// Copyright 2020 The libgav1 Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "src/dsp/loop_restoration.h" #include "src/utils/cpu.h" #if LIBGAV1_TARGETING_AVX2 #include #include #include #include #include #include #include "src/dsp/common.h" #include "src/dsp/constants.h" #include "src/dsp/dsp.h" #include "src/dsp/x86/common_avx2.h" #include "src/utils/common.h" #include "src/utils/constants.h" namespace libgav1 { namespace dsp { namespace low_bitdepth { namespace { inline void WienerHorizontalClip(const __m256i s[2], const __m256i s_3x128, int16_t* const wiener_buffer) { constexpr int offset = 1 << (8 + kWienerFilterBits - kInterRoundBitsHorizontal - 1); constexpr int limit = (1 << (8 + 1 + kWienerFilterBits - kInterRoundBitsHorizontal)) - 1; const __m256i offsets = _mm256_set1_epi16(-offset); const __m256i limits = _mm256_set1_epi16(limit - offset); const __m256i round = _mm256_set1_epi16(1 << (kInterRoundBitsHorizontal - 1)); // The sum range here is [-128 * 255, 90 * 255]. const __m256i madd = _mm256_add_epi16(s[0], s[1]); const __m256i sum = _mm256_add_epi16(madd, round); const __m256i rounded_sum0 = _mm256_srai_epi16(sum, kInterRoundBitsHorizontal); // Add back scaled down offset correction. const __m256i rounded_sum1 = _mm256_add_epi16(rounded_sum0, s_3x128); const __m256i d0 = _mm256_max_epi16(rounded_sum1, offsets); const __m256i d1 = _mm256_min_epi16(d0, limits); StoreAligned32(wiener_buffer, d1); } // Using _mm256_alignr_epi8() is about 8% faster than loading all and unpacking, // because the compiler generates redundant code when loading all and unpacking. inline void WienerHorizontalTap7Kernel(const __m256i s[2], const __m256i filter[4], int16_t* const wiener_buffer) { const auto s01 = _mm256_alignr_epi8(s[1], s[0], 1); const auto s23 = _mm256_alignr_epi8(s[1], s[0], 5); const auto s45 = _mm256_alignr_epi8(s[1], s[0], 9); const auto s67 = _mm256_alignr_epi8(s[1], s[0], 13); __m256i madds[4]; madds[0] = _mm256_maddubs_epi16(s01, filter[0]); madds[1] = _mm256_maddubs_epi16(s23, filter[1]); madds[2] = _mm256_maddubs_epi16(s45, filter[2]); madds[3] = _mm256_maddubs_epi16(s67, filter[3]); madds[0] = _mm256_add_epi16(madds[0], madds[2]); madds[1] = _mm256_add_epi16(madds[1], madds[3]); const __m256i s_3x128 = _mm256_slli_epi16(_mm256_srli_epi16(s23, 8), 7 - kInterRoundBitsHorizontal); WienerHorizontalClip(madds, s_3x128, wiener_buffer); } inline void WienerHorizontalTap5Kernel(const __m256i s[2], const __m256i filter[3], int16_t* const wiener_buffer) { const auto s01 = _mm256_alignr_epi8(s[1], s[0], 1); const auto s23 = _mm256_alignr_epi8(s[1], s[0], 5); const auto s45 = _mm256_alignr_epi8(s[1], s[0], 9); __m256i madds[3]; madds[0] = _mm256_maddubs_epi16(s01, filter[0]); madds[1] = _mm256_maddubs_epi16(s23, filter[1]); madds[2] = _mm256_maddubs_epi16(s45, filter[2]); madds[0] = _mm256_add_epi16(madds[0], madds[2]); const __m256i s_3x128 = _mm256_srli_epi16(_mm256_slli_epi16(s23, 8), kInterRoundBitsHorizontal + 1); WienerHorizontalClip(madds, s_3x128, wiener_buffer); } inline void WienerHorizontalTap3Kernel(const __m256i s[2], const __m256i filter[2], int16_t* const wiener_buffer) { const auto s01 = _mm256_alignr_epi8(s[1], s[0], 1); const auto s23 = _mm256_alignr_epi8(s[1], s[0], 5); __m256i madds[2]; madds[0] = _mm256_maddubs_epi16(s01, filter[0]); madds[1] = _mm256_maddubs_epi16(s23, filter[1]); const __m256i s_3x128 = _mm256_slli_epi16(_mm256_srli_epi16(s01, 8), 7 - kInterRoundBitsHorizontal); WienerHorizontalClip(madds, s_3x128, wiener_buffer); } inline void WienerHorizontalTap7(const uint8_t* src, const ptrdiff_t src_stride, const ptrdiff_t width, const int height, const __m256i coefficients, int16_t** const wiener_buffer) { __m256i filter[4]; filter[0] = _mm256_shuffle_epi8(coefficients, _mm256_set1_epi16(0x0100)); filter[1] = _mm256_shuffle_epi8(coefficients, _mm256_set1_epi16(0x0302)); filter[2] = _mm256_shuffle_epi8(coefficients, _mm256_set1_epi16(0x0102)); filter[3] = _mm256_shuffle_epi8( coefficients, _mm256_set1_epi16(static_cast(0x8000))); for (int y = height; y != 0; --y) { __m256i s = LoadUnaligned32(src); __m256i ss[4]; ss[0] = _mm256_unpacklo_epi8(s, s); ptrdiff_t x = 0; do { ss[1] = _mm256_unpackhi_epi8(s, s); s = LoadUnaligned32(src + x + 32); ss[3] = _mm256_unpacklo_epi8(s, s); ss[2] = _mm256_permute2x128_si256(ss[0], ss[3], 0x21); WienerHorizontalTap7Kernel(ss + 0, filter, *wiener_buffer + x + 0); WienerHorizontalTap7Kernel(ss + 1, filter, *wiener_buffer + x + 16); ss[0] = ss[3]; x += 32; } while (x < width); src += src_stride; *wiener_buffer += width; } } inline void WienerHorizontalTap5(const uint8_t* src, const ptrdiff_t src_stride, const ptrdiff_t width, const int height, const __m256i coefficients, int16_t** const wiener_buffer) { __m256i filter[3]; filter[0] = _mm256_shuffle_epi8(coefficients, _mm256_set1_epi16(0x0201)); filter[1] = _mm256_shuffle_epi8(coefficients, _mm256_set1_epi16(0x0203)); filter[2] = _mm256_shuffle_epi8( coefficients, _mm256_set1_epi16(static_cast(0x8001))); for (int y = height; y != 0; --y) { __m256i s = LoadUnaligned32(src); __m256i ss[4]; ss[0] = _mm256_unpacklo_epi8(s, s); ptrdiff_t x = 0; do { ss[1] = _mm256_unpackhi_epi8(s, s); s = LoadUnaligned32(src + x + 32); ss[3] = _mm256_unpacklo_epi8(s, s); ss[2] = _mm256_permute2x128_si256(ss[0], ss[3], 0x21); WienerHorizontalTap5Kernel(ss + 0, filter, *wiener_buffer + x + 0); WienerHorizontalTap5Kernel(ss + 1, filter, *wiener_buffer + x + 16); ss[0] = ss[3]; x += 32; } while (x < width); src += src_stride; *wiener_buffer += width; } } inline void WienerHorizontalTap3(const uint8_t* src, const ptrdiff_t src_stride, const ptrdiff_t width, const int height, const __m256i coefficients, int16_t** const wiener_buffer) { __m256i filter[2]; filter[0] = _mm256_shuffle_epi8(coefficients, _mm256_set1_epi16(0x0302)); filter[1] = _mm256_shuffle_epi8( coefficients, _mm256_set1_epi16(static_cast(0x8002))); for (int y = height; y != 0; --y) { __m256i s = LoadUnaligned32(src); __m256i ss[4]; ss[0] = _mm256_unpacklo_epi8(s, s); ptrdiff_t x = 0; do { ss[1] = _mm256_unpackhi_epi8(s, s); s = LoadUnaligned32(src + x + 32); ss[3] = _mm256_unpacklo_epi8(s, s); ss[2] = _mm256_permute2x128_si256(ss[0], ss[3], 0x21); WienerHorizontalTap3Kernel(ss + 0, filter, *wiener_buffer + x + 0); WienerHorizontalTap3Kernel(ss + 1, filter, *wiener_buffer + x + 16); ss[0] = ss[3]; x += 32; } while (x < width); src += src_stride; *wiener_buffer += width; } } inline void WienerHorizontalTap1(const uint8_t* src, const ptrdiff_t src_stride, const ptrdiff_t width, const int height, int16_t** const wiener_buffer) { for (int y = height; y != 0; --y) { ptrdiff_t x = 0; do { const __m256i s = LoadUnaligned32(src + x); const __m256i s0 = _mm256_unpacklo_epi8(s, _mm256_setzero_si256()); const __m256i s1 = _mm256_unpackhi_epi8(s, _mm256_setzero_si256()); __m256i d[2]; d[0] = _mm256_slli_epi16(s0, 4); d[1] = _mm256_slli_epi16(s1, 4); StoreAligned64(*wiener_buffer + x, d); x += 32; } while (x < width); src += src_stride; *wiener_buffer += width; } } inline __m256i WienerVertical7(const __m256i a[2], const __m256i filter[2]) { const __m256i round = _mm256_set1_epi32(1 << (kInterRoundBitsVertical - 1)); const __m256i madd0 = _mm256_madd_epi16(a[0], filter[0]); const __m256i madd1 = _mm256_madd_epi16(a[1], filter[1]); const __m256i sum0 = _mm256_add_epi32(round, madd0); const __m256i sum1 = _mm256_add_epi32(sum0, madd1); return _mm256_srai_epi32(sum1, kInterRoundBitsVertical); } inline __m256i WienerVertical5(const __m256i a[2], const __m256i filter[2]) { const __m256i madd0 = _mm256_madd_epi16(a[0], filter[0]); const __m256i madd1 = _mm256_madd_epi16(a[1], filter[1]); const __m256i sum = _mm256_add_epi32(madd0, madd1); return _mm256_srai_epi32(sum, kInterRoundBitsVertical); } inline __m256i WienerVertical3(const __m256i a, const __m256i filter) { const __m256i round = _mm256_set1_epi32(1 << (kInterRoundBitsVertical - 1)); const __m256i madd = _mm256_madd_epi16(a, filter); const __m256i sum = _mm256_add_epi32(round, madd); return _mm256_srai_epi32(sum, kInterRoundBitsVertical); } inline __m256i WienerVerticalFilter7(const __m256i a[7], const __m256i filter[2]) { __m256i b[2]; const __m256i a06 = _mm256_add_epi16(a[0], a[6]); const __m256i a15 = _mm256_add_epi16(a[1], a[5]); const __m256i a24 = _mm256_add_epi16(a[2], a[4]); b[0] = _mm256_unpacklo_epi16(a06, a15); b[1] = _mm256_unpacklo_epi16(a24, a[3]); const __m256i sum0 = WienerVertical7(b, filter); b[0] = _mm256_unpackhi_epi16(a06, a15); b[1] = _mm256_unpackhi_epi16(a24, a[3]); const __m256i sum1 = WienerVertical7(b, filter); return _mm256_packs_epi32(sum0, sum1); } inline __m256i WienerVerticalFilter5(const __m256i a[5], const __m256i filter[2]) { const __m256i round = _mm256_set1_epi16(1 << (kInterRoundBitsVertical - 1)); __m256i b[2]; const __m256i a04 = _mm256_add_epi16(a[0], a[4]); const __m256i a13 = _mm256_add_epi16(a[1], a[3]); b[0] = _mm256_unpacklo_epi16(a04, a13); b[1] = _mm256_unpacklo_epi16(a[2], round); const __m256i sum0 = WienerVertical5(b, filter); b[0] = _mm256_unpackhi_epi16(a04, a13); b[1] = _mm256_unpackhi_epi16(a[2], round); const __m256i sum1 = WienerVertical5(b, filter); return _mm256_packs_epi32(sum0, sum1); } inline __m256i WienerVerticalFilter3(const __m256i a[3], const __m256i filter) { __m256i b; const __m256i a02 = _mm256_add_epi16(a[0], a[2]); b = _mm256_unpacklo_epi16(a02, a[1]); const __m256i sum0 = WienerVertical3(b, filter); b = _mm256_unpackhi_epi16(a02, a[1]); const __m256i sum1 = WienerVertical3(b, filter); return _mm256_packs_epi32(sum0, sum1); } inline __m256i WienerVerticalTap7Kernel(const int16_t* wiener_buffer, const ptrdiff_t wiener_stride, const __m256i filter[2], __m256i a[7]) { a[0] = LoadAligned32(wiener_buffer + 0 * wiener_stride); a[1] = LoadAligned32(wiener_buffer + 1 * wiener_stride); a[2] = LoadAligned32(wiener_buffer + 2 * wiener_stride); a[3] = LoadAligned32(wiener_buffer + 3 * wiener_stride); a[4] = LoadAligned32(wiener_buffer + 4 * wiener_stride); a[5] = LoadAligned32(wiener_buffer + 5 * wiener_stride); a[6] = LoadAligned32(wiener_buffer + 6 * wiener_stride); return WienerVerticalFilter7(a, filter); } inline __m256i WienerVerticalTap5Kernel(const int16_t* wiener_buffer, const ptrdiff_t wiener_stride, const __m256i filter[2], __m256i a[5]) { a[0] = LoadAligned32(wiener_buffer + 0 * wiener_stride); a[1] = LoadAligned32(wiener_buffer + 1 * wiener_stride); a[2] = LoadAligned32(wiener_buffer + 2 * wiener_stride); a[3] = LoadAligned32(wiener_buffer + 3 * wiener_stride); a[4] = LoadAligned32(wiener_buffer + 4 * wiener_stride); return WienerVerticalFilter5(a, filter); } inline __m256i WienerVerticalTap3Kernel(const int16_t* wiener_buffer, const ptrdiff_t wiener_stride, const __m256i filter, __m256i a[3]) { a[0] = LoadAligned32(wiener_buffer + 0 * wiener_stride); a[1] = LoadAligned32(wiener_buffer + 1 * wiener_stride); a[2] = LoadAligned32(wiener_buffer + 2 * wiener_stride); return WienerVerticalFilter3(a, filter); } inline void WienerVerticalTap7Kernel2(const int16_t* wiener_buffer, const ptrdiff_t wiener_stride, const __m256i filter[2], __m256i d[2]) { __m256i a[8]; d[0] = WienerVerticalTap7Kernel(wiener_buffer, wiener_stride, filter, a); a[7] = LoadAligned32(wiener_buffer + 7 * wiener_stride); d[1] = WienerVerticalFilter7(a + 1, filter); } inline void WienerVerticalTap5Kernel2(const int16_t* wiener_buffer, const ptrdiff_t wiener_stride, const __m256i filter[2], __m256i d[2]) { __m256i a[6]; d[0] = WienerVerticalTap5Kernel(wiener_buffer, wiener_stride, filter, a); a[5] = LoadAligned32(wiener_buffer + 5 * wiener_stride); d[1] = WienerVerticalFilter5(a + 1, filter); } inline void WienerVerticalTap3Kernel2(const int16_t* wiener_buffer, const ptrdiff_t wiener_stride, const __m256i filter, __m256i d[2]) { __m256i a[4]; d[0] = WienerVerticalTap3Kernel(wiener_buffer, wiener_stride, filter, a); a[3] = LoadAligned32(wiener_buffer + 3 * wiener_stride); d[1] = WienerVerticalFilter3(a + 1, filter); } inline void WienerVerticalTap7(const int16_t* wiener_buffer, const ptrdiff_t width, const int height, const int16_t coefficients[4], uint8_t* dst, const ptrdiff_t dst_stride) { const __m256i c = _mm256_broadcastq_epi64(LoadLo8(coefficients)); __m256i filter[2]; filter[0] = _mm256_shuffle_epi32(c, 0x0); filter[1] = _mm256_shuffle_epi32(c, 0x55); for (int y = height >> 1; y > 0; --y) { ptrdiff_t x = 0; do { __m256i d[2][2]; WienerVerticalTap7Kernel2(wiener_buffer + x + 0, width, filter, d[0]); WienerVerticalTap7Kernel2(wiener_buffer + x + 16, width, filter, d[1]); StoreUnaligned32(dst + x, _mm256_packus_epi16(d[0][0], d[1][0])); StoreUnaligned32(dst + dst_stride + x, _mm256_packus_epi16(d[0][1], d[1][1])); x += 32; } while (x < width); dst += 2 * dst_stride; wiener_buffer += 2 * width; } if ((height & 1) != 0) { ptrdiff_t x = 0; do { __m256i a[7]; const __m256i d0 = WienerVerticalTap7Kernel(wiener_buffer + x + 0, width, filter, a); const __m256i d1 = WienerVerticalTap7Kernel(wiener_buffer + x + 16, width, filter, a); StoreUnaligned32(dst + x, _mm256_packus_epi16(d0, d1)); x += 32; } while (x < width); } } inline void WienerVerticalTap5(const int16_t* wiener_buffer, const ptrdiff_t width, const int height, const int16_t coefficients[3], uint8_t* dst, const ptrdiff_t dst_stride) { const __m256i c = _mm256_broadcastd_epi32(Load4(coefficients)); __m256i filter[2]; filter[0] = _mm256_shuffle_epi32(c, 0); filter[1] = _mm256_set1_epi32((1 << 16) | static_cast(coefficients[2])); for (int y = height >> 1; y > 0; --y) { ptrdiff_t x = 0; do { __m256i d[2][2]; WienerVerticalTap5Kernel2(wiener_buffer + x + 0, width, filter, d[0]); WienerVerticalTap5Kernel2(wiener_buffer + x + 16, width, filter, d[1]); StoreUnaligned32(dst + x, _mm256_packus_epi16(d[0][0], d[1][0])); StoreUnaligned32(dst + dst_stride + x, _mm256_packus_epi16(d[0][1], d[1][1])); x += 32; } while (x < width); dst += 2 * dst_stride; wiener_buffer += 2 * width; } if ((height & 1) != 0) { ptrdiff_t x = 0; do { __m256i a[5]; const __m256i d0 = WienerVerticalTap5Kernel(wiener_buffer + x + 0, width, filter, a); const __m256i d1 = WienerVerticalTap5Kernel(wiener_buffer + x + 16, width, filter, a); StoreUnaligned32(dst + x, _mm256_packus_epi16(d0, d1)); x += 32; } while (x < width); } } inline void WienerVerticalTap3(const int16_t* wiener_buffer, const ptrdiff_t width, const int height, const int16_t coefficients[2], uint8_t* dst, const ptrdiff_t dst_stride) { const __m256i filter = _mm256_set1_epi32(*reinterpret_cast(coefficients)); for (int y = height >> 1; y > 0; --y) { ptrdiff_t x = 0; do { __m256i d[2][2]; WienerVerticalTap3Kernel2(wiener_buffer + x + 0, width, filter, d[0]); WienerVerticalTap3Kernel2(wiener_buffer + x + 16, width, filter, d[1]); StoreUnaligned32(dst + x, _mm256_packus_epi16(d[0][0], d[1][0])); StoreUnaligned32(dst + dst_stride + x, _mm256_packus_epi16(d[0][1], d[1][1])); x += 32; } while (x < width); dst += 2 * dst_stride; wiener_buffer += 2 * width; } if ((height & 1) != 0) { ptrdiff_t x = 0; do { __m256i a[3]; const __m256i d0 = WienerVerticalTap3Kernel(wiener_buffer + x + 0, width, filter, a); const __m256i d1 = WienerVerticalTap3Kernel(wiener_buffer + x + 16, width, filter, a); StoreUnaligned32(dst + x, _mm256_packus_epi16(d0, d1)); x += 32; } while (x < width); } } inline void WienerVerticalTap1Kernel(const int16_t* const wiener_buffer, uint8_t* const dst) { const __m256i a0 = LoadAligned32(wiener_buffer + 0); const __m256i a1 = LoadAligned32(wiener_buffer + 16); const __m256i b0 = _mm256_add_epi16(a0, _mm256_set1_epi16(8)); const __m256i b1 = _mm256_add_epi16(a1, _mm256_set1_epi16(8)); const __m256i c0 = _mm256_srai_epi16(b0, 4); const __m256i c1 = _mm256_srai_epi16(b1, 4); const __m256i d = _mm256_packus_epi16(c0, c1); StoreUnaligned32(dst, d); } inline void WienerVerticalTap1(const int16_t* wiener_buffer, const ptrdiff_t width, const int height, uint8_t* dst, const ptrdiff_t dst_stride) { for (int y = height >> 1; y > 0; --y) { ptrdiff_t x = 0; do { WienerVerticalTap1Kernel(wiener_buffer + x, dst + x); WienerVerticalTap1Kernel(wiener_buffer + width + x, dst + dst_stride + x); x += 32; } while (x < width); dst += 2 * dst_stride; wiener_buffer += 2 * width; } if ((height & 1) != 0) { ptrdiff_t x = 0; do { WienerVerticalTap1Kernel(wiener_buffer + x, dst + x); x += 32; } while (x < width); } } void WienerFilter_AVX2( const RestorationUnitInfo& restoration_info, const void* const source, const ptrdiff_t stride, const void* const top_border, const ptrdiff_t top_border_stride, const void* const bottom_border, const ptrdiff_t bottom_border_stride, const int width, const int height, RestorationBuffer* const restoration_buffer, void* const dest) { const int16_t* const number_leading_zero_coefficients = restoration_info.wiener_info.number_leading_zero_coefficients; const int number_rows_to_skip = std::max( static_cast(number_leading_zero_coefficients[WienerInfo::kVertical]), 1); const ptrdiff_t wiener_stride = Align(width, 32); int16_t* const wiener_buffer_vertical = restoration_buffer->wiener_buffer; // The values are saturated to 13 bits before storing. int16_t* wiener_buffer_horizontal = wiener_buffer_vertical + number_rows_to_skip * wiener_stride; // horizontal filtering. // Over-reads up to 15 - |kRestorationHorizontalBorder| values. const int height_horizontal = height + kWienerFilterTaps - 1 - 2 * number_rows_to_skip; const int height_extra = (height_horizontal - height) >> 1; assert(height_extra <= 2); const auto* const src = static_cast(source); const auto* const top = static_cast(top_border); const auto* const bottom = static_cast(bottom_border); const __m128i c = LoadLo8(restoration_info.wiener_info.filter[WienerInfo::kHorizontal]); // In order to keep the horizontal pass intermediate values within 16 bits we // offset |filter[3]| by 128. The 128 offset will be added back in the loop. __m128i c_horizontal = _mm_sub_epi16(c, _mm_setr_epi16(0, 0, 0, 128, 0, 0, 0, 0)); c_horizontal = _mm_packs_epi16(c_horizontal, c_horizontal); const __m256i coefficients_horizontal = _mm256_broadcastd_epi32(c_horizontal); if (number_leading_zero_coefficients[WienerInfo::kHorizontal] == 0) { WienerHorizontalTap7(top + (2 - height_extra) * top_border_stride - 3, top_border_stride, wiener_stride, height_extra, coefficients_horizontal, &wiener_buffer_horizontal); WienerHorizontalTap7(src - 3, stride, wiener_stride, height, coefficients_horizontal, &wiener_buffer_horizontal); WienerHorizontalTap7(bottom - 3, bottom_border_stride, wiener_stride, height_extra, coefficients_horizontal, &wiener_buffer_horizontal); } else if (number_leading_zero_coefficients[WienerInfo::kHorizontal] == 1) { WienerHorizontalTap5(top + (2 - height_extra) * top_border_stride - 2, top_border_stride, wiener_stride, height_extra, coefficients_horizontal, &wiener_buffer_horizontal); WienerHorizontalTap5(src - 2, stride, wiener_stride, height, coefficients_horizontal, &wiener_buffer_horizontal); WienerHorizontalTap5(bottom - 2, bottom_border_stride, wiener_stride, height_extra, coefficients_horizontal, &wiener_buffer_horizontal); } else if (number_leading_zero_coefficients[WienerInfo::kHorizontal] == 2) { // The maximum over-reads happen here. WienerHorizontalTap3(top + (2 - height_extra) * top_border_stride - 1, top_border_stride, wiener_stride, height_extra, coefficients_horizontal, &wiener_buffer_horizontal); WienerHorizontalTap3(src - 1, stride, wiener_stride, height, coefficients_horizontal, &wiener_buffer_horizontal); WienerHorizontalTap3(bottom - 1, bottom_border_stride, wiener_stride, height_extra, coefficients_horizontal, &wiener_buffer_horizontal); } else { assert(number_leading_zero_coefficients[WienerInfo::kHorizontal] == 3); WienerHorizontalTap1(top + (2 - height_extra) * top_border_stride, top_border_stride, wiener_stride, height_extra, &wiener_buffer_horizontal); WienerHorizontalTap1(src, stride, wiener_stride, height, &wiener_buffer_horizontal); WienerHorizontalTap1(bottom, bottom_border_stride, wiener_stride, height_extra, &wiener_buffer_horizontal); } // vertical filtering. // Over-writes up to 15 values. const int16_t* const filter_vertical = restoration_info.wiener_info.filter[WienerInfo::kVertical]; auto* dst = static_cast(dest); if (number_leading_zero_coefficients[WienerInfo::kVertical] == 0) { // Because the top row of |source| is a duplicate of the second row, and the // bottom row of |source| is a duplicate of its above row, we can duplicate // the top and bottom row of |wiener_buffer| accordingly. memcpy(wiener_buffer_horizontal, wiener_buffer_horizontal - wiener_stride, sizeof(*wiener_buffer_horizontal) * wiener_stride); memcpy(restoration_buffer->wiener_buffer, restoration_buffer->wiener_buffer + wiener_stride, sizeof(*restoration_buffer->wiener_buffer) * wiener_stride); WienerVerticalTap7(wiener_buffer_vertical, wiener_stride, height, filter_vertical, dst, stride); } else if (number_leading_zero_coefficients[WienerInfo::kVertical] == 1) { WienerVerticalTap5(wiener_buffer_vertical + wiener_stride, wiener_stride, height, filter_vertical + 1, dst, stride); } else if (number_leading_zero_coefficients[WienerInfo::kVertical] == 2) { WienerVerticalTap3(wiener_buffer_vertical + 2 * wiener_stride, wiener_stride, height, filter_vertical + 2, dst, stride); } else { assert(number_leading_zero_coefficients[WienerInfo::kVertical] == 3); WienerVerticalTap1(wiener_buffer_vertical + 3 * wiener_stride, wiener_stride, height, dst, stride); } } //------------------------------------------------------------------------------ // SGR constexpr int kSumOffset = 24; // SIMD overreads the number of bytes in SIMD registers - (width % 16) - 2 * // padding pixels, where padding is 3 for Pass 1 and 2 for Pass 2. The number of // bytes in SIMD registers is 16 for SSE4.1 and 32 for AVX2. constexpr int kOverreadInBytesPass1_128 = 10; constexpr int kOverreadInBytesPass2_128 = 12; constexpr int kOverreadInBytesPass1_256 = kOverreadInBytesPass1_128 + 16; constexpr int kOverreadInBytesPass2_256 = kOverreadInBytesPass2_128 + 16; inline void LoadAligned16x2U16(const uint16_t* const src[2], const ptrdiff_t x, __m128i dst[2]) { dst[0] = LoadAligned16(src[0] + x); dst[1] = LoadAligned16(src[1] + x); } inline void LoadAligned32x2U16(const uint16_t* const src[2], const ptrdiff_t x, __m256i dst[2]) { dst[0] = LoadAligned32(src[0] + x); dst[1] = LoadAligned32(src[1] + x); } inline void LoadAligned32x2U16Msan(const uint16_t* const src[2], const ptrdiff_t x, const ptrdiff_t border, __m256i dst[2]) { dst[0] = LoadAligned32Msan(src[0] + x, sizeof(**src) * (x + 16 - border)); dst[1] = LoadAligned32Msan(src[1] + x, sizeof(**src) * (x + 16 - border)); } inline void LoadAligned16x3U16(const uint16_t* const src[3], const ptrdiff_t x, __m128i dst[3]) { dst[0] = LoadAligned16(src[0] + x); dst[1] = LoadAligned16(src[1] + x); dst[2] = LoadAligned16(src[2] + x); } inline void LoadAligned32x3U16(const uint16_t* const src[3], const ptrdiff_t x, __m256i dst[3]) { dst[0] = LoadAligned32(src[0] + x); dst[1] = LoadAligned32(src[1] + x); dst[2] = LoadAligned32(src[2] + x); } inline void LoadAligned32x3U16Msan(const uint16_t* const src[3], const ptrdiff_t x, const ptrdiff_t border, __m256i dst[3]) { dst[0] = LoadAligned32Msan(src[0] + x, sizeof(**src) * (x + 16 - border)); dst[1] = LoadAligned32Msan(src[1] + x, sizeof(**src) * (x + 16 - border)); dst[2] = LoadAligned32Msan(src[2] + x, sizeof(**src) * (x + 16 - border)); } inline void LoadAligned32U32(const uint32_t* const src, __m128i dst[2]) { dst[0] = LoadAligned16(src + 0); dst[1] = LoadAligned16(src + 4); } inline void LoadAligned32x2U32(const uint32_t* const src[2], const ptrdiff_t x, __m128i dst[2][2]) { LoadAligned32U32(src[0] + x, dst[0]); LoadAligned32U32(src[1] + x, dst[1]); } inline void LoadAligned64x2U32(const uint32_t* const src[2], const ptrdiff_t x, __m256i dst[2][2]) { LoadAligned64(src[0] + x, dst[0]); LoadAligned64(src[1] + x, dst[1]); } inline void LoadAligned64x2U32Msan(const uint32_t* const src[2], const ptrdiff_t x, const ptrdiff_t border, __m256i dst[2][2]) { LoadAligned64Msan(src[0] + x, sizeof(**src) * (x + 16 - border), dst[0]); LoadAligned64Msan(src[1] + x, sizeof(**src) * (x + 16 - border), dst[1]); } inline void LoadAligned32x3U32(const uint32_t* const src[3], const ptrdiff_t x, __m128i dst[3][2]) { LoadAligned32U32(src[0] + x, dst[0]); LoadAligned32U32(src[1] + x, dst[1]); LoadAligned32U32(src[2] + x, dst[2]); } inline void LoadAligned64x3U32(const uint32_t* const src[3], const ptrdiff_t x, __m256i dst[3][2]) { LoadAligned64(src[0] + x, dst[0]); LoadAligned64(src[1] + x, dst[1]); LoadAligned64(src[2] + x, dst[2]); } inline void LoadAligned64x3U32Msan(const uint32_t* const src[3], const ptrdiff_t x, const ptrdiff_t border, __m256i dst[3][2]) { LoadAligned64Msan(src[0] + x, sizeof(**src) * (x + 16 - border), dst[0]); LoadAligned64Msan(src[1] + x, sizeof(**src) * (x + 16 - border), dst[1]); LoadAligned64Msan(src[2] + x, sizeof(**src) * (x + 16 - border), dst[2]); } inline void StoreAligned32U32(uint32_t* const dst, const __m128i src[2]) { StoreAligned16(dst + 0, src[0]); StoreAligned16(dst + 4, src[1]); } // Don't use _mm_cvtepu8_epi16() or _mm_cvtepu16_epi32() in the following // functions. Some compilers may generate super inefficient code and the whole // decoder could be 15% slower. inline __m128i VaddlLo8(const __m128i src0, const __m128i src1) { const __m128i s0 = _mm_unpacklo_epi8(src0, _mm_setzero_si128()); const __m128i s1 = _mm_unpacklo_epi8(src1, _mm_setzero_si128()); return _mm_add_epi16(s0, s1); } inline __m256i VaddlLo8(const __m256i src0, const __m256i src1) { const __m256i s0 = _mm256_unpacklo_epi8(src0, _mm256_setzero_si256()); const __m256i s1 = _mm256_unpacklo_epi8(src1, _mm256_setzero_si256()); return _mm256_add_epi16(s0, s1); } inline __m256i VaddlHi8(const __m256i src0, const __m256i src1) { const __m256i s0 = _mm256_unpackhi_epi8(src0, _mm256_setzero_si256()); const __m256i s1 = _mm256_unpackhi_epi8(src1, _mm256_setzero_si256()); return _mm256_add_epi16(s0, s1); } inline __m128i VaddlLo16(const __m128i src0, const __m128i src1) { const __m128i s0 = _mm_unpacklo_epi16(src0, _mm_setzero_si128()); const __m128i s1 = _mm_unpacklo_epi16(src1, _mm_setzero_si128()); return _mm_add_epi32(s0, s1); } inline __m256i VaddlLo16(const __m256i src0, const __m256i src1) { const __m256i s0 = _mm256_unpacklo_epi16(src0, _mm256_setzero_si256()); const __m256i s1 = _mm256_unpacklo_epi16(src1, _mm256_setzero_si256()); return _mm256_add_epi32(s0, s1); } inline __m128i VaddlHi16(const __m128i src0, const __m128i src1) { const __m128i s0 = _mm_unpackhi_epi16(src0, _mm_setzero_si128()); const __m128i s1 = _mm_unpackhi_epi16(src1, _mm_setzero_si128()); return _mm_add_epi32(s0, s1); } inline __m256i VaddlHi16(const __m256i src0, const __m256i src1) { const __m256i s0 = _mm256_unpackhi_epi16(src0, _mm256_setzero_si256()); const __m256i s1 = _mm256_unpackhi_epi16(src1, _mm256_setzero_si256()); return _mm256_add_epi32(s0, s1); } inline __m128i VaddwLo8(const __m128i src0, const __m128i src1) { const __m128i s1 = _mm_unpacklo_epi8(src1, _mm_setzero_si128()); return _mm_add_epi16(src0, s1); } inline __m256i VaddwLo8(const __m256i src0, const __m256i src1) { const __m256i s1 = _mm256_unpacklo_epi8(src1, _mm256_setzero_si256()); return _mm256_add_epi16(src0, s1); } inline __m256i VaddwHi8(const __m256i src0, const __m256i src1) { const __m256i s1 = _mm256_unpackhi_epi8(src1, _mm256_setzero_si256()); return _mm256_add_epi16(src0, s1); } inline __m128i VaddwLo16(const __m128i src0, const __m128i src1) { const __m128i s1 = _mm_unpacklo_epi16(src1, _mm_setzero_si128()); return _mm_add_epi32(src0, s1); } inline __m256i VaddwLo16(const __m256i src0, const __m256i src1) { const __m256i s1 = _mm256_unpacklo_epi16(src1, _mm256_setzero_si256()); return _mm256_add_epi32(src0, s1); } inline __m128i VaddwHi16(const __m128i src0, const __m128i src1) { const __m128i s1 = _mm_unpackhi_epi16(src1, _mm_setzero_si128()); return _mm_add_epi32(src0, s1); } inline __m256i VaddwHi16(const __m256i src0, const __m256i src1) { const __m256i s1 = _mm256_unpackhi_epi16(src1, _mm256_setzero_si256()); return _mm256_add_epi32(src0, s1); } inline __m256i VmullNLo8(const __m256i src0, const int src1) { const __m256i s0 = _mm256_unpacklo_epi16(src0, _mm256_setzero_si256()); return _mm256_madd_epi16(s0, _mm256_set1_epi32(src1)); } inline __m256i VmullNHi8(const __m256i src0, const int src1) { const __m256i s0 = _mm256_unpackhi_epi16(src0, _mm256_setzero_si256()); return _mm256_madd_epi16(s0, _mm256_set1_epi32(src1)); } inline __m128i VmullLo16(const __m128i src0, const __m128i src1) { const __m128i s0 = _mm_unpacklo_epi16(src0, _mm_setzero_si128()); const __m128i s1 = _mm_unpacklo_epi16(src1, _mm_setzero_si128()); return _mm_madd_epi16(s0, s1); } inline __m256i VmullLo16(const __m256i src0, const __m256i src1) { const __m256i s0 = _mm256_unpacklo_epi16(src0, _mm256_setzero_si256()); const __m256i s1 = _mm256_unpacklo_epi16(src1, _mm256_setzero_si256()); return _mm256_madd_epi16(s0, s1); } inline __m128i VmullHi16(const __m128i src0, const __m128i src1) { const __m128i s0 = _mm_unpackhi_epi16(src0, _mm_setzero_si128()); const __m128i s1 = _mm_unpackhi_epi16(src1, _mm_setzero_si128()); return _mm_madd_epi16(s0, s1); } inline __m256i VmullHi16(const __m256i src0, const __m256i src1) { const __m256i s0 = _mm256_unpackhi_epi16(src0, _mm256_setzero_si256()); const __m256i s1 = _mm256_unpackhi_epi16(src1, _mm256_setzero_si256()); return _mm256_madd_epi16(s0, s1); } inline __m256i VrshrS32(const __m256i src0, const int src1) { const __m256i sum = _mm256_add_epi32(src0, _mm256_set1_epi32(1 << (src1 - 1))); return _mm256_srai_epi32(sum, src1); } inline __m128i VrshrU32(const __m128i src0, const int src1) { const __m128i sum = _mm_add_epi32(src0, _mm_set1_epi32(1 << (src1 - 1))); return _mm_srli_epi32(sum, src1); } inline __m256i VrshrU32(const __m256i src0, const int src1) { const __m256i sum = _mm256_add_epi32(src0, _mm256_set1_epi32(1 << (src1 - 1))); return _mm256_srli_epi32(sum, src1); } inline __m128i SquareLo8(const __m128i src) { const __m128i s = _mm_unpacklo_epi8(src, _mm_setzero_si128()); return _mm_mullo_epi16(s, s); } inline __m256i SquareLo8(const __m256i src) { const __m256i s = _mm256_unpacklo_epi8(src, _mm256_setzero_si256()); return _mm256_mullo_epi16(s, s); } inline __m128i SquareHi8(const __m128i src) { const __m128i s = _mm_unpackhi_epi8(src, _mm_setzero_si128()); return _mm_mullo_epi16(s, s); } inline __m256i SquareHi8(const __m256i src) { const __m256i s = _mm256_unpackhi_epi8(src, _mm256_setzero_si256()); return _mm256_mullo_epi16(s, s); } inline void Prepare3Lo8(const __m128i src, __m128i dst[3]) { dst[0] = src; dst[1] = _mm_srli_si128(src, 1); dst[2] = _mm_srli_si128(src, 2); } inline void Prepare3_8(const __m256i src[2], __m256i dst[3]) { dst[0] = _mm256_alignr_epi8(src[1], src[0], 0); dst[1] = _mm256_alignr_epi8(src[1], src[0], 1); dst[2] = _mm256_alignr_epi8(src[1], src[0], 2); } inline void Prepare3_16(const __m128i src[2], __m128i dst[3]) { dst[0] = src[0]; dst[1] = _mm_alignr_epi8(src[1], src[0], 2); dst[2] = _mm_alignr_epi8(src[1], src[0], 4); } inline void Prepare3_16(const __m256i src[2], __m256i dst[3]) { dst[0] = src[0]; dst[1] = _mm256_alignr_epi8(src[1], src[0], 2); dst[2] = _mm256_alignr_epi8(src[1], src[0], 4); } inline void Prepare5Lo8(const __m128i src, __m128i dst[5]) { dst[0] = src; dst[1] = _mm_srli_si128(src, 1); dst[2] = _mm_srli_si128(src, 2); dst[3] = _mm_srli_si128(src, 3); dst[4] = _mm_srli_si128(src, 4); } inline void Prepare5_16(const __m128i src[2], __m128i dst[5]) { Prepare3_16(src, dst); dst[3] = _mm_alignr_epi8(src[1], src[0], 6); dst[4] = _mm_alignr_epi8(src[1], src[0], 8); } inline void Prepare5_16(const __m256i src[2], __m256i dst[5]) { Prepare3_16(src, dst); dst[3] = _mm256_alignr_epi8(src[1], src[0], 6); dst[4] = _mm256_alignr_epi8(src[1], src[0], 8); } inline __m128i Sum3_16(const __m128i src0, const __m128i src1, const __m128i src2) { const __m128i sum = _mm_add_epi16(src0, src1); return _mm_add_epi16(sum, src2); } inline __m256i Sum3_16(const __m256i src0, const __m256i src1, const __m256i src2) { const __m256i sum = _mm256_add_epi16(src0, src1); return _mm256_add_epi16(sum, src2); } inline __m128i Sum3_16(const __m128i src[3]) { return Sum3_16(src[0], src[1], src[2]); } inline __m256i Sum3_16(const __m256i src[3]) { return Sum3_16(src[0], src[1], src[2]); } inline __m128i Sum3_32(const __m128i src0, const __m128i src1, const __m128i src2) { const __m128i sum = _mm_add_epi32(src0, src1); return _mm_add_epi32(sum, src2); } inline __m256i Sum3_32(const __m256i src0, const __m256i src1, const __m256i src2) { const __m256i sum = _mm256_add_epi32(src0, src1); return _mm256_add_epi32(sum, src2); } inline void Sum3_32(const __m128i src[3][2], __m128i dst[2]) { dst[0] = Sum3_32(src[0][0], src[1][0], src[2][0]); dst[1] = Sum3_32(src[0][1], src[1][1], src[2][1]); } inline void Sum3_32(const __m256i src[3][2], __m256i dst[2]) { dst[0] = Sum3_32(src[0][0], src[1][0], src[2][0]); dst[1] = Sum3_32(src[0][1], src[1][1], src[2][1]); } inline __m128i Sum3WLo16(const __m128i src[3]) { const __m128i sum = VaddlLo8(src[0], src[1]); return VaddwLo8(sum, src[2]); } inline __m256i Sum3WLo16(const __m256i src[3]) { const __m256i sum = VaddlLo8(src[0], src[1]); return VaddwLo8(sum, src[2]); } inline __m256i Sum3WHi16(const __m256i src[3]) { const __m256i sum = VaddlHi8(src[0], src[1]); return VaddwHi8(sum, src[2]); } inline __m128i Sum3WLo32(const __m128i src[3]) { const __m128i sum = VaddlLo16(src[0], src[1]); return VaddwLo16(sum, src[2]); } inline __m256i Sum3WLo32(const __m256i src[3]) { const __m256i sum = VaddlLo16(src[0], src[1]); return VaddwLo16(sum, src[2]); } inline __m128i Sum3WHi32(const __m128i src[3]) { const __m128i sum = VaddlHi16(src[0], src[1]); return VaddwHi16(sum, src[2]); } inline __m256i Sum3WHi32(const __m256i src[3]) { const __m256i sum = VaddlHi16(src[0], src[1]); return VaddwHi16(sum, src[2]); } inline __m128i Sum5_16(const __m128i src[5]) { const __m128i sum01 = _mm_add_epi16(src[0], src[1]); const __m128i sum23 = _mm_add_epi16(src[2], src[3]); const __m128i sum = _mm_add_epi16(sum01, sum23); return _mm_add_epi16(sum, src[4]); } inline __m256i Sum5_16(const __m256i src[5]) { const __m256i sum01 = _mm256_add_epi16(src[0], src[1]); const __m256i sum23 = _mm256_add_epi16(src[2], src[3]); const __m256i sum = _mm256_add_epi16(sum01, sum23); return _mm256_add_epi16(sum, src[4]); } inline __m128i Sum5_32(const __m128i* const src0, const __m128i* const src1, const __m128i* const src2, const __m128i* const src3, const __m128i* const src4) { const __m128i sum01 = _mm_add_epi32(*src0, *src1); const __m128i sum23 = _mm_add_epi32(*src2, *src3); const __m128i sum = _mm_add_epi32(sum01, sum23); return _mm_add_epi32(sum, *src4); } inline __m256i Sum5_32(const __m256i* const src0, const __m256i* const src1, const __m256i* const src2, const __m256i* const src3, const __m256i* const src4) { const __m256i sum01 = _mm256_add_epi32(*src0, *src1); const __m256i sum23 = _mm256_add_epi32(*src2, *src3); const __m256i sum = _mm256_add_epi32(sum01, sum23); return _mm256_add_epi32(sum, *src4); } inline void Sum5_32(const __m128i src[5][2], __m128i dst[2]) { dst[0] = Sum5_32(&src[0][0], &src[1][0], &src[2][0], &src[3][0], &src[4][0]); dst[1] = Sum5_32(&src[0][1], &src[1][1], &src[2][1], &src[3][1], &src[4][1]); } inline void Sum5_32(const __m256i src[5][2], __m256i dst[2]) { dst[0] = Sum5_32(&src[0][0], &src[1][0], &src[2][0], &src[3][0], &src[4][0]); dst[1] = Sum5_32(&src[0][1], &src[1][1], &src[2][1], &src[3][1], &src[4][1]); } inline __m128i Sum5WLo16(const __m128i src[5]) { const __m128i sum01 = VaddlLo8(src[0], src[1]); const __m128i sum23 = VaddlLo8(src[2], src[3]); const __m128i sum = _mm_add_epi16(sum01, sum23); return VaddwLo8(sum, src[4]); } inline __m256i Sum5WLo16(const __m256i src[5]) { const __m256i sum01 = VaddlLo8(src[0], src[1]); const __m256i sum23 = VaddlLo8(src[2], src[3]); const __m256i sum = _mm256_add_epi16(sum01, sum23); return VaddwLo8(sum, src[4]); } inline __m256i Sum5WHi16(const __m256i src[5]) { const __m256i sum01 = VaddlHi8(src[0], src[1]); const __m256i sum23 = VaddlHi8(src[2], src[3]); const __m256i sum = _mm256_add_epi16(sum01, sum23); return VaddwHi8(sum, src[4]); } inline __m128i Sum3Horizontal(const __m128i src) { __m128i s[3]; Prepare3Lo8(src, s); return Sum3WLo16(s); } inline void Sum3Horizontal(const uint8_t* const src, const ptrdiff_t over_read_in_bytes, __m256i dst[2]) { __m256i s[3]; s[0] = LoadUnaligned32Msan(src + 0, over_read_in_bytes + 0); s[1] = LoadUnaligned32Msan(src + 1, over_read_in_bytes + 1); s[2] = LoadUnaligned32Msan(src + 2, over_read_in_bytes + 2); dst[0] = Sum3WLo16(s); dst[1] = Sum3WHi16(s); } inline void Sum3WHorizontal(const __m128i src[2], __m128i dst[2]) { __m128i s[3]; Prepare3_16(src, s); dst[0] = Sum3WLo32(s); dst[1] = Sum3WHi32(s); } inline void Sum3WHorizontal(const __m256i src[2], __m256i dst[2]) { __m256i s[3]; Prepare3_16(src, s); dst[0] = Sum3WLo32(s); dst[1] = Sum3WHi32(s); } inline __m128i Sum5Horizontal(const __m128i src) { __m128i s[5]; Prepare5Lo8(src, s); return Sum5WLo16(s); } inline void Sum5Horizontal(const uint8_t* const src, const ptrdiff_t over_read_in_bytes, __m256i* const dst0, __m256i* const dst1) { __m256i s[5]; s[0] = LoadUnaligned32Msan(src + 0, over_read_in_bytes + 0); s[1] = LoadUnaligned32Msan(src + 1, over_read_in_bytes + 1); s[2] = LoadUnaligned32Msan(src + 2, over_read_in_bytes + 2); s[3] = LoadUnaligned32Msan(src + 3, over_read_in_bytes + 3); s[4] = LoadUnaligned32Msan(src + 4, over_read_in_bytes + 4); *dst0 = Sum5WLo16(s); *dst1 = Sum5WHi16(s); } inline void Sum5WHorizontal(const __m128i src[2], __m128i dst[2]) { __m128i s[5]; Prepare5_16(src, s); const __m128i sum01_lo = VaddlLo16(s[0], s[1]); const __m128i sum23_lo = VaddlLo16(s[2], s[3]); const __m128i sum0123_lo = _mm_add_epi32(sum01_lo, sum23_lo); dst[0] = VaddwLo16(sum0123_lo, s[4]); const __m128i sum01_hi = VaddlHi16(s[0], s[1]); const __m128i sum23_hi = VaddlHi16(s[2], s[3]); const __m128i sum0123_hi = _mm_add_epi32(sum01_hi, sum23_hi); dst[1] = VaddwHi16(sum0123_hi, s[4]); } inline void Sum5WHorizontal(const __m256i src[2], __m256i dst[2]) { __m256i s[5]; Prepare5_16(src, s); const __m256i sum01_lo = VaddlLo16(s[0], s[1]); const __m256i sum23_lo = VaddlLo16(s[2], s[3]); const __m256i sum0123_lo = _mm256_add_epi32(sum01_lo, sum23_lo); dst[0] = VaddwLo16(sum0123_lo, s[4]); const __m256i sum01_hi = VaddlHi16(s[0], s[1]); const __m256i sum23_hi = VaddlHi16(s[2], s[3]); const __m256i sum0123_hi = _mm256_add_epi32(sum01_hi, sum23_hi); dst[1] = VaddwHi16(sum0123_hi, s[4]); } void SumHorizontalLo(const __m128i src[5], __m128i* const row_sq3, __m128i* const row_sq5) { const __m128i sum04 = VaddlLo16(src[0], src[4]); *row_sq3 = Sum3WLo32(src + 1); *row_sq5 = _mm_add_epi32(sum04, *row_sq3); } void SumHorizontalLo(const __m256i src[5], __m256i* const row_sq3, __m256i* const row_sq5) { const __m256i sum04 = VaddlLo16(src[0], src[4]); *row_sq3 = Sum3WLo32(src + 1); *row_sq5 = _mm256_add_epi32(sum04, *row_sq3); } void SumHorizontalHi(const __m128i src[5], __m128i* const row_sq3, __m128i* const row_sq5) { const __m128i sum04 = VaddlHi16(src[0], src[4]); *row_sq3 = Sum3WHi32(src + 1); *row_sq5 = _mm_add_epi32(sum04, *row_sq3); } void SumHorizontalHi(const __m256i src[5], __m256i* const row_sq3, __m256i* const row_sq5) { const __m256i sum04 = VaddlHi16(src[0], src[4]); *row_sq3 = Sum3WHi32(src + 1); *row_sq5 = _mm256_add_epi32(sum04, *row_sq3); } void SumHorizontalLo(const __m128i src, __m128i* const row3, __m128i* const row5) { __m128i s[5]; Prepare5Lo8(src, s); const __m128i sum04 = VaddlLo8(s[0], s[4]); *row3 = Sum3WLo16(s + 1); *row5 = _mm_add_epi16(sum04, *row3); } inline void SumHorizontal(const uint8_t* const src, const ptrdiff_t over_read_in_bytes, __m256i* const row3_0, __m256i* const row3_1, __m256i* const row5_0, __m256i* const row5_1) { __m256i s[5]; s[0] = LoadUnaligned32Msan(src + 0, over_read_in_bytes + 0); s[1] = LoadUnaligned32Msan(src + 1, over_read_in_bytes + 1); s[2] = LoadUnaligned32Msan(src + 2, over_read_in_bytes + 2); s[3] = LoadUnaligned32Msan(src + 3, over_read_in_bytes + 3); s[4] = LoadUnaligned32Msan(src + 4, over_read_in_bytes + 4); const __m256i sum04_lo = VaddlLo8(s[0], s[4]); const __m256i sum04_hi = VaddlHi8(s[0], s[4]); *row3_0 = Sum3WLo16(s + 1); *row3_1 = Sum3WHi16(s + 1); *row5_0 = _mm256_add_epi16(sum04_lo, *row3_0); *row5_1 = _mm256_add_epi16(sum04_hi, *row3_1); } inline void SumHorizontal(const __m128i src[2], __m128i* const row_sq3_0, __m128i* const row_sq3_1, __m128i* const row_sq5_0, __m128i* const row_sq5_1) { __m128i s[5]; Prepare5_16(src, s); SumHorizontalLo(s, row_sq3_0, row_sq5_0); SumHorizontalHi(s, row_sq3_1, row_sq5_1); } inline void SumHorizontal(const __m256i src[2], __m256i* const row_sq3_0, __m256i* const row_sq3_1, __m256i* const row_sq5_0, __m256i* const row_sq5_1) { __m256i s[5]; Prepare5_16(src, s); SumHorizontalLo(s, row_sq3_0, row_sq5_0); SumHorizontalHi(s, row_sq3_1, row_sq5_1); } inline __m256i Sum343Lo(const __m256i ma3[3]) { const __m256i sum = Sum3WLo16(ma3); const __m256i sum3 = Sum3_16(sum, sum, sum); return VaddwLo8(sum3, ma3[1]); } inline __m256i Sum343Hi(const __m256i ma3[3]) { const __m256i sum = Sum3WHi16(ma3); const __m256i sum3 = Sum3_16(sum, sum, sum); return VaddwHi8(sum3, ma3[1]); } inline __m256i Sum343WLo(const __m256i src[3]) { const __m256i sum = Sum3WLo32(src); const __m256i sum3 = Sum3_32(sum, sum, sum); return VaddwLo16(sum3, src[1]); } inline __m256i Sum343WHi(const __m256i src[3]) { const __m256i sum = Sum3WHi32(src); const __m256i sum3 = Sum3_32(sum, sum, sum); return VaddwHi16(sum3, src[1]); } inline void Sum343W(const __m256i src[2], __m256i dst[2]) { __m256i s[3]; Prepare3_16(src, s); dst[0] = Sum343WLo(s); dst[1] = Sum343WHi(s); } inline __m256i Sum565Lo(const __m256i src[3]) { const __m256i sum = Sum3WLo16(src); const __m256i sum4 = _mm256_slli_epi16(sum, 2); const __m256i sum5 = _mm256_add_epi16(sum4, sum); return VaddwLo8(sum5, src[1]); } inline __m256i Sum565Hi(const __m256i src[3]) { const __m256i sum = Sum3WHi16(src); const __m256i sum4 = _mm256_slli_epi16(sum, 2); const __m256i sum5 = _mm256_add_epi16(sum4, sum); return VaddwHi8(sum5, src[1]); } inline __m256i Sum565WLo(const __m256i src[3]) { const __m256i sum = Sum3WLo32(src); const __m256i sum4 = _mm256_slli_epi32(sum, 2); const __m256i sum5 = _mm256_add_epi32(sum4, sum); return VaddwLo16(sum5, src[1]); } inline __m256i Sum565WHi(const __m256i src[3]) { const __m256i sum = Sum3WHi32(src); const __m256i sum4 = _mm256_slli_epi32(sum, 2); const __m256i sum5 = _mm256_add_epi32(sum4, sum); return VaddwHi16(sum5, src[1]); } inline void Sum565W(const __m256i src[2], __m256i dst[2]) { __m256i s[3]; Prepare3_16(src, s); dst[0] = Sum565WLo(s); dst[1] = Sum565WHi(s); } inline void BoxSum(const uint8_t* src, const ptrdiff_t src_stride, const ptrdiff_t width, const ptrdiff_t sum_stride, const ptrdiff_t sum_width, uint16_t* sum3, uint16_t* sum5, uint32_t* square_sum3, uint32_t* square_sum5) { int y = 2; do { const __m128i s0 = LoadUnaligned16Msan(src, kOverreadInBytesPass1_128 - width); __m128i sq_128[2], s3, s5, sq3[2], sq5[2]; __m256i sq[3]; sq_128[0] = SquareLo8(s0); sq_128[1] = SquareHi8(s0); SumHorizontalLo(s0, &s3, &s5); StoreAligned16(sum3, s3); StoreAligned16(sum5, s5); SumHorizontal(sq_128, &sq3[0], &sq3[1], &sq5[0], &sq5[1]); StoreAligned32U32(square_sum3, sq3); StoreAligned32U32(square_sum5, sq5); src += 8; sum3 += 8; sum5 += 8; square_sum3 += 8; square_sum5 += 8; sq[0] = SetrM128i(sq_128[1], sq_128[1]); ptrdiff_t x = sum_width; do { __m256i row3[2], row5[2], row_sq3[2], row_sq5[2]; const __m256i s = LoadUnaligned32Msan( src + 8, sum_width - x + 16 + kOverreadInBytesPass1_256 - width); sq[1] = SquareLo8(s); sq[2] = SquareHi8(s); sq[0] = _mm256_permute2x128_si256(sq[0], sq[2], 0x21); SumHorizontal(src, sum_width - x + 8 + kOverreadInBytesPass1_256 - width, &row3[0], &row3[1], &row5[0], &row5[1]); StoreAligned64(sum3, row3); StoreAligned64(sum5, row5); SumHorizontal(sq + 0, &row_sq3[0], &row_sq3[1], &row_sq5[0], &row_sq5[1]); StoreAligned64(square_sum3 + 0, row_sq3); StoreAligned64(square_sum5 + 0, row_sq5); SumHorizontal(sq + 1, &row_sq3[0], &row_sq3[1], &row_sq5[0], &row_sq5[1]); StoreAligned64(square_sum3 + 16, row_sq3); StoreAligned64(square_sum5 + 16, row_sq5); sq[0] = sq[2]; src += 32; sum3 += 32; sum5 += 32; square_sum3 += 32; square_sum5 += 32; x -= 32; } while (x != 0); src += src_stride - sum_width - 8; sum3 += sum_stride - sum_width - 8; sum5 += sum_stride - sum_width - 8; square_sum3 += sum_stride - sum_width - 8; square_sum5 += sum_stride - sum_width - 8; } while (--y != 0); } template inline void BoxSum(const uint8_t* src, const ptrdiff_t src_stride, const ptrdiff_t width, const ptrdiff_t sum_stride, const ptrdiff_t sum_width, uint16_t* sums, uint32_t* square_sums) { static_assert(size == 3 || size == 5, ""); int kOverreadInBytes_128, kOverreadInBytes_256; if (size == 3) { kOverreadInBytes_128 = kOverreadInBytesPass2_128; kOverreadInBytes_256 = kOverreadInBytesPass2_256; } else { kOverreadInBytes_128 = kOverreadInBytesPass1_128; kOverreadInBytes_256 = kOverreadInBytesPass1_256; } int y = 2; do { const __m128i s = LoadUnaligned16Msan(src, kOverreadInBytes_128 - width); __m128i ss, sq_128[2], sqs[2]; __m256i sq[3]; sq_128[0] = SquareLo8(s); sq_128[1] = SquareHi8(s); if (size == 3) { ss = Sum3Horizontal(s); Sum3WHorizontal(sq_128, sqs); } else { ss = Sum5Horizontal(s); Sum5WHorizontal(sq_128, sqs); } StoreAligned16(sums, ss); StoreAligned32U32(square_sums, sqs); src += 8; sums += 8; square_sums += 8; sq[0] = SetrM128i(sq_128[1], sq_128[1]); ptrdiff_t x = sum_width; do { __m256i row[2], row_sq[4]; const __m256i s = LoadUnaligned32Msan( src + 8, sum_width - x + 16 + kOverreadInBytes_256 - width); sq[1] = SquareLo8(s); sq[2] = SquareHi8(s); sq[0] = _mm256_permute2x128_si256(sq[0], sq[2], 0x21); if (size == 3) { Sum3Horizontal(src, sum_width - x + 8 + kOverreadInBytes_256 - width, row); Sum3WHorizontal(sq + 0, row_sq + 0); Sum3WHorizontal(sq + 1, row_sq + 2); } else { Sum5Horizontal(src, sum_width - x + 8 + kOverreadInBytes_256 - width, &row[0], &row[1]); Sum5WHorizontal(sq + 0, row_sq + 0); Sum5WHorizontal(sq + 1, row_sq + 2); } StoreAligned64(sums, row); StoreAligned64(square_sums + 0, row_sq + 0); StoreAligned64(square_sums + 16, row_sq + 2); sq[0] = sq[2]; src += 32; sums += 32; square_sums += 32; x -= 32; } while (x != 0); src += src_stride - sum_width - 8; sums += sum_stride - sum_width - 8; square_sums += sum_stride - sum_width - 8; } while (--y != 0); } template inline __m128i CalculateMa(const __m128i sum, const __m128i sum_sq, const uint32_t scale) { static_assert(n == 9 || n == 25, ""); // a = |sum_sq| // d = |sum| // p = (a * n < d * d) ? 0 : a * n - d * d; const __m128i dxd = _mm_madd_epi16(sum, sum); // _mm_mullo_epi32() has high latency. Using shifts and additions instead. // Some compilers could do this for us but we make this explicit. // return _mm_mullo_epi32(sum_sq, _mm_set1_epi32(n)); __m128i axn = _mm_add_epi32(sum_sq, _mm_slli_epi32(sum_sq, 3)); if (n == 25) axn = _mm_add_epi32(axn, _mm_slli_epi32(sum_sq, 4)); const __m128i sub = _mm_sub_epi32(axn, dxd); const __m128i p = _mm_max_epi32(sub, _mm_setzero_si128()); const __m128i pxs = _mm_mullo_epi32(p, _mm_set1_epi32(scale)); return VrshrU32(pxs, kSgrProjScaleBits); } template inline __m128i CalculateMa(const __m128i sum, const __m128i sum_sq[2], const uint32_t scale) { static_assert(n == 9 || n == 25, ""); const __m128i sum_lo = _mm_unpacklo_epi16(sum, _mm_setzero_si128()); const __m128i sum_hi = _mm_unpackhi_epi16(sum, _mm_setzero_si128()); const __m128i z0 = CalculateMa(sum_lo, sum_sq[0], scale); const __m128i z1 = CalculateMa(sum_hi, sum_sq[1], scale); return _mm_packus_epi32(z0, z1); } template inline __m256i CalculateMa(const __m256i sum, const __m256i sum_sq, const uint32_t scale) { static_assert(n == 9 || n == 25, ""); // a = |sum_sq| // d = |sum| // p = (a * n < d * d) ? 0 : a * n - d * d; const __m256i dxd = _mm256_madd_epi16(sum, sum); // _mm256_mullo_epi32() has high latency. Using shifts and additions instead. // Some compilers could do this for us but we make this explicit. // return _mm256_mullo_epi32(sum_sq, _mm256_set1_epi32(n)); __m256i axn = _mm256_add_epi32(sum_sq, _mm256_slli_epi32(sum_sq, 3)); if (n == 25) axn = _mm256_add_epi32(axn, _mm256_slli_epi32(sum_sq, 4)); const __m256i sub = _mm256_sub_epi32(axn, dxd); const __m256i p = _mm256_max_epi32(sub, _mm256_setzero_si256()); const __m256i pxs = _mm256_mullo_epi32(p, _mm256_set1_epi32(scale)); return VrshrU32(pxs, kSgrProjScaleBits); } template inline __m256i CalculateMa(const __m256i sum, const __m256i sum_sq[2], const uint32_t scale) { static_assert(n == 9 || n == 25, ""); const __m256i sum_lo = _mm256_unpacklo_epi16(sum, _mm256_setzero_si256()); const __m256i sum_hi = _mm256_unpackhi_epi16(sum, _mm256_setzero_si256()); const __m256i z0 = CalculateMa(sum_lo, sum_sq[0], scale); const __m256i z1 = CalculateMa(sum_hi, sum_sq[1], scale); return _mm256_packus_epi32(z0, z1); } inline __m128i CalculateB5(const __m128i sum, const __m128i ma) { // one_over_n == 164. constexpr uint32_t one_over_n = ((1 << kSgrProjReciprocalBits) + (25 >> 1)) / 25; // one_over_n_quarter == 41. constexpr uint32_t one_over_n_quarter = one_over_n >> 2; static_assert(one_over_n == one_over_n_quarter << 2, ""); // |ma| is in range [0, 255]. const __m128i m = _mm_maddubs_epi16(ma, _mm_set1_epi16(one_over_n_quarter)); const __m128i m0 = VmullLo16(m, sum); const __m128i m1 = VmullHi16(m, sum); const __m128i b_lo = VrshrU32(m0, kSgrProjReciprocalBits - 2); const __m128i b_hi = VrshrU32(m1, kSgrProjReciprocalBits - 2); return _mm_packus_epi32(b_lo, b_hi); } inline __m256i CalculateB5(const __m256i sum, const __m256i ma) { // one_over_n == 164. constexpr uint32_t one_over_n = ((1 << kSgrProjReciprocalBits) + (25 >> 1)) / 25; // one_over_n_quarter == 41. constexpr uint32_t one_over_n_quarter = one_over_n >> 2; static_assert(one_over_n == one_over_n_quarter << 2, ""); // |ma| is in range [0, 255]. const __m256i m = _mm256_maddubs_epi16(ma, _mm256_set1_epi16(one_over_n_quarter)); const __m256i m0 = VmullLo16(m, sum); const __m256i m1 = VmullHi16(m, sum); const __m256i b_lo = VrshrU32(m0, kSgrProjReciprocalBits - 2); const __m256i b_hi = VrshrU32(m1, kSgrProjReciprocalBits - 2); return _mm256_packus_epi32(b_lo, b_hi); } inline __m128i CalculateB3(const __m128i sum, const __m128i ma) { // one_over_n == 455. constexpr uint32_t one_over_n = ((1 << kSgrProjReciprocalBits) + (9 >> 1)) / 9; const __m128i m0 = VmullLo16(ma, sum); const __m128i m1 = VmullHi16(ma, sum); const __m128i m2 = _mm_mullo_epi32(m0, _mm_set1_epi32(one_over_n)); const __m128i m3 = _mm_mullo_epi32(m1, _mm_set1_epi32(one_over_n)); const __m128i b_lo = VrshrU32(m2, kSgrProjReciprocalBits); const __m128i b_hi = VrshrU32(m3, kSgrProjReciprocalBits); return _mm_packus_epi32(b_lo, b_hi); } inline __m256i CalculateB3(const __m256i sum, const __m256i ma) { // one_over_n == 455. constexpr uint32_t one_over_n = ((1 << kSgrProjReciprocalBits) + (9 >> 1)) / 9; const __m256i m0 = VmullLo16(ma, sum); const __m256i m1 = VmullHi16(ma, sum); const __m256i m2 = _mm256_mullo_epi32(m0, _mm256_set1_epi32(one_over_n)); const __m256i m3 = _mm256_mullo_epi32(m1, _mm256_set1_epi32(one_over_n)); const __m256i b_lo = VrshrU32(m2, kSgrProjReciprocalBits); const __m256i b_hi = VrshrU32(m3, kSgrProjReciprocalBits); return _mm256_packus_epi32(b_lo, b_hi); } inline void CalculateSumAndIndex5(const __m128i s5[5], const __m128i sq5[5][2], const uint32_t scale, __m128i* const sum, __m128i* const index) { __m128i sum_sq[2]; *sum = Sum5_16(s5); Sum5_32(sq5, sum_sq); *index = CalculateMa<25>(*sum, sum_sq, scale); } inline void CalculateSumAndIndex5(const __m256i s5[5], const __m256i sq5[5][2], const uint32_t scale, __m256i* const sum, __m256i* const index) { __m256i sum_sq[2]; *sum = Sum5_16(s5); Sum5_32(sq5, sum_sq); *index = CalculateMa<25>(*sum, sum_sq, scale); } inline void CalculateSumAndIndex3(const __m128i s3[3], const __m128i sq3[3][2], const uint32_t scale, __m128i* const sum, __m128i* const index) { __m128i sum_sq[2]; *sum = Sum3_16(s3); Sum3_32(sq3, sum_sq); *index = CalculateMa<9>(*sum, sum_sq, scale); } inline void CalculateSumAndIndex3(const __m256i s3[3], const __m256i sq3[3][2], const uint32_t scale, __m256i* const sum, __m256i* const index) { __m256i sum_sq[2]; *sum = Sum3_16(s3); Sum3_32(sq3, sum_sq); *index = CalculateMa<9>(*sum, sum_sq, scale); } template inline void LookupIntermediate(const __m128i sum, const __m128i index, __m128i* const ma, __m128i* const b) { static_assert(n == 9 || n == 25, ""); const __m128i idx = _mm_packus_epi16(index, index); // Actually it's not stored and loaded. The compiler will use a 64-bit // general-purpose register to process. Faster than using _mm_extract_epi8(). uint8_t temp[8]; StoreLo8(temp, idx); *ma = _mm_cvtsi32_si128(kSgrMaLookup[temp[0]]); *ma = _mm_insert_epi8(*ma, kSgrMaLookup[temp[1]], 1); *ma = _mm_insert_epi8(*ma, kSgrMaLookup[temp[2]], 2); *ma = _mm_insert_epi8(*ma, kSgrMaLookup[temp[3]], 3); *ma = _mm_insert_epi8(*ma, kSgrMaLookup[temp[4]], 4); *ma = _mm_insert_epi8(*ma, kSgrMaLookup[temp[5]], 5); *ma = _mm_insert_epi8(*ma, kSgrMaLookup[temp[6]], 6); *ma = _mm_insert_epi8(*ma, kSgrMaLookup[temp[7]], 7); // b = ma * b * one_over_n // |ma| = [0, 255] // |sum| is a box sum with radius 1 or 2. // For the first pass radius is 2. Maximum value is 5x5x255 = 6375. // For the second pass radius is 1. Maximum value is 3x3x255 = 2295. // |one_over_n| = ((1 << kSgrProjReciprocalBits) + (n >> 1)) / n // When radius is 2 |n| is 25. |one_over_n| is 164. // When radius is 1 |n| is 9. |one_over_n| is 455. // |kSgrProjReciprocalBits| is 12. // Radius 2: 255 * 6375 * 164 >> 12 = 65088 (16 bits). // Radius 1: 255 * 2295 * 455 >> 12 = 65009 (16 bits). const __m128i maq = _mm_unpacklo_epi8(*ma, _mm_setzero_si128()); *b = (n == 9) ? CalculateB3(sum, maq) : CalculateB5(sum, maq); } // Repeat the first 48 elements in kSgrMaLookup with a period of 16. alignas(32) constexpr uint8_t kSgrMaLookupAvx2[96] = { 255, 128, 85, 64, 51, 43, 37, 32, 28, 26, 23, 21, 20, 18, 17, 16, 255, 128, 85, 64, 51, 43, 37, 32, 28, 26, 23, 21, 20, 18, 17, 16, 15, 14, 13, 13, 12, 12, 11, 11, 10, 10, 9, 9, 9, 9, 8, 8, 15, 14, 13, 13, 12, 12, 11, 11, 10, 10, 9, 9, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 5, 5, 8, 8, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 5, 5}; // Set the shuffle control mask of indices out of range [0, 15] to (1xxxxxxx)b // to get value 0 as the shuffle result. The most significiant bit 1 comes // either from the comparison instruction, or from the sign bit of the index. inline __m256i ShuffleIndex(const __m256i table, const __m256i index) { __m256i mask; mask = _mm256_cmpgt_epi8(index, _mm256_set1_epi8(15)); mask = _mm256_or_si256(mask, index); return _mm256_shuffle_epi8(table, mask); } inline __m256i AdjustValue(const __m256i value, const __m256i index, const int threshold) { const __m256i thresholds = _mm256_set1_epi8(threshold - 128); const __m256i offset = _mm256_cmpgt_epi8(index, thresholds); return _mm256_add_epi8(value, offset); } template inline void CalculateIntermediate(const __m256i sum[2], const __m256i index[2], __m256i ma[3], __m256i b[2]) { static_assert(n == 9 || n == 25, ""); // Use table lookup to read elements whose indices are less than 48. const __m256i c0 = LoadAligned32(kSgrMaLookupAvx2 + 0 * 32); const __m256i c1 = LoadAligned32(kSgrMaLookupAvx2 + 1 * 32); const __m256i c2 = LoadAligned32(kSgrMaLookupAvx2 + 2 * 32); const __m256i indices = _mm256_packus_epi16(index[0], index[1]); __m256i idx, mas; // Clip idx to 127 to apply signed comparison instructions. idx = _mm256_min_epu8(indices, _mm256_set1_epi8(127)); // All elements whose indices are less than 48 are set to 0. // Get shuffle results for indices in range [0, 15]. mas = ShuffleIndex(c0, idx); // Get shuffle results for indices in range [16, 31]. // Subtract 16 to utilize the sign bit of the index. idx = _mm256_sub_epi8(idx, _mm256_set1_epi8(16)); const __m256i res1 = ShuffleIndex(c1, idx); // Use OR instruction to combine shuffle results together. mas = _mm256_or_si256(mas, res1); // Get shuffle results for indices in range [32, 47]. // Subtract 16 to utilize the sign bit of the index. idx = _mm256_sub_epi8(idx, _mm256_set1_epi8(16)); const __m256i res2 = ShuffleIndex(c2, idx); mas = _mm256_or_si256(mas, res2); // For elements whose indices are larger than 47, since they seldom change // values with the increase of the index, we use comparison and arithmetic // operations to calculate their values. // Add -128 to apply signed comparison instructions. idx = _mm256_add_epi8(indices, _mm256_set1_epi8(-128)); // Elements whose indices are larger than 47 (with value 0) are set to 5. mas = _mm256_max_epu8(mas, _mm256_set1_epi8(5)); mas = AdjustValue(mas, idx, 55); // 55 is the last index which value is 5. mas = AdjustValue(mas, idx, 72); // 72 is the last index which value is 4. mas = AdjustValue(mas, idx, 101); // 101 is the last index which value is 3. mas = AdjustValue(mas, idx, 169); // 169 is the last index which value is 2. mas = AdjustValue(mas, idx, 254); // 254 is the last index which value is 1. ma[2] = _mm256_permute4x64_epi64(mas, 0x93); // 32-39 8-15 16-23 24-31 ma[0] = _mm256_blend_epi32(ma[0], ma[2], 0xfc); // 0-7 8-15 16-23 24-31 ma[1] = _mm256_permute2x128_si256(ma[0], ma[2], 0x21); // b = ma * b * one_over_n // |ma| = [0, 255] // |sum| is a box sum with radius 1 or 2. // For the first pass radius is 2. Maximum value is 5x5x255 = 6375. // For the second pass radius is 1. Maximum value is 3x3x255 = 2295. // |one_over_n| = ((1 << kSgrProjReciprocalBits) + (n >> 1)) / n // When radius is 2 |n| is 25. |one_over_n| is 164. // When radius is 1 |n| is 9. |one_over_n| is 455. // |kSgrProjReciprocalBits| is 12. // Radius 2: 255 * 6375 * 164 >> 12 = 65088 (16 bits). // Radius 1: 255 * 2295 * 455 >> 12 = 65009 (16 bits). const __m256i maq0 = _mm256_unpackhi_epi8(ma[0], _mm256_setzero_si256()); const __m256i maq1 = _mm256_unpacklo_epi8(ma[1], _mm256_setzero_si256()); if (n == 9) { b[0] = CalculateB3(sum[0], maq0); b[1] = CalculateB3(sum[1], maq1); } else { b[0] = CalculateB5(sum[0], maq0); b[1] = CalculateB5(sum[1], maq1); } } inline void CalculateIntermediate5(const __m128i s5[5], const __m128i sq5[5][2], const uint32_t scale, __m128i* const ma, __m128i* const b) { __m128i sum, index; CalculateSumAndIndex5(s5, sq5, scale, &sum, &index); LookupIntermediate<25>(sum, index, ma, b); } inline void CalculateIntermediate3(const __m128i s3[3], const __m128i sq3[3][2], const uint32_t scale, __m128i* const ma, __m128i* const b) { __m128i sum, index; CalculateSumAndIndex3(s3, sq3, scale, &sum, &index); LookupIntermediate<9>(sum, index, ma, b); } inline void Store343_444(const __m256i b3[2], const ptrdiff_t x, __m256i sum_b343[2], __m256i sum_b444[2], uint32_t* const b343, uint32_t* const b444) { __m256i b[3], sum_b111[2]; Prepare3_16(b3, b); sum_b111[0] = Sum3WLo32(b); sum_b111[1] = Sum3WHi32(b); sum_b444[0] = _mm256_slli_epi32(sum_b111[0], 2); sum_b444[1] = _mm256_slli_epi32(sum_b111[1], 2); StoreAligned64(b444 + x, sum_b444); sum_b343[0] = _mm256_sub_epi32(sum_b444[0], sum_b111[0]); sum_b343[1] = _mm256_sub_epi32(sum_b444[1], sum_b111[1]); sum_b343[0] = VaddwLo16(sum_b343[0], b[1]); sum_b343[1] = VaddwHi16(sum_b343[1], b[1]); StoreAligned64(b343 + x, sum_b343); } inline void Store343_444Lo(const __m256i ma3[3], const __m256i b3[2], const ptrdiff_t x, __m256i* const sum_ma343, __m256i* const sum_ma444, __m256i sum_b343[2], __m256i sum_b444[2], uint16_t* const ma343, uint16_t* const ma444, uint32_t* const b343, uint32_t* const b444) { const __m256i sum_ma111 = Sum3WLo16(ma3); *sum_ma444 = _mm256_slli_epi16(sum_ma111, 2); StoreAligned32(ma444 + x, *sum_ma444); const __m256i sum333 = _mm256_sub_epi16(*sum_ma444, sum_ma111); *sum_ma343 = VaddwLo8(sum333, ma3[1]); StoreAligned32(ma343 + x, *sum_ma343); Store343_444(b3, x, sum_b343, sum_b444, b343, b444); } inline void Store343_444Hi(const __m256i ma3[3], const __m256i b3[2], const ptrdiff_t x, __m256i* const sum_ma343, __m256i* const sum_ma444, __m256i sum_b343[2], __m256i sum_b444[2], uint16_t* const ma343, uint16_t* const ma444, uint32_t* const b343, uint32_t* const b444) { const __m256i sum_ma111 = Sum3WHi16(ma3); *sum_ma444 = _mm256_slli_epi16(sum_ma111, 2); StoreAligned32(ma444 + x, *sum_ma444); const __m256i sum333 = _mm256_sub_epi16(*sum_ma444, sum_ma111); *sum_ma343 = VaddwHi8(sum333, ma3[1]); StoreAligned32(ma343 + x, *sum_ma343); Store343_444(b3, x, sum_b343, sum_b444, b343, b444); } inline void Store343_444Lo(const __m256i ma3[3], const __m256i b3[2], const ptrdiff_t x, __m256i* const sum_ma343, __m256i sum_b343[2], uint16_t* const ma343, uint16_t* const ma444, uint32_t* const b343, uint32_t* const b444) { __m256i sum_ma444, sum_b444[2]; Store343_444Lo(ma3, b3, x, sum_ma343, &sum_ma444, sum_b343, sum_b444, ma343, ma444, b343, b444); } inline void Store343_444Hi(const __m256i ma3[3], const __m256i b3[2], const ptrdiff_t x, __m256i* const sum_ma343, __m256i sum_b343[2], uint16_t* const ma343, uint16_t* const ma444, uint32_t* const b343, uint32_t* const b444) { __m256i sum_ma444, sum_b444[2]; Store343_444Hi(ma3, b3, x, sum_ma343, &sum_ma444, sum_b343, sum_b444, ma343, ma444, b343, b444); } inline void Store343_444Lo(const __m256i ma3[3], const __m256i b3[2], const ptrdiff_t x, uint16_t* const ma343, uint16_t* const ma444, uint32_t* const b343, uint32_t* const b444) { __m256i sum_ma343, sum_b343[2]; Store343_444Lo(ma3, b3, x, &sum_ma343, sum_b343, ma343, ma444, b343, b444); } inline void Store343_444Hi(const __m256i ma3[3], const __m256i b3[2], const ptrdiff_t x, uint16_t* const ma343, uint16_t* const ma444, uint32_t* const b343, uint32_t* const b444) { __m256i sum_ma343, sum_b343[2]; Store343_444Hi(ma3, b3, x, &sum_ma343, sum_b343, ma343, ma444, b343, b444); } LIBGAV1_ALWAYS_INLINE void BoxFilterPreProcess5Lo( const __m128i s[2][3], const uint32_t scale, uint16_t* const sum5[5], uint32_t* const square_sum5[5], __m128i sq[2][2], __m128i* const ma, __m128i* const b) { __m128i s5[2][5], sq5[5][2]; sq[0][1] = SquareHi8(s[0][0]); sq[1][1] = SquareHi8(s[1][0]); s5[0][3] = Sum5Horizontal(s[0][0]); StoreAligned16(sum5[3], s5[0][3]); s5[0][4] = Sum5Horizontal(s[1][0]); StoreAligned16(sum5[4], s5[0][4]); Sum5WHorizontal(sq[0], sq5[3]); StoreAligned32U32(square_sum5[3], sq5[3]); Sum5WHorizontal(sq[1], sq5[4]); StoreAligned32U32(square_sum5[4], sq5[4]); LoadAligned16x3U16(sum5, 0, s5[0]); LoadAligned32x3U32(square_sum5, 0, sq5); CalculateIntermediate5(s5[0], sq5, scale, ma, b); } LIBGAV1_ALWAYS_INLINE void BoxFilterPreProcess5( const uint8_t* const src0, const uint8_t* const src1, const ptrdiff_t over_read_in_bytes, const ptrdiff_t sum_width, const ptrdiff_t x, const uint32_t scale, uint16_t* const sum5[5], uint32_t* const square_sum5[5], __m256i sq[2][3], __m256i ma[3], __m256i b[3]) { const __m256i s0 = LoadUnaligned32Msan(src0 + 8, over_read_in_bytes + 8); const __m256i s1 = LoadUnaligned32Msan(src1 + 8, over_read_in_bytes + 8); __m256i s5[2][5], sq5[5][2], sum[2], index[2]; sq[0][1] = SquareLo8(s0); sq[0][2] = SquareHi8(s0); sq[1][1] = SquareLo8(s1); sq[1][2] = SquareHi8(s1); sq[0][0] = _mm256_permute2x128_si256(sq[0][0], sq[0][2], 0x21); sq[1][0] = _mm256_permute2x128_si256(sq[1][0], sq[1][2], 0x21); Sum5Horizontal(src0, over_read_in_bytes, &s5[0][3], &s5[1][3]); Sum5Horizontal(src1, over_read_in_bytes, &s5[0][4], &s5[1][4]); StoreAligned32(sum5[3] + x + 0, s5[0][3]); StoreAligned32(sum5[3] + x + 16, s5[1][3]); StoreAligned32(sum5[4] + x + 0, s5[0][4]); StoreAligned32(sum5[4] + x + 16, s5[1][4]); Sum5WHorizontal(sq[0], sq5[3]); StoreAligned64(square_sum5[3] + x, sq5[3]); Sum5WHorizontal(sq[1], sq5[4]); StoreAligned64(square_sum5[4] + x, sq5[4]); LoadAligned32x3U16(sum5, x, s5[0]); LoadAligned64x3U32(square_sum5, x, sq5); CalculateSumAndIndex5(s5[0], sq5, scale, &sum[0], &index[0]); Sum5WHorizontal(sq[0] + 1, sq5[3]); StoreAligned64(square_sum5[3] + x + 16, sq5[3]); Sum5WHorizontal(sq[1] + 1, sq5[4]); StoreAligned64(square_sum5[4] + x + 16, sq5[4]); LoadAligned32x3U16Msan(sum5, x + 16, sum_width, s5[1]); LoadAligned64x3U32Msan(square_sum5, x + 16, sum_width, sq5); CalculateSumAndIndex5(s5[1], sq5, scale, &sum[1], &index[1]); CalculateIntermediate<25>(sum, index, ma, b + 1); b[0] = _mm256_permute2x128_si256(b[0], b[2], 0x21); } LIBGAV1_ALWAYS_INLINE void BoxFilterPreProcess5LastRowLo( const __m128i s, const uint32_t scale, const uint16_t* const sum5[5], const uint32_t* const square_sum5[5], __m128i sq[2], __m128i* const ma, __m128i* const b) { __m128i s5[5], sq5[5][2]; sq[1] = SquareHi8(s); s5[3] = s5[4] = Sum5Horizontal(s); Sum5WHorizontal(sq, sq5[3]); sq5[4][0] = sq5[3][0]; sq5[4][1] = sq5[3][1]; LoadAligned16x3U16(sum5, 0, s5); LoadAligned32x3U32(square_sum5, 0, sq5); CalculateIntermediate5(s5, sq5, scale, ma, b); } LIBGAV1_ALWAYS_INLINE void BoxFilterPreProcess5LastRow( const uint8_t* const src, const ptrdiff_t over_read_in_bytes, const ptrdiff_t sum_width, const ptrdiff_t x, const uint32_t scale, const uint16_t* const sum5[5], const uint32_t* const square_sum5[5], __m256i sq[3], __m256i ma[3], __m256i b[3]) { const __m256i s = LoadUnaligned32Msan(src + 8, over_read_in_bytes + 8); __m256i s5[2][5], sq5[5][2], sum[2], index[2]; sq[1] = SquareLo8(s); sq[2] = SquareHi8(s); sq[0] = _mm256_permute2x128_si256(sq[0], sq[2], 0x21); Sum5Horizontal(src, over_read_in_bytes, &s5[0][3], &s5[1][3]); s5[0][4] = s5[0][3]; s5[1][4] = s5[1][3]; Sum5WHorizontal(sq, sq5[3]); sq5[4][0] = sq5[3][0]; sq5[4][1] = sq5[3][1]; LoadAligned32x3U16(sum5, x, s5[0]); LoadAligned64x3U32(square_sum5, x, sq5); CalculateSumAndIndex5(s5[0], sq5, scale, &sum[0], &index[0]); Sum5WHorizontal(sq + 1, sq5[3]); sq5[4][0] = sq5[3][0]; sq5[4][1] = sq5[3][1]; LoadAligned32x3U16Msan(sum5, x + 16, sum_width, s5[1]); LoadAligned64x3U32Msan(square_sum5, x + 16, sum_width, sq5); CalculateSumAndIndex5(s5[1], sq5, scale, &sum[1], &index[1]); CalculateIntermediate<25>(sum, index, ma, b + 1); b[0] = _mm256_permute2x128_si256(b[0], b[2], 0x21); } LIBGAV1_ALWAYS_INLINE void BoxFilterPreProcess3Lo( const __m128i s, const uint32_t scale, uint16_t* const sum3[3], uint32_t* const square_sum3[3], __m128i sq[2], __m128i* const ma, __m128i* const b) { __m128i s3[3], sq3[3][2]; sq[1] = SquareHi8(s); s3[2] = Sum3Horizontal(s); StoreAligned16(sum3[2], s3[2]); Sum3WHorizontal(sq, sq3[2]); StoreAligned32U32(square_sum3[2], sq3[2]); LoadAligned16x2U16(sum3, 0, s3); LoadAligned32x2U32(square_sum3, 0, sq3); CalculateIntermediate3(s3, sq3, scale, ma, b); } LIBGAV1_ALWAYS_INLINE void BoxFilterPreProcess3( const uint8_t* const src, const ptrdiff_t over_read_in_bytes, const ptrdiff_t x, const ptrdiff_t sum_width, const uint32_t scale, uint16_t* const sum3[3], uint32_t* const square_sum3[3], __m256i sq[3], __m256i ma[3], __m256i b[3]) { const __m256i s = LoadUnaligned32Msan(src + 8, over_read_in_bytes + 8); __m256i s3[4], sq3[3][2], sum[2], index[2]; sq[1] = SquareLo8(s); sq[2] = SquareHi8(s); sq[0] = _mm256_permute2x128_si256(sq[0], sq[2], 0x21); Sum3Horizontal(src, over_read_in_bytes, s3 + 2); StoreAligned64(sum3[2] + x, s3 + 2); Sum3WHorizontal(sq + 0, sq3[2]); StoreAligned64(square_sum3[2] + x, sq3[2]); LoadAligned32x2U16(sum3, x, s3); LoadAligned64x2U32(square_sum3, x, sq3); CalculateSumAndIndex3(s3, sq3, scale, &sum[0], &index[0]); Sum3WHorizontal(sq + 1, sq3[2]); StoreAligned64(square_sum3[2] + x + 16, sq3[2]); LoadAligned32x2U16Msan(sum3, x + 16, sum_width, s3 + 1); LoadAligned64x2U32Msan(square_sum3, x + 16, sum_width, sq3); CalculateSumAndIndex3(s3 + 1, sq3, scale, &sum[1], &index[1]); CalculateIntermediate<9>(sum, index, ma, b + 1); b[0] = _mm256_permute2x128_si256(b[0], b[2], 0x21); } LIBGAV1_ALWAYS_INLINE void BoxFilterPreProcessLo( const __m128i s[2], const uint16_t scales[2], uint16_t* const sum3[4], uint16_t* const sum5[5], uint32_t* const square_sum3[4], uint32_t* const square_sum5[5], __m128i sq[2][2], __m128i ma3[2], __m128i b3[2], __m128i* const ma5, __m128i* const b5) { __m128i s3[4], s5[5], sq3[4][2], sq5[5][2]; sq[0][1] = SquareHi8(s[0]); sq[1][1] = SquareHi8(s[1]); SumHorizontalLo(s[0], &s3[2], &s5[3]); SumHorizontalLo(s[1], &s3[3], &s5[4]); StoreAligned16(sum3[2], s3[2]); StoreAligned16(sum3[3], s3[3]); StoreAligned16(sum5[3], s5[3]); StoreAligned16(sum5[4], s5[4]); SumHorizontal(sq[0], &sq3[2][0], &sq3[2][1], &sq5[3][0], &sq5[3][1]); StoreAligned32U32(square_sum3[2], sq3[2]); StoreAligned32U32(square_sum5[3], sq5[3]); SumHorizontal(sq[1], &sq3[3][0], &sq3[3][1], &sq5[4][0], &sq5[4][1]); StoreAligned32U32(square_sum3[3], sq3[3]); StoreAligned32U32(square_sum5[4], sq5[4]); LoadAligned16x2U16(sum3, 0, s3); LoadAligned32x2U32(square_sum3, 0, sq3); LoadAligned16x3U16(sum5, 0, s5); LoadAligned32x3U32(square_sum5, 0, sq5); // Note: in the SSE4_1 version, CalculateIntermediate() is called // to replace the slow LookupIntermediate() when calculating 16 intermediate // data points. However, the AVX2 compiler generates even slower code. So we // keep using CalculateIntermediate3(). CalculateIntermediate3(s3 + 0, sq3 + 0, scales[1], &ma3[0], &b3[0]); CalculateIntermediate3(s3 + 1, sq3 + 1, scales[1], &ma3[1], &b3[1]); CalculateIntermediate5(s5, sq5, scales[0], ma5, b5); } LIBGAV1_ALWAYS_INLINE void BoxFilterPreProcess( const uint8_t* const src0, const uint8_t* const src1, const ptrdiff_t over_read_in_bytes, const ptrdiff_t x, const uint16_t scales[2], uint16_t* const sum3[4], uint16_t* const sum5[5], uint32_t* const square_sum3[4], uint32_t* const square_sum5[5], const ptrdiff_t sum_width, __m256i sq[2][3], __m256i ma3[2][3], __m256i b3[2][5], __m256i ma5[3], __m256i b5[5]) { const __m256i s0 = LoadUnaligned32Msan(src0 + 8, over_read_in_bytes + 8); const __m256i s1 = LoadUnaligned32Msan(src1 + 8, over_read_in_bytes + 8); __m256i s3[2][4], s5[2][5], sq3[4][2], sq5[5][2], sum_3[2][2], index_3[2][2], sum_5[2], index_5[2]; sq[0][1] = SquareLo8(s0); sq[0][2] = SquareHi8(s0); sq[1][1] = SquareLo8(s1); sq[1][2] = SquareHi8(s1); sq[0][0] = _mm256_permute2x128_si256(sq[0][0], sq[0][2], 0x21); sq[1][0] = _mm256_permute2x128_si256(sq[1][0], sq[1][2], 0x21); SumHorizontal(src0, over_read_in_bytes, &s3[0][2], &s3[1][2], &s5[0][3], &s5[1][3]); SumHorizontal(src1, over_read_in_bytes, &s3[0][3], &s3[1][3], &s5[0][4], &s5[1][4]); StoreAligned32(sum3[2] + x + 0, s3[0][2]); StoreAligned32(sum3[2] + x + 16, s3[1][2]); StoreAligned32(sum3[3] + x + 0, s3[0][3]); StoreAligned32(sum3[3] + x + 16, s3[1][3]); StoreAligned32(sum5[3] + x + 0, s5[0][3]); StoreAligned32(sum5[3] + x + 16, s5[1][3]); StoreAligned32(sum5[4] + x + 0, s5[0][4]); StoreAligned32(sum5[4] + x + 16, s5[1][4]); SumHorizontal(sq[0], &sq3[2][0], &sq3[2][1], &sq5[3][0], &sq5[3][1]); SumHorizontal(sq[1], &sq3[3][0], &sq3[3][1], &sq5[4][0], &sq5[4][1]); StoreAligned64(square_sum3[2] + x, sq3[2]); StoreAligned64(square_sum5[3] + x, sq5[3]); StoreAligned64(square_sum3[3] + x, sq3[3]); StoreAligned64(square_sum5[4] + x, sq5[4]); LoadAligned32x2U16(sum3, x, s3[0]); LoadAligned64x2U32(square_sum3, x, sq3); CalculateSumAndIndex3(s3[0], sq3, scales[1], &sum_3[0][0], &index_3[0][0]); CalculateSumAndIndex3(s3[0] + 1, sq3 + 1, scales[1], &sum_3[1][0], &index_3[1][0]); LoadAligned32x3U16(sum5, x, s5[0]); LoadAligned64x3U32(square_sum5, x, sq5); CalculateSumAndIndex5(s5[0], sq5, scales[0], &sum_5[0], &index_5[0]); SumHorizontal(sq[0] + 1, &sq3[2][0], &sq3[2][1], &sq5[3][0], &sq5[3][1]); SumHorizontal(sq[1] + 1, &sq3[3][0], &sq3[3][1], &sq5[4][0], &sq5[4][1]); StoreAligned64(square_sum3[2] + x + 16, sq3[2]); StoreAligned64(square_sum5[3] + x + 16, sq5[3]); StoreAligned64(square_sum3[3] + x + 16, sq3[3]); StoreAligned64(square_sum5[4] + x + 16, sq5[4]); LoadAligned32x2U16Msan(sum3, x + 16, sum_width, s3[1]); LoadAligned64x2U32Msan(square_sum3, x + 16, sum_width, sq3); CalculateSumAndIndex3(s3[1], sq3, scales[1], &sum_3[0][1], &index_3[0][1]); CalculateSumAndIndex3(s3[1] + 1, sq3 + 1, scales[1], &sum_3[1][1], &index_3[1][1]); CalculateIntermediate<9>(sum_3[0], index_3[0], ma3[0], b3[0] + 1); CalculateIntermediate<9>(sum_3[1], index_3[1], ma3[1], b3[1] + 1); LoadAligned32x3U16Msan(sum5, x + 16, sum_width, s5[1]); LoadAligned64x3U32Msan(square_sum5, x + 16, sum_width, sq5); CalculateSumAndIndex5(s5[1], sq5, scales[0], &sum_5[1], &index_5[1]); CalculateIntermediate<25>(sum_5, index_5, ma5, b5 + 1); b3[0][0] = _mm256_permute2x128_si256(b3[0][0], b3[0][2], 0x21); b3[1][0] = _mm256_permute2x128_si256(b3[1][0], b3[1][2], 0x21); b5[0] = _mm256_permute2x128_si256(b5[0], b5[2], 0x21); } LIBGAV1_ALWAYS_INLINE void BoxFilterPreProcessLastRowLo( const __m128i s, const uint16_t scales[2], const uint16_t* const sum3[4], const uint16_t* const sum5[5], const uint32_t* const square_sum3[4], const uint32_t* const square_sum5[5], __m128i sq[2], __m128i* const ma3, __m128i* const ma5, __m128i* const b3, __m128i* const b5) { __m128i s3[3], s5[5], sq3[3][2], sq5[5][2]; sq[1] = SquareHi8(s); SumHorizontalLo(s, &s3[2], &s5[3]); SumHorizontal(sq, &sq3[2][0], &sq3[2][1], &sq5[3][0], &sq5[3][1]); LoadAligned16x3U16(sum5, 0, s5); s5[4] = s5[3]; LoadAligned32x3U32(square_sum5, 0, sq5); sq5[4][0] = sq5[3][0]; sq5[4][1] = sq5[3][1]; CalculateIntermediate5(s5, sq5, scales[0], ma5, b5); LoadAligned16x2U16(sum3, 0, s3); LoadAligned32x2U32(square_sum3, 0, sq3); CalculateIntermediate3(s3, sq3, scales[1], ma3, b3); } LIBGAV1_ALWAYS_INLINE void BoxFilterPreProcessLastRow( const uint8_t* const src, const ptrdiff_t over_read_in_bytes, const ptrdiff_t sum_width, const ptrdiff_t x, const uint16_t scales[2], const uint16_t* const sum3[4], const uint16_t* const sum5[5], const uint32_t* const square_sum3[4], const uint32_t* const square_sum5[5], __m256i sq[6], __m256i ma3[2], __m256i ma5[2], __m256i b3[5], __m256i b5[5]) { const __m256i s0 = LoadUnaligned32Msan(src + 8, over_read_in_bytes + 8); __m256i s3[2][3], s5[2][5], sq3[4][2], sq5[5][2], sum_3[2], index_3[2], sum_5[2], index_5[2]; sq[1] = SquareLo8(s0); sq[2] = SquareHi8(s0); sq[0] = _mm256_permute2x128_si256(sq[0], sq[2], 0x21); SumHorizontal(src, over_read_in_bytes, &s3[0][2], &s3[1][2], &s5[0][3], &s5[1][3]); SumHorizontal(sq, &sq3[2][0], &sq3[2][1], &sq5[3][0], &sq5[3][1]); LoadAligned32x2U16(sum3, x, s3[0]); LoadAligned64x2U32(square_sum3, x, sq3); CalculateSumAndIndex3(s3[0], sq3, scales[1], &sum_3[0], &index_3[0]); LoadAligned32x3U16(sum5, x, s5[0]); s5[0][4] = s5[0][3]; LoadAligned64x3U32(square_sum5, x, sq5); sq5[4][0] = sq5[3][0]; sq5[4][1] = sq5[3][1]; CalculateSumAndIndex5(s5[0], sq5, scales[0], &sum_5[0], &index_5[0]); SumHorizontal(sq + 1, &sq3[2][0], &sq3[2][1], &sq5[3][0], &sq5[3][1]); LoadAligned32x2U16Msan(sum3, x + 16, sum_width, s3[1]); LoadAligned64x2U32Msan(square_sum3, x + 16, sum_width, sq3); CalculateSumAndIndex3(s3[1], sq3, scales[1], &sum_3[1], &index_3[1]); CalculateIntermediate<9>(sum_3, index_3, ma3, b3 + 1); LoadAligned32x3U16Msan(sum5, x + 16, sum_width, s5[1]); s5[1][4] = s5[1][3]; LoadAligned64x3U32Msan(square_sum5, x + 16, sum_width, sq5); sq5[4][0] = sq5[3][0]; sq5[4][1] = sq5[3][1]; CalculateSumAndIndex5(s5[1], sq5, scales[0], &sum_5[1], &index_5[1]); CalculateIntermediate<25>(sum_5, index_5, ma5, b5 + 1); b3[0] = _mm256_permute2x128_si256(b3[0], b3[2], 0x21); b5[0] = _mm256_permute2x128_si256(b5[0], b5[2], 0x21); } inline void BoxSumFilterPreProcess5(const uint8_t* const src0, const uint8_t* const src1, const int width, const uint32_t scale, uint16_t* const sum5[5], uint32_t* const square_sum5[5], const ptrdiff_t sum_width, uint16_t* ma565, uint32_t* b565) { __m128i ma0, b0, s[2][3], sq_128[2][2]; __m256i mas[3], sq[2][3], bs[3]; s[0][0] = LoadUnaligned16Msan(src0, kOverreadInBytesPass1_128 - width); s[1][0] = LoadUnaligned16Msan(src1, kOverreadInBytesPass1_128 - width); sq_128[0][0] = SquareLo8(s[0][0]); sq_128[1][0] = SquareLo8(s[1][0]); BoxFilterPreProcess5Lo(s, scale, sum5, square_sum5, sq_128, &ma0, &b0); sq[0][0] = SetrM128i(sq_128[0][0], sq_128[0][1]); sq[1][0] = SetrM128i(sq_128[1][0], sq_128[1][1]); mas[0] = SetrM128i(ma0, ma0); bs[0] = SetrM128i(b0, b0); int x = 0; do { __m256i ma5[3], ma[2], b[4]; BoxFilterPreProcess5(src0 + x + 8, src1 + x + 8, x + 8 + kOverreadInBytesPass1_256 - width, sum_width, x + 8, scale, sum5, square_sum5, sq, mas, bs); Prepare3_8(mas, ma5); ma[0] = Sum565Lo(ma5); ma[1] = Sum565Hi(ma5); StoreAligned64(ma565, ma); Sum565W(bs + 0, b + 0); Sum565W(bs + 1, b + 2); StoreAligned64(b565, b + 0); StoreAligned64(b565 + 16, b + 2); sq[0][0] = sq[0][2]; sq[1][0] = sq[1][2]; mas[0] = mas[2]; bs[0] = bs[2]; ma565 += 32; b565 += 32; x += 32; } while (x < width); } template LIBGAV1_ALWAYS_INLINE void BoxSumFilterPreProcess3( const uint8_t* const src, const int width, const uint32_t scale, uint16_t* const sum3[3], uint32_t* const square_sum3[3], const ptrdiff_t sum_width, uint16_t* ma343, uint16_t* ma444, uint32_t* b343, uint32_t* b444) { const __m128i s = LoadUnaligned16Msan(src, kOverreadInBytesPass2_128 - width); __m128i ma0, sq_128[2], b0; __m256i mas[3], sq[3], bs[3]; sq_128[0] = SquareLo8(s); BoxFilterPreProcess3Lo(s, scale, sum3, square_sum3, sq_128, &ma0, &b0); sq[0] = SetrM128i(sq_128[0], sq_128[1]); mas[0] = SetrM128i(ma0, ma0); bs[0] = SetrM128i(b0, b0); int x = 0; do { __m256i ma3[3]; BoxFilterPreProcess3(src + x + 8, x + 8 + kOverreadInBytesPass2_256 - width, x + 8, sum_width, scale, sum3, square_sum3, sq, mas, bs); Prepare3_8(mas, ma3); if (calculate444) { // NOLINT(readability-simplify-boolean-expr) Store343_444Lo(ma3, bs + 0, 0, ma343, ma444, b343, b444); Store343_444Hi(ma3, bs + 1, 16, ma343, ma444, b343, b444); ma444 += 32; b444 += 32; } else { __m256i ma[2], b[4]; ma[0] = Sum343Lo(ma3); ma[1] = Sum343Hi(ma3); StoreAligned64(ma343, ma); Sum343W(bs + 0, b + 0); Sum343W(bs + 1, b + 2); StoreAligned64(b343 + 0, b + 0); StoreAligned64(b343 + 16, b + 2); } sq[0] = sq[2]; mas[0] = mas[2]; bs[0] = bs[2]; ma343 += 32; b343 += 32; x += 32; } while (x < width); } inline void BoxSumFilterPreProcess( const uint8_t* const src0, const uint8_t* const src1, const int width, const uint16_t scales[2], uint16_t* const sum3[4], uint16_t* const sum5[5], uint32_t* const square_sum3[4], uint32_t* const square_sum5[5], const ptrdiff_t sum_width, uint16_t* const ma343[4], uint16_t* const ma444, uint16_t* ma565, uint32_t* const b343[4], uint32_t* const b444, uint32_t* b565) { __m128i s[2], ma3_128[2], ma5_0, sq_128[2][2], b3_128[2], b5_0; __m256i ma3[2][3], ma5[3], sq[2][3], b3[2][5], b5[5]; s[0] = LoadUnaligned16Msan(src0, kOverreadInBytesPass1_128 - width); s[1] = LoadUnaligned16Msan(src1, kOverreadInBytesPass1_128 - width); sq_128[0][0] = SquareLo8(s[0]); sq_128[1][0] = SquareLo8(s[1]); BoxFilterPreProcessLo(s, scales, sum3, sum5, square_sum3, square_sum5, sq_128, ma3_128, b3_128, &ma5_0, &b5_0); sq[0][0] = SetrM128i(sq_128[0][0], sq_128[0][1]); sq[1][0] = SetrM128i(sq_128[1][0], sq_128[1][1]); ma3[0][0] = SetrM128i(ma3_128[0], ma3_128[0]); ma3[1][0] = SetrM128i(ma3_128[1], ma3_128[1]); ma5[0] = SetrM128i(ma5_0, ma5_0); b3[0][0] = SetrM128i(b3_128[0], b3_128[0]); b3[1][0] = SetrM128i(b3_128[1], b3_128[1]); b5[0] = SetrM128i(b5_0, b5_0); int x = 0; do { __m256i ma[2], b[4], ma3x[3], ma5x[3]; BoxFilterPreProcess(src0 + x + 8, src1 + x + 8, x + 8 + kOverreadInBytesPass1_256 - width, x + 8, scales, sum3, sum5, square_sum3, square_sum5, sum_width, sq, ma3, b3, ma5, b5); Prepare3_8(ma3[0], ma3x); ma[0] = Sum343Lo(ma3x); ma[1] = Sum343Hi(ma3x); StoreAligned64(ma343[0] + x, ma); Sum343W(b3[0], b); StoreAligned64(b343[0] + x, b); Sum565W(b5, b); StoreAligned64(b565, b); Prepare3_8(ma3[1], ma3x); Store343_444Lo(ma3x, b3[1], x, ma343[1], ma444, b343[1], b444); Store343_444Hi(ma3x, b3[1] + 1, x + 16, ma343[1], ma444, b343[1], b444); Prepare3_8(ma5, ma5x); ma[0] = Sum565Lo(ma5x); ma[1] = Sum565Hi(ma5x); StoreAligned64(ma565, ma); Sum343W(b3[0] + 1, b); StoreAligned64(b343[0] + x + 16, b); Sum565W(b5 + 1, b); StoreAligned64(b565 + 16, b); sq[0][0] = sq[0][2]; sq[1][0] = sq[1][2]; ma3[0][0] = ma3[0][2]; ma3[1][0] = ma3[1][2]; ma5[0] = ma5[2]; b3[0][0] = b3[0][2]; b3[1][0] = b3[1][2]; b5[0] = b5[2]; ma565 += 32; b565 += 32; x += 32; } while (x < width); } template inline __m256i FilterOutput(const __m256i ma_x_src, const __m256i b) { // ma: 255 * 32 = 8160 (13 bits) // b: 65088 * 32 = 2082816 (21 bits) // v: b - ma * 255 (22 bits) const __m256i v = _mm256_sub_epi32(b, ma_x_src); // kSgrProjSgrBits = 8 // kSgrProjRestoreBits = 4 // shift = 4 or 5 // v >> 8 or 9 (13 bits) return VrshrS32(v, kSgrProjSgrBits + shift - kSgrProjRestoreBits); } template inline __m256i CalculateFilteredOutput(const __m256i src, const __m256i ma, const __m256i b[2]) { const __m256i ma_x_src_lo = VmullLo16(ma, src); const __m256i ma_x_src_hi = VmullHi16(ma, src); const __m256i dst_lo = FilterOutput(ma_x_src_lo, b[0]); const __m256i dst_hi = FilterOutput(ma_x_src_hi, b[1]); return _mm256_packs_epi32(dst_lo, dst_hi); // 13 bits } inline __m256i CalculateFilteredOutputPass1(const __m256i src, const __m256i ma[2], const __m256i b[2][2]) { const __m256i ma_sum = _mm256_add_epi16(ma[0], ma[1]); __m256i b_sum[2]; b_sum[0] = _mm256_add_epi32(b[0][0], b[1][0]); b_sum[1] = _mm256_add_epi32(b[0][1], b[1][1]); return CalculateFilteredOutput<5>(src, ma_sum, b_sum); } inline __m256i CalculateFilteredOutputPass2(const __m256i src, const __m256i ma[3], const __m256i b[3][2]) { const __m256i ma_sum = Sum3_16(ma); __m256i b_sum[2]; Sum3_32(b, b_sum); return CalculateFilteredOutput<5>(src, ma_sum, b_sum); } inline __m256i SelfGuidedFinal(const __m256i src, const __m256i v[2]) { const __m256i v_lo = VrshrS32(v[0], kSgrProjRestoreBits + kSgrProjPrecisionBits); const __m256i v_hi = VrshrS32(v[1], kSgrProjRestoreBits + kSgrProjPrecisionBits); const __m256i vv = _mm256_packs_epi32(v_lo, v_hi); return _mm256_add_epi16(src, vv); } inline __m256i SelfGuidedDoubleMultiplier(const __m256i src, const __m256i filter[2], const int w0, const int w2) { __m256i v[2]; const __m256i w0_w2 = _mm256_set1_epi32((w2 << 16) | static_cast(w0)); const __m256i f_lo = _mm256_unpacklo_epi16(filter[0], filter[1]); const __m256i f_hi = _mm256_unpackhi_epi16(filter[0], filter[1]); v[0] = _mm256_madd_epi16(w0_w2, f_lo); v[1] = _mm256_madd_epi16(w0_w2, f_hi); return SelfGuidedFinal(src, v); } inline __m256i SelfGuidedSingleMultiplier(const __m256i src, const __m256i filter, const int w0) { // weight: -96 to 96 (Sgrproj_Xqd_Min/Max) __m256i v[2]; v[0] = VmullNLo8(filter, w0); v[1] = VmullNHi8(filter, w0); return SelfGuidedFinal(src, v); } LIBGAV1_ALWAYS_INLINE void BoxFilterPass1( const uint8_t* const src, const uint8_t* const src0, const uint8_t* const src1, const ptrdiff_t stride, uint16_t* const sum5[5], uint32_t* const square_sum5[5], const int width, const ptrdiff_t sum_width, const uint32_t scale, const int16_t w0, uint16_t* const ma565[2], uint32_t* const b565[2], uint8_t* const dst) { __m128i ma0, b0, s[2][3], sq_128[2][2]; __m256i mas[3], sq[2][3], bs[3]; s[0][0] = LoadUnaligned16Msan(src0, kOverreadInBytesPass1_128 - width); s[1][0] = LoadUnaligned16Msan(src1, kOverreadInBytesPass1_128 - width); sq_128[0][0] = SquareLo8(s[0][0]); sq_128[1][0] = SquareLo8(s[1][0]); BoxFilterPreProcess5Lo(s, scale, sum5, square_sum5, sq_128, &ma0, &b0); sq[0][0] = SetrM128i(sq_128[0][0], sq_128[0][1]); sq[1][0] = SetrM128i(sq_128[1][0], sq_128[1][1]); mas[0] = SetrM128i(ma0, ma0); bs[0] = SetrM128i(b0, b0); int x = 0; do { __m256i ma[3], ma5[3], b[2][2][2]; BoxFilterPreProcess5(src0 + x + 8, src1 + x + 8, x + 8 + kOverreadInBytesPass1_256 - width, sum_width, x + 8, scale, sum5, square_sum5, sq, mas, bs); Prepare3_8(mas, ma5); ma[1] = Sum565Lo(ma5); ma[2] = Sum565Hi(ma5); StoreAligned64(ma565[1] + x, ma + 1); Sum565W(bs + 0, b[0][1]); Sum565W(bs + 1, b[1][1]); StoreAligned64(b565[1] + x + 0, b[0][1]); StoreAligned64(b565[1] + x + 16, b[1][1]); const __m256i sr0 = LoadUnaligned32(src + x); const __m256i sr1 = LoadUnaligned32(src + stride + x); const __m256i sr0_lo = _mm256_unpacklo_epi8(sr0, _mm256_setzero_si256()); const __m256i sr1_lo = _mm256_unpacklo_epi8(sr1, _mm256_setzero_si256()); ma[0] = LoadAligned32(ma565[0] + x); LoadAligned64(b565[0] + x, b[0][0]); const __m256i p00 = CalculateFilteredOutputPass1(sr0_lo, ma, b[0]); const __m256i p01 = CalculateFilteredOutput<4>(sr1_lo, ma[1], b[0][1]); const __m256i d00 = SelfGuidedSingleMultiplier(sr0_lo, p00, w0); const __m256i d10 = SelfGuidedSingleMultiplier(sr1_lo, p01, w0); const __m256i sr0_hi = _mm256_unpackhi_epi8(sr0, _mm256_setzero_si256()); const __m256i sr1_hi = _mm256_unpackhi_epi8(sr1, _mm256_setzero_si256()); ma[1] = LoadAligned32(ma565[0] + x + 16); LoadAligned64(b565[0] + x + 16, b[1][0]); const __m256i p10 = CalculateFilteredOutputPass1(sr0_hi, ma + 1, b[1]); const __m256i p11 = CalculateFilteredOutput<4>(sr1_hi, ma[2], b[1][1]); const __m256i d01 = SelfGuidedSingleMultiplier(sr0_hi, p10, w0); const __m256i d11 = SelfGuidedSingleMultiplier(sr1_hi, p11, w0); StoreUnaligned32(dst + x, _mm256_packus_epi16(d00, d01)); StoreUnaligned32(dst + stride + x, _mm256_packus_epi16(d10, d11)); sq[0][0] = sq[0][2]; sq[1][0] = sq[1][2]; mas[0] = mas[2]; bs[0] = bs[2]; x += 32; } while (x < width); } inline void BoxFilterPass1LastRow( const uint8_t* const src, const uint8_t* const src0, const int width, const ptrdiff_t sum_width, const uint32_t scale, const int16_t w0, uint16_t* const sum5[5], uint32_t* const square_sum5[5], uint16_t* ma565, uint32_t* b565, uint8_t* const dst) { const __m128i s0 = LoadUnaligned16Msan(src0, kOverreadInBytesPass1_128 - width); __m128i ma0, b0, sq_128[2]; __m256i mas[3], sq[3], bs[3]; sq_128[0] = SquareLo8(s0); BoxFilterPreProcess5LastRowLo(s0, scale, sum5, square_sum5, sq_128, &ma0, &b0); sq[0] = SetrM128i(sq_128[0], sq_128[1]); mas[0] = SetrM128i(ma0, ma0); bs[0] = SetrM128i(b0, b0); int x = 0; do { __m256i ma[3], ma5[3], b[2][2]; BoxFilterPreProcess5LastRow( src0 + x + 8, x + 8 + kOverreadInBytesPass1_256 - width, sum_width, x + 8, scale, sum5, square_sum5, sq, mas, bs); Prepare3_8(mas, ma5); ma[1] = Sum565Lo(ma5); ma[2] = Sum565Hi(ma5); Sum565W(bs + 0, b[1]); const __m256i sr = LoadUnaligned32(src + x); const __m256i sr_lo = _mm256_unpacklo_epi8(sr, _mm256_setzero_si256()); const __m256i sr_hi = _mm256_unpackhi_epi8(sr, _mm256_setzero_si256()); ma[0] = LoadAligned32(ma565); LoadAligned64(b565 + 0, b[0]); const __m256i p0 = CalculateFilteredOutputPass1(sr_lo, ma, b); ma[1] = LoadAligned32(ma565 + 16); LoadAligned64(b565 + 16, b[0]); Sum565W(bs + 1, b[1]); const __m256i p1 = CalculateFilteredOutputPass1(sr_hi, ma + 1, b); const __m256i d0 = SelfGuidedSingleMultiplier(sr_lo, p0, w0); const __m256i d1 = SelfGuidedSingleMultiplier(sr_hi, p1, w0); StoreUnaligned32(dst + x, _mm256_packus_epi16(d0, d1)); sq[0] = sq[2]; mas[0] = mas[2]; bs[0] = bs[2]; ma565 += 32; b565 += 32; x += 32; } while (x < width); } LIBGAV1_ALWAYS_INLINE void BoxFilterPass2( const uint8_t* const src, const uint8_t* const src0, const int width, const ptrdiff_t sum_width, const uint32_t scale, const int16_t w0, uint16_t* const sum3[3], uint32_t* const square_sum3[3], uint16_t* const ma343[3], uint16_t* const ma444[2], uint32_t* const b343[3], uint32_t* const b444[2], uint8_t* const dst) { const __m128i s0 = LoadUnaligned16Msan(src0, kOverreadInBytesPass2_128 - width); __m128i ma0, b0, sq_128[2]; __m256i mas[3], sq[3], bs[3]; sq_128[0] = SquareLo8(s0); BoxFilterPreProcess3Lo(s0, scale, sum3, square_sum3, sq_128, &ma0, &b0); sq[0] = SetrM128i(sq_128[0], sq_128[1]); mas[0] = SetrM128i(ma0, ma0); bs[0] = SetrM128i(b0, b0); int x = 0; do { __m256i ma[4], b[4][2], ma3[3]; BoxFilterPreProcess3(src0 + x + 8, x + 8 + kOverreadInBytesPass2_256 - width, x + 8, sum_width, scale, sum3, square_sum3, sq, mas, bs); Prepare3_8(mas, ma3); Store343_444Lo(ma3, bs + 0, x + 0, &ma[2], b[2], ma343[2], ma444[1], b343[2], b444[1]); Store343_444Hi(ma3, bs + 1, x + 16, &ma[3], b[3], ma343[2], ma444[1], b343[2], b444[1]); const __m256i sr = LoadUnaligned32(src + x); const __m256i sr_lo = _mm256_unpacklo_epi8(sr, _mm256_setzero_si256()); const __m256i sr_hi = _mm256_unpackhi_epi8(sr, _mm256_setzero_si256()); ma[0] = LoadAligned32(ma343[0] + x); ma[1] = LoadAligned32(ma444[0] + x); LoadAligned64(b343[0] + x, b[0]); LoadAligned64(b444[0] + x, b[1]); const __m256i p0 = CalculateFilteredOutputPass2(sr_lo, ma, b); ma[1] = LoadAligned32(ma343[0] + x + 16); ma[2] = LoadAligned32(ma444[0] + x + 16); LoadAligned64(b343[0] + x + 16, b[1]); LoadAligned64(b444[0] + x + 16, b[2]); const __m256i p1 = CalculateFilteredOutputPass2(sr_hi, ma + 1, b + 1); const __m256i d0 = SelfGuidedSingleMultiplier(sr_lo, p0, w0); const __m256i d1 = SelfGuidedSingleMultiplier(sr_hi, p1, w0); StoreUnaligned32(dst + x, _mm256_packus_epi16(d0, d1)); sq[0] = sq[2]; mas[0] = mas[2]; bs[0] = bs[2]; x += 32; } while (x < width); } LIBGAV1_ALWAYS_INLINE void BoxFilter( const uint8_t* const src, const uint8_t* const src0, const uint8_t* const src1, const ptrdiff_t stride, const int width, const uint16_t scales[2], const int16_t w0, const int16_t w2, uint16_t* const sum3[4], uint16_t* const sum5[5], uint32_t* const square_sum3[4], uint32_t* const square_sum5[5], const ptrdiff_t sum_width, uint16_t* const ma343[4], uint16_t* const ma444[3], uint16_t* const ma565[2], uint32_t* const b343[4], uint32_t* const b444[3], uint32_t* const b565[2], uint8_t* const dst) { __m128i s[2], ma3_128[2], ma5_0, sq_128[2][2], b3_128[2], b5_0; __m256i ma3[2][3], ma5[3], sq[2][3], b3[2][5], b5[5]; s[0] = LoadUnaligned16Msan(src0, kOverreadInBytesPass1_128 - width); s[1] = LoadUnaligned16Msan(src1, kOverreadInBytesPass1_128 - width); sq_128[0][0] = SquareLo8(s[0]); sq_128[1][0] = SquareLo8(s[1]); BoxFilterPreProcessLo(s, scales, sum3, sum5, square_sum3, square_sum5, sq_128, ma3_128, b3_128, &ma5_0, &b5_0); sq[0][0] = SetrM128i(sq_128[0][0], sq_128[0][1]); sq[1][0] = SetrM128i(sq_128[1][0], sq_128[1][1]); ma3[0][0] = SetrM128i(ma3_128[0], ma3_128[0]); ma3[1][0] = SetrM128i(ma3_128[1], ma3_128[1]); ma5[0] = SetrM128i(ma5_0, ma5_0); b3[0][0] = SetrM128i(b3_128[0], b3_128[0]); b3[1][0] = SetrM128i(b3_128[1], b3_128[1]); b5[0] = SetrM128i(b5_0, b5_0); int x = 0; do { __m256i ma[3][3], mat[3][3], b[3][3][2], p[2][2], ma3x[2][3], ma5x[3]; BoxFilterPreProcess(src0 + x + 8, src1 + x + 8, x + 8 + kOverreadInBytesPass1_256 - width, x + 8, scales, sum3, sum5, square_sum3, square_sum5, sum_width, sq, ma3, b3, ma5, b5); Prepare3_8(ma3[0], ma3x[0]); Prepare3_8(ma3[1], ma3x[1]); Prepare3_8(ma5, ma5x); Store343_444Lo(ma3x[0], b3[0], x, &ma[1][2], &ma[2][1], b[1][2], b[2][1], ma343[2], ma444[1], b343[2], b444[1]); Store343_444Lo(ma3x[1], b3[1], x, &ma[2][2], b[2][2], ma343[3], ma444[2], b343[3], b444[2]); ma[0][1] = Sum565Lo(ma5x); ma[0][2] = Sum565Hi(ma5x); mat[0][1] = ma[0][2]; StoreAligned64(ma565[1] + x, ma[0] + 1); Sum565W(b5, b[0][1]); StoreAligned64(b565[1] + x, b[0][1]); const __m256i sr0 = LoadUnaligned32(src + x); const __m256i sr1 = LoadUnaligned32(src + stride + x); const __m256i sr0_lo = _mm256_unpacklo_epi8(sr0, _mm256_setzero_si256()); const __m256i sr1_lo = _mm256_unpacklo_epi8(sr1, _mm256_setzero_si256()); ma[0][0] = LoadAligned32(ma565[0] + x); LoadAligned64(b565[0] + x, b[0][0]); p[0][0] = CalculateFilteredOutputPass1(sr0_lo, ma[0], b[0]); p[1][0] = CalculateFilteredOutput<4>(sr1_lo, ma[0][1], b[0][1]); ma[1][0] = LoadAligned32(ma343[0] + x); ma[1][1] = LoadAligned32(ma444[0] + x); LoadAligned64(b343[0] + x, b[1][0]); LoadAligned64(b444[0] + x, b[1][1]); p[0][1] = CalculateFilteredOutputPass2(sr0_lo, ma[1], b[1]); const __m256i d00 = SelfGuidedDoubleMultiplier(sr0_lo, p[0], w0, w2); ma[2][0] = LoadAligned32(ma343[1] + x); LoadAligned64(b343[1] + x, b[2][0]); p[1][1] = CalculateFilteredOutputPass2(sr1_lo, ma[2], b[2]); const __m256i d10 = SelfGuidedDoubleMultiplier(sr1_lo, p[1], w0, w2); Sum565W(b5 + 1, b[0][1]); StoreAligned64(b565[1] + x + 16, b[0][1]); Store343_444Hi(ma3x[0], b3[0] + 1, x + 16, &mat[1][2], &mat[2][1], b[1][2], b[2][1], ma343[2], ma444[1], b343[2], b444[1]); Store343_444Hi(ma3x[1], b3[1] + 1, x + 16, &mat[2][2], b[2][2], ma343[3], ma444[2], b343[3], b444[2]); const __m256i sr0_hi = _mm256_unpackhi_epi8(sr0, _mm256_setzero_si256()); const __m256i sr1_hi = _mm256_unpackhi_epi8(sr1, _mm256_setzero_si256()); mat[0][0] = LoadAligned32(ma565[0] + x + 16); LoadAligned64(b565[0] + x + 16, b[0][0]); p[0][0] = CalculateFilteredOutputPass1(sr0_hi, mat[0], b[0]); p[1][0] = CalculateFilteredOutput<4>(sr1_hi, mat[0][1], b[0][1]); mat[1][0] = LoadAligned32(ma343[0] + x + 16); mat[1][1] = LoadAligned32(ma444[0] + x + 16); LoadAligned64(b343[0] + x + 16, b[1][0]); LoadAligned64(b444[0] + x + 16, b[1][1]); p[0][1] = CalculateFilteredOutputPass2(sr0_hi, mat[1], b[1]); const __m256i d01 = SelfGuidedDoubleMultiplier(sr0_hi, p[0], w0, w2); mat[2][0] = LoadAligned32(ma343[1] + x + 16); LoadAligned64(b343[1] + x + 16, b[2][0]); p[1][1] = CalculateFilteredOutputPass2(sr1_hi, mat[2], b[2]); const __m256i d11 = SelfGuidedDoubleMultiplier(sr1_hi, p[1], w0, w2); StoreUnaligned32(dst + x, _mm256_packus_epi16(d00, d01)); StoreUnaligned32(dst + stride + x, _mm256_packus_epi16(d10, d11)); sq[0][0] = sq[0][2]; sq[1][0] = sq[1][2]; ma3[0][0] = ma3[0][2]; ma3[1][0] = ma3[1][2]; ma5[0] = ma5[2]; b3[0][0] = b3[0][2]; b3[1][0] = b3[1][2]; b5[0] = b5[2]; x += 32; } while (x < width); } inline void BoxFilterLastRow( const uint8_t* const src, const uint8_t* const src0, const int width, const ptrdiff_t sum_width, const uint16_t scales[2], const int16_t w0, const int16_t w2, uint16_t* const sum3[4], uint16_t* const sum5[5], uint32_t* const square_sum3[4], uint32_t* const square_sum5[5], uint16_t* const ma343, uint16_t* const ma444, uint16_t* const ma565, uint32_t* const b343, uint32_t* const b444, uint32_t* const b565, uint8_t* const dst) { const __m128i s0 = LoadUnaligned16Msan(src0, kOverreadInBytesPass1_128 - width); __m128i ma3_0, ma5_0, b3_0, b5_0, sq_128[2]; __m256i ma3[3], ma5[3], sq[3], b3[3], b5[3]; sq_128[0] = SquareLo8(s0); BoxFilterPreProcessLastRowLo(s0, scales, sum3, sum5, square_sum3, square_sum5, sq_128, &ma3_0, &ma5_0, &b3_0, &b5_0); sq[0] = SetrM128i(sq_128[0], sq_128[1]); ma3[0] = SetrM128i(ma3_0, ma3_0); ma5[0] = SetrM128i(ma5_0, ma5_0); b3[0] = SetrM128i(b3_0, b3_0); b5[0] = SetrM128i(b5_0, b5_0); int x = 0; do { __m256i ma[3], mat[3], b[3][2], p[2], ma3x[3], ma5x[3]; BoxFilterPreProcessLastRow(src0 + x + 8, x + 8 + kOverreadInBytesPass1_256 - width, sum_width, x + 8, scales, sum3, sum5, square_sum3, square_sum5, sq, ma3, ma5, b3, b5); Prepare3_8(ma3, ma3x); Prepare3_8(ma5, ma5x); ma[1] = Sum565Lo(ma5x); Sum565W(b5, b[1]); ma[2] = Sum343Lo(ma3x); Sum343W(b3, b[2]); const __m256i sr = LoadUnaligned32(src + x); const __m256i sr_lo = _mm256_unpacklo_epi8(sr, _mm256_setzero_si256()); ma[0] = LoadAligned32(ma565 + x); LoadAligned64(b565 + x, b[0]); p[0] = CalculateFilteredOutputPass1(sr_lo, ma, b); ma[0] = LoadAligned32(ma343 + x); ma[1] = LoadAligned32(ma444 + x); LoadAligned64(b343 + x, b[0]); LoadAligned64(b444 + x, b[1]); p[1] = CalculateFilteredOutputPass2(sr_lo, ma, b); const __m256i d0 = SelfGuidedDoubleMultiplier(sr_lo, p, w0, w2); mat[1] = Sum565Hi(ma5x); Sum565W(b5 + 1, b[1]); mat[2] = Sum343Hi(ma3x); Sum343W(b3 + 1, b[2]); const __m256i sr_hi = _mm256_unpackhi_epi8(sr, _mm256_setzero_si256()); mat[0] = LoadAligned32(ma565 + x + 16); LoadAligned64(b565 + x + 16, b[0]); p[0] = CalculateFilteredOutputPass1(sr_hi, mat, b); mat[0] = LoadAligned32(ma343 + x + 16); mat[1] = LoadAligned32(ma444 + x + 16); LoadAligned64(b343 + x + 16, b[0]); LoadAligned64(b444 + x + 16, b[1]); p[1] = CalculateFilteredOutputPass2(sr_hi, mat, b); const __m256i d1 = SelfGuidedDoubleMultiplier(sr_hi, p, w0, w2); StoreUnaligned32(dst + x, _mm256_packus_epi16(d0, d1)); sq[0] = sq[2]; ma3[0] = ma3[2]; ma5[0] = ma5[2]; b3[0] = b3[2]; b5[0] = b5[2]; x += 32; } while (x < width); } LIBGAV1_ALWAYS_INLINE void BoxFilterProcess( const RestorationUnitInfo& restoration_info, const uint8_t* src, const ptrdiff_t stride, const uint8_t* const top_border, const ptrdiff_t top_border_stride, const uint8_t* bottom_border, const ptrdiff_t bottom_border_stride, const int width, const int height, SgrBuffer* const sgr_buffer, uint8_t* dst) { const auto temp_stride = Align(width, 32); const auto sum_width = temp_stride + 8; const auto sum_stride = temp_stride + 32; const int sgr_proj_index = restoration_info.sgr_proj_info.index; const uint16_t* const scales = kSgrScaleParameter[sgr_proj_index]; // < 2^12. const int16_t w0 = restoration_info.sgr_proj_info.multiplier[0]; const int16_t w1 = restoration_info.sgr_proj_info.multiplier[1]; const int16_t w2 = (1 << kSgrProjPrecisionBits) - w0 - w1; uint16_t *sum3[4], *sum5[5], *ma343[4], *ma444[3], *ma565[2]; uint32_t *square_sum3[4], *square_sum5[5], *b343[4], *b444[3], *b565[2]; sum3[0] = sgr_buffer->sum3 + kSumOffset; square_sum3[0] = sgr_buffer->square_sum3 + kSumOffset; ma343[0] = sgr_buffer->ma343; b343[0] = sgr_buffer->b343; for (int i = 1; i <= 3; ++i) { sum3[i] = sum3[i - 1] + sum_stride; square_sum3[i] = square_sum3[i - 1] + sum_stride; ma343[i] = ma343[i - 1] + temp_stride; b343[i] = b343[i - 1] + temp_stride; } sum5[0] = sgr_buffer->sum5 + kSumOffset; square_sum5[0] = sgr_buffer->square_sum5 + kSumOffset; for (int i = 1; i <= 4; ++i) { sum5[i] = sum5[i - 1] + sum_stride; square_sum5[i] = square_sum5[i - 1] + sum_stride; } ma444[0] = sgr_buffer->ma444; b444[0] = sgr_buffer->b444; for (int i = 1; i <= 2; ++i) { ma444[i] = ma444[i - 1] + temp_stride; b444[i] = b444[i - 1] + temp_stride; } ma565[0] = sgr_buffer->ma565; ma565[1] = ma565[0] + temp_stride; b565[0] = sgr_buffer->b565; b565[1] = b565[0] + temp_stride; assert(scales[0] != 0); assert(scales[1] != 0); BoxSum(top_border, top_border_stride, width, sum_stride, temp_stride, sum3[0], sum5[1], square_sum3[0], square_sum5[1]); sum5[0] = sum5[1]; square_sum5[0] = square_sum5[1]; const uint8_t* const s = (height > 1) ? src + stride : bottom_border; BoxSumFilterPreProcess(src, s, width, scales, sum3, sum5, square_sum3, square_sum5, sum_width, ma343, ma444[0], ma565[0], b343, b444[0], b565[0]); sum5[0] = sgr_buffer->sum5 + kSumOffset; square_sum5[0] = sgr_buffer->square_sum5 + kSumOffset; for (int y = (height >> 1) - 1; y > 0; --y) { Circulate4PointersBy2(sum3); Circulate4PointersBy2(square_sum3); Circulate5PointersBy2(sum5); Circulate5PointersBy2(square_sum5); BoxFilter(src + 3, src + 2 * stride, src + 3 * stride, stride, width, scales, w0, w2, sum3, sum5, square_sum3, square_sum5, sum_width, ma343, ma444, ma565, b343, b444, b565, dst); src += 2 * stride; dst += 2 * stride; Circulate4PointersBy2(ma343); Circulate4PointersBy2(b343); std::swap(ma444[0], ma444[2]); std::swap(b444[0], b444[2]); std::swap(ma565[0], ma565[1]); std::swap(b565[0], b565[1]); } Circulate4PointersBy2(sum3); Circulate4PointersBy2(square_sum3); Circulate5PointersBy2(sum5); Circulate5PointersBy2(square_sum5); if ((height & 1) == 0 || height > 1) { const uint8_t* sr[2]; if ((height & 1) == 0) { sr[0] = bottom_border; sr[1] = bottom_border + bottom_border_stride; } else { sr[0] = src + 2 * stride; sr[1] = bottom_border; } BoxFilter(src + 3, sr[0], sr[1], stride, width, scales, w0, w2, sum3, sum5, square_sum3, square_sum5, sum_width, ma343, ma444, ma565, b343, b444, b565, dst); } if ((height & 1) != 0) { if (height > 1) { src += 2 * stride; dst += 2 * stride; Circulate4PointersBy2(sum3); Circulate4PointersBy2(square_sum3); Circulate5PointersBy2(sum5); Circulate5PointersBy2(square_sum5); Circulate4PointersBy2(ma343); Circulate4PointersBy2(b343); std::swap(ma444[0], ma444[2]); std::swap(b444[0], b444[2]); std::swap(ma565[0], ma565[1]); std::swap(b565[0], b565[1]); } BoxFilterLastRow(src + 3, bottom_border + bottom_border_stride, width, sum_width, scales, w0, w2, sum3, sum5, square_sum3, square_sum5, ma343[0], ma444[0], ma565[0], b343[0], b444[0], b565[0], dst); } } inline void BoxFilterProcessPass1(const RestorationUnitInfo& restoration_info, const uint8_t* src, const ptrdiff_t stride, const uint8_t* const top_border, const ptrdiff_t top_border_stride, const uint8_t* bottom_border, const ptrdiff_t bottom_border_stride, const int width, const int height, SgrBuffer* const sgr_buffer, uint8_t* dst) { const auto temp_stride = Align(width, 32); const auto sum_width = temp_stride + 8; const auto sum_stride = temp_stride + 32; const int sgr_proj_index = restoration_info.sgr_proj_info.index; const uint32_t scale = kSgrScaleParameter[sgr_proj_index][0]; // < 2^12. const int16_t w0 = restoration_info.sgr_proj_info.multiplier[0]; uint16_t *sum5[5], *ma565[2]; uint32_t *square_sum5[5], *b565[2]; sum5[0] = sgr_buffer->sum5 + kSumOffset; square_sum5[0] = sgr_buffer->square_sum5 + kSumOffset; for (int i = 1; i <= 4; ++i) { sum5[i] = sum5[i - 1] + sum_stride; square_sum5[i] = square_sum5[i - 1] + sum_stride; } ma565[0] = sgr_buffer->ma565; ma565[1] = ma565[0] + temp_stride; b565[0] = sgr_buffer->b565; b565[1] = b565[0] + temp_stride; assert(scale != 0); BoxSum<5>(top_border, top_border_stride, width, sum_stride, temp_stride, sum5[1], square_sum5[1]); sum5[0] = sum5[1]; square_sum5[0] = square_sum5[1]; const uint8_t* const s = (height > 1) ? src + stride : bottom_border; BoxSumFilterPreProcess5(src, s, width, scale, sum5, square_sum5, sum_width, ma565[0], b565[0]); sum5[0] = sgr_buffer->sum5 + kSumOffset; square_sum5[0] = sgr_buffer->square_sum5 + kSumOffset; for (int y = (height >> 1) - 1; y > 0; --y) { Circulate5PointersBy2(sum5); Circulate5PointersBy2(square_sum5); BoxFilterPass1(src + 3, src + 2 * stride, src + 3 * stride, stride, sum5, square_sum5, width, sum_width, scale, w0, ma565, b565, dst); src += 2 * stride; dst += 2 * stride; std::swap(ma565[0], ma565[1]); std::swap(b565[0], b565[1]); } Circulate5PointersBy2(sum5); Circulate5PointersBy2(square_sum5); if ((height & 1) == 0 || height > 1) { const uint8_t* sr[2]; if ((height & 1) == 0) { sr[0] = bottom_border; sr[1] = bottom_border + bottom_border_stride; } else { sr[0] = src + 2 * stride; sr[1] = bottom_border; } BoxFilterPass1(src + 3, sr[0], sr[1], stride, sum5, square_sum5, width, sum_width, scale, w0, ma565, b565, dst); } if ((height & 1) != 0) { src += 3; if (height > 1) { src += 2 * stride; dst += 2 * stride; std::swap(ma565[0], ma565[1]); std::swap(b565[0], b565[1]); Circulate5PointersBy2(sum5); Circulate5PointersBy2(square_sum5); } BoxFilterPass1LastRow(src, bottom_border + bottom_border_stride, width, sum_width, scale, w0, sum5, square_sum5, ma565[0], b565[0], dst); } } inline void BoxFilterProcessPass2(const RestorationUnitInfo& restoration_info, const uint8_t* src, const ptrdiff_t stride, const uint8_t* const top_border, const ptrdiff_t top_border_stride, const uint8_t* bottom_border, const ptrdiff_t bottom_border_stride, const int width, const int height, SgrBuffer* const sgr_buffer, uint8_t* dst) { assert(restoration_info.sgr_proj_info.multiplier[0] == 0); const auto temp_stride = Align(width, 32); const auto sum_width = temp_stride + 8; const auto sum_stride = temp_stride + 32; const int16_t w1 = restoration_info.sgr_proj_info.multiplier[1]; const int16_t w0 = (1 << kSgrProjPrecisionBits) - w1; const int sgr_proj_index = restoration_info.sgr_proj_info.index; const uint32_t scale = kSgrScaleParameter[sgr_proj_index][1]; // < 2^12. uint16_t *sum3[3], *ma343[3], *ma444[2]; uint32_t *square_sum3[3], *b343[3], *b444[2]; sum3[0] = sgr_buffer->sum3 + kSumOffset; square_sum3[0] = sgr_buffer->square_sum3 + kSumOffset; ma343[0] = sgr_buffer->ma343; b343[0] = sgr_buffer->b343; for (int i = 1; i <= 2; ++i) { sum3[i] = sum3[i - 1] + sum_stride; square_sum3[i] = square_sum3[i - 1] + sum_stride; ma343[i] = ma343[i - 1] + temp_stride; b343[i] = b343[i - 1] + temp_stride; } ma444[0] = sgr_buffer->ma444; ma444[1] = ma444[0] + temp_stride; b444[0] = sgr_buffer->b444; b444[1] = b444[0] + temp_stride; assert(scale != 0); BoxSum<3>(top_border, top_border_stride, width, sum_stride, temp_stride, sum3[0], square_sum3[0]); BoxSumFilterPreProcess3(src, width, scale, sum3, square_sum3, sum_width, ma343[0], nullptr, b343[0], nullptr); Circulate3PointersBy1(sum3); Circulate3PointersBy1(square_sum3); const uint8_t* s; if (height > 1) { s = src + stride; } else { s = bottom_border; bottom_border += bottom_border_stride; } BoxSumFilterPreProcess3(s, width, scale, sum3, square_sum3, sum_width, ma343[1], ma444[0], b343[1], b444[0]); for (int y = height - 2; y > 0; --y) { Circulate3PointersBy1(sum3); Circulate3PointersBy1(square_sum3); BoxFilterPass2(src + 2, src + 2 * stride, width, sum_width, scale, w0, sum3, square_sum3, ma343, ma444, b343, b444, dst); src += stride; dst += stride; Circulate3PointersBy1(ma343); Circulate3PointersBy1(b343); std::swap(ma444[0], ma444[1]); std::swap(b444[0], b444[1]); } int y = std::min(height, 2); src += 2; do { Circulate3PointersBy1(sum3); Circulate3PointersBy1(square_sum3); BoxFilterPass2(src, bottom_border, width, sum_width, scale, w0, sum3, square_sum3, ma343, ma444, b343, b444, dst); src += stride; dst += stride; bottom_border += bottom_border_stride; Circulate3PointersBy1(ma343); Circulate3PointersBy1(b343); std::swap(ma444[0], ma444[1]); std::swap(b444[0], b444[1]); } while (--y != 0); } // If |width| is non-multiple of 32, up to 31 more pixels are written to |dest| // in the end of each row. It is safe to overwrite the output as it will not be // part of the visible frame. void SelfGuidedFilter_AVX2( const RestorationUnitInfo& restoration_info, const void* const source, const ptrdiff_t stride, const void* const top_border, const ptrdiff_t top_border_stride, const void* const bottom_border, const ptrdiff_t bottom_border_stride, const int width, const int height, RestorationBuffer* const restoration_buffer, void* const dest) { const int index = restoration_info.sgr_proj_info.index; const int radius_pass_0 = kSgrProjParams[index][0]; // 2 or 0 const int radius_pass_1 = kSgrProjParams[index][2]; // 1 or 0 const auto* const src = static_cast(source); const auto* top = static_cast(top_border); const auto* bottom = static_cast(bottom_border); auto* const dst = static_cast(dest); SgrBuffer* const sgr_buffer = &restoration_buffer->sgr_buffer; if (radius_pass_1 == 0) { // |radius_pass_0| and |radius_pass_1| cannot both be 0, so we have the // following assertion. assert(radius_pass_0 != 0); BoxFilterProcessPass1(restoration_info, src - 3, stride, top - 3, top_border_stride, bottom - 3, bottom_border_stride, width, height, sgr_buffer, dst); } else if (radius_pass_0 == 0) { BoxFilterProcessPass2(restoration_info, src - 2, stride, top - 2, top_border_stride, bottom - 2, bottom_border_stride, width, height, sgr_buffer, dst); } else { BoxFilterProcess(restoration_info, src - 3, stride, top - 3, top_border_stride, bottom - 3, bottom_border_stride, width, height, sgr_buffer, dst); } } void Init8bpp() { Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8); assert(dsp != nullptr); #if DSP_ENABLED_8BPP_AVX2(WienerFilter) dsp->loop_restorations[0] = WienerFilter_AVX2; #endif #if DSP_ENABLED_8BPP_AVX2(SelfGuidedFilter) dsp->loop_restorations[1] = SelfGuidedFilter_AVX2; #endif } } // namespace } // namespace low_bitdepth void LoopRestorationInit_AVX2() { low_bitdepth::Init8bpp(); } } // namespace dsp } // namespace libgav1 #else // !LIBGAV1_TARGETING_AVX2 namespace libgav1 { namespace dsp { void LoopRestorationInit_AVX2() {} } // namespace dsp } // namespace libgav1 #endif // LIBGAV1_TARGETING_AVX2