + 8]; temp[0] = temp[1] = pixel_buffer[-1]; memcpy(temp + 2, pixel_buffer, sizeof(temp[0]) * size); temp[size + 2] = pixel_buffer[size - 1]; pixel_buffer[-2] = temp[0]; const __m128i data = LoadUnaligned16(temp); const __m128i src_lo = _mm_cvtepu8_epi16(data); const __m128i src_hi = _mm_unpackhi_epi8(data, _mm_setzero_si128()); const __m128i src9_hi = _mm_add_epi16(src_hi, _mm_slli_epi16(src_hi, 3)); const __m128i src9_lo = _mm_add_epi16(src_lo, _mm_slli_epi16(src_lo, 3)); __m128i sum_lo = _mm_sub_epi16(_mm_alignr_epi8(src9_hi, src9_lo, 2), src_lo); sum_lo = _mm_add_epi16(sum_lo, _mm_alignr_epi8(src9_hi, src9_lo, 4)); sum_lo = _mm_sub_epi16(sum_lo, _mm_alignr_epi8(src_hi, src_lo, 6)); sum_lo = RightShiftWithRounding_S16(sum_lo, 4); const __m128i result_lo = _mm_unpacklo_epi8(_mm_packus_epi16(sum_lo, sum_lo), _mm_srli_si128(data, 2)); StoreUnaligned16(pixel_buffer - 1, result_lo); if (size > 8) { const __m128i src_hi_extra = _mm_cvtepu8_epi16(LoadLo8(temp + 16)); const __m128i src9_hi_extra = _mm_add_epi16(src_hi_extra, _mm_slli_epi16(src_hi_extra, 3)); __m128i sum_hi = _mm_sub_epi16(_mm_alignr_epi8(src9_hi_extra, src9_hi, 2), src_hi); sum_hi = _mm_add_epi16(sum_hi, _mm_alignr_epi8(src9_hi_extra, src9_hi, 4)); sum_hi = _mm_sub_epi16(sum_hi, _mm_alignr_epi8(src_hi_extra, src_hi, 6)); sum_hi = RightShiftWithRounding_S16(sum_hi, 4); const __m128i result_hi = _mm_unpacklo_epi8(_mm_packus_epi16(sum_hi, sum_hi), LoadLo8(temp + 10)); StoreUnaligned16(pixel_buffer + 15, result_hi); } } void Init8bpp() { Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8); assert(dsp != nullptr); #if DSP_ENABLED_8BPP_SSE4_1(IntraEdgeFilter) dsp->intra_edge_filter = IntraEdgeFilter_SSE4_1; #endif #if DSP_ENABLED_8BPP_SSE4_1(IntraEdgeUpsampler) dsp->intra_edge_upsampler = IntraEdgeUpsampler_SSE4_1; #endif } } // namespace void IntraEdgeInit_SSE4_1() { Init8bpp(); } } // namespace dsp } // namespace libgav1 #else // !LIBGAV1_TARGETING_SSE4_1 namespace libgav1 { namespace dsp { void IntraEdgeInit_SSE4_1() {} } // namespace dsp } // namespace libgav1 #endif // LIBGAV1_TARGETING_SSE4_1