// Copyright 2019 The libgav1 Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #include "src/buffer_pool.h" #include "src/dsp/constants.h" #include "src/dsp/dsp.h" #include "src/motion_vector.h" #include "src/obu_parser.h" #include "src/prediction_mask.h" #include "src/tile.h" #include "src/utils/array_2d.h" #include "src/utils/bit_mask_set.h" #include "src/utils/block_parameters_holder.h" #include "src/utils/common.h" #include "src/utils/constants.h" #include "src/utils/logging.h" #include "src/utils/memory.h" #include "src/utils/types.h" #include "src/warp_prediction.h" #include "src/yuv_buffer.h" namespace libgav1 { namespace { // Import all the constants in the anonymous namespace. #include "src/inter_intra_masks.inc" // Precision bits when scaling reference frames. constexpr int kReferenceScaleShift = 14; constexpr int kAngleStep = 3; constexpr int kPredictionModeToAngle[kIntraPredictionModesUV] = { 0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0}; // The following modes need both the left_column and top_row for intra // prediction. For directional modes left/top requirement is inferred based on // the prediction angle. For Dc modes, left/top requirement is inferred based on // whether or not left/top is available. constexpr BitMaskSet kNeedsLeftAndTop(kPredictionModeSmooth, kPredictionModeSmoothHorizontal, kPredictionModeSmoothVertical, kPredictionModePaeth); int16_t GetDirectionalIntraPredictorDerivative(const int angle) { assert(angle >= 3); assert(angle <= 87); return kDirectionalIntraPredictorDerivative[DivideBy2(angle) - 1]; } // Maps the block_size to an index as follows: // kBlock8x8 => 0. // kBlock8x16 => 1. // kBlock8x32 => 2. // kBlock16x8 => 3. // kBlock16x16 => 4. // kBlock16x32 => 5. // kBlock32x8 => 6. // kBlock32x16 => 7. // kBlock32x32 => 8. int GetWedgeBlockSizeIndex(BlockSize block_size) { assert(block_size >= kBlock8x8); return block_size - kBlock8x8 - static_cast(block_size >= kBlock16x8) - static_cast(block_size >= kBlock32x8); } // Maps a dimension of 4, 8, 16 and 32 to indices 0, 1, 2 and 3 respectively. int GetInterIntraMaskLookupIndex(int dimension) { assert(dimension == 4 || dimension == 8 || dimension == 16 || dimension == 32); return FloorLog2(dimension) - 2; } // 7.11.2.9. int GetIntraEdgeFilterStrength(int width, int height, int filter_type, int delta) { const int sum = width + height; delta = std::abs(delta); if (filter_type == 0) { if (sum <= 8) { if (delta >= 56) return 1; } else if (sum <= 16) { if (delta >= 40) return 1; } else if (sum <= 24) { if (delta >= 32) return 3; if (delta >= 16) return 2; if (delta >= 8) return 1; } else if (sum <= 32) { if (delta >= 32) return 3; if (delta >= 4) return 2; return 1; } else { return 3; } } else { if (sum <= 8) { if (delta >= 64) return 2; if (delta >= 40) return 1; } else if (sum <= 16) { if (delta >= 48) return 2; if (delta >= 20) return 1; } else if (sum <= 24) { if (delta >= 4) return 3; } else { return 3; } } return 0; } // 7.11.2.10. bool DoIntraEdgeUpsampling(int width, int height, int filter_type, int delta) { const int sum = width + height; delta = std::abs(delta); // This function should not be called when the prediction angle is 90 or 180. assert(delta != 0); if (delta >= 40) return false; return (filter_type == 1) ? sum <= 8 : sum <= 16; } constexpr uint8_t kQuantizedDistanceWeight[4][2] = { {2, 3}, {2, 5}, {2, 7}, {1, kMaxFrameDistance}}; constexpr uint8_t kQuantizedDistanceLookup[4][2] = { {9, 7}, {11, 5}, {12, 4}, {13, 3}}; void GetDistanceWeights(const int distance[2], int weight[2]) { // Note: distance[0] and distance[1] correspond to relative distance // between current frame and reference frame [1] and [0], respectively. const int order = static_cast(distance[0] <= distance[1]); if (distance[0] == 0 || distance[1] == 0) { weight[0] = kQuantizedDistanceLookup[3][order]; weight[1] = kQuantizedDistanceLookup[3][1 - order]; } else { int i; for (i = 0; i < 3; ++i) { const int weight_0 = kQuantizedDistanceWeight[i][order]; const int weight_1 = kQuantizedDistanceWeight[i][1 - order]; if (order == 0) { if (distance[0] * weight_0 < distance[1] * weight_1) break; } else { if (distance[0] * weight_0 > distance[1] * weight_1) break; } } weight[0] = kQuantizedDistanceLookup[i][order]; weight[1] = kQuantizedDistanceLookup[i][1 - order]; } } dsp::IntraPredictor GetIntraPredictor(PredictionMode mode, bool has_left, bool has_top) { if (mode == kPredictionModeDc) { if (has_left && has_top) { return dsp::kIntraPredictorDc; } if (has_left) { return dsp::kIntraPredictorDcLeft; } if (has_top) { return dsp::kIntraPredictorDcTop; } return dsp::kIntraPredictorDcFill; } switch (mode) { case kPredictionModePaeth: return dsp::kIntraPredictorPaeth; case kPredictionModeSmooth: return dsp::kIntraPredictorSmooth; case kPredictionModeSmoothVertical: return dsp::kIntraPredictorSmoothVertical; case kPredictionModeSmoothHorizontal: return dsp::kIntraPredictorSmoothHorizontal; default: return dsp::kNumIntraPredictors; } } uint8_t* GetStartPoint(Array2DView* const buffer, const int plane, const int x, const int y, const int bitdepth) { #if LIBGAV1_MAX_BITDEPTH >= 10 if (bitdepth > 8) { Array2DView buffer16( buffer[plane].rows(), buffer[plane].columns() / sizeof(uint16_t), reinterpret_cast(&buffer[plane][0][0])); return reinterpret_cast(&buffer16[y][x]); } #endif // LIBGAV1_MAX_BITDEPTH >= 10 static_cast(bitdepth); return &buffer[plane][y][x]; } int GetPixelPositionFromHighScale(int start, int step, int offset) { return (start + step * offset) >> kScaleSubPixelBits; } dsp::MaskBlendFunc GetMaskBlendFunc(const dsp::Dsp& dsp, bool is_inter_intra, bool is_wedge_inter_intra, int subsampling_x, int subsampling_y) { return (is_inter_intra && !is_wedge_inter_intra) ? dsp.mask_blend[0][/*is_inter_intra=*/true] : dsp.mask_blend[subsampling_x + subsampling_y][is_inter_intra]; } } // namespace template void Tile::IntraPrediction(const Block& block, Plane plane, int x, int y, bool has_left, bool has_top, bool has_top_right, bool has_bottom_left, PredictionMode mode, TransformSize tx_size) { const int width = 1 << kTransformWidthLog2[tx_size]; const int height = 1 << kTransformHeightLog2[tx_size]; const int x_shift = subsampling_x_[plane]; const int y_shift = subsampling_y_[plane]; const int max_x = (MultiplyBy4(frame_header_.columns4x4) >> x_shift) - 1; const int max_y = (MultiplyBy4(frame_header_.rows4x4) >> y_shift) - 1; // For performance reasons, do not initialize the following two buffers. alignas(kMaxAlignment) Pixel top_row_data[160]; alignas(kMaxAlignment) Pixel left_column_data[160]; #if LIBGAV1_MSAN if (IsDirectionalMode(mode)) { memset(top_row_data, 0, sizeof(top_row_data)); memset(left_column_data, 0, sizeof(left_column_data)); } #endif // Some predictors use |top_row_data| and |left_column_data| with a negative // offset to access pixels to the top-left of the current block. So have some // space before the arrays to allow populating those without having to move // the rest of the array. Pixel* const top_row = top_row_data + 16; Pixel* const left_column = left_column_data + 16; const int bitdepth = sequence_header_.color_config.bitdepth; const int top_and_left_size = width + height; const bool is_directional_mode = IsDirectionalMode(mode); const PredictionParameters& prediction_parameters = *block.bp->prediction_parameters; const bool use_filter_intra = (plane == kPlaneY && prediction_parameters.use_filter_intra); const int prediction_angle = is_directional_mode ? kPredictionModeToAngle[mode] + prediction_parameters.angle_delta[GetPlaneType(plane)] * kAngleStep : 0; // Directional prediction requires buffers larger than the width or height. const int top_size = is_directional_mode ? top_and_left_size : width; const int left_size = is_directional_mode ? top_and_left_size : height; const int top_right_size = is_directional_mode ? (has_top_right ? 2 : 1) * width : width; const int bottom_left_size = is_directional_mode ? (has_bottom_left ? 2 : 1) * height : height; Array2DView buffer(buffer_[plane].rows(), buffer_[plane].columns() / sizeof(Pixel), reinterpret_cast(&buffer_[plane][0][0])); const bool needs_top = use_filter_intra || kNeedsLeftAndTop.Contains(mode) || (is_directional_mode && prediction_angle < 180) || (mode == kPredictionModeDc && has_top); const bool needs_left = use_filter_intra || kNeedsLeftAndTop.Contains(mode) || (is_directional_mode && prediction_angle > 90) || (mode == kPredictionModeDc && has_left); const Pixel* top_row_src = buffer[y - 1]; // Determine if we need to retrieve the top row from // |intra_prediction_buffer_|. if ((needs_top || needs_left) && use_intra_prediction_buffer_) { // Superblock index of block.row4x4. block.row4x4 is always in luma // dimension (no subsampling). const int current_superblock_index = block.row4x4 >> (sequence_header_.use_128x128_superblock ? 5 : 4); // Superblock index of y - 1. y is in the plane dimension (chroma planes // could be subsampled). const int plane_shift = (sequence_header_.use_128x128_superblock ? 7 : 6) - subsampling_y_[plane]; const int top_row_superblock_index = (y - 1) >> plane_shift; // If the superblock index of y - 1 is not that of the current superblock, // then we will have to retrieve the top row from the // |intra_prediction_buffer_|. if (current_superblock_index != top_row_superblock_index) { top_row_src = reinterpret_cast( (*intra_prediction_buffer_)[plane].get()); } } if (needs_top) { // Compute top_row. if (has_top || has_left) { const int left_index = has_left ? x - 1 : x; top_row[-1] = has_top ? top_row_src[left_index] : buffer[y][left_index]; } else { top_row[-1] = 1 << (bitdepth - 1); } if (!has_top && has_left) { Memset(top_row, buffer[y][x - 1], top_size); } else if (!has_top && !has_left) { Memset(top_row, (1 << (bitdepth - 1)) - 1, top_size); } else { const int top_limit = std::min(max_x - x + 1, top_right_size); memcpy(top_row, &top_row_src[x], top_limit * sizeof(Pixel)); // Even though it is safe to call Memset with a size of 0, accessing // top_row_src[top_limit - x + 1] is not allowed when this condition is // false. if (top_size - top_limit > 0) { Memset(top_row + top_limit, top_row_src[top_limit + x - 1], top_size - top_limit); } } } if (needs_left) { // Compute left_column. if (has_top || has_left) { const int left_index = has_left ? x - 1 : x; left_column[-1] = has_top ? top_row_src[left_index] : buffer[y][left_index]; } else { left_column[-1] = 1 << (bitdepth - 1); } if (!has_left && has_top) { Memset(left_column, top_row_src[x], left_size); } else if (!has_left && !has_top) { Memset(left_column, (1 << (bitdepth - 1)) + 1, left_size); } else { const int left_limit = std::min(max_y - y + 1, bottom_left_size); for (int i = 0; i < left_limit; ++i) { left_column[i] = buffer[y + i][x - 1]; } // Even though it is safe to call Memset with a size of 0, accessing // buffer[left_limit - y + 1][x - 1] is not allowed when this condition is // false. if (left_size - left_limit > 0) { Memset(left_column + left_limit, buffer[left_limit + y - 1][x - 1], left_size - left_limit); } } } Pixel* const dest = &buffer[y][x]; const ptrdiff_t dest_stride = buffer_[plane].columns(); if (use_filter_intra) { dsp_.filter_intra_predictor(dest, dest_stride, top_row, left_column, prediction_parameters.filter_intra_mode, width, height); } else if (is_directional_mode) { DirectionalPrediction(block, plane, x, y, has_left, has_top, needs_left, needs_top, prediction_angle, width, height, max_x, max_y, tx_size, top_row, left_column); } else { const dsp::IntraPredictor predictor = GetIntraPredictor(mode, has_left, has_top); assert(predictor != dsp::kNumIntraPredictors); dsp_.intra_predictors[tx_size][predictor](dest, dest_stride, top_row, left_column); } } template void Tile::IntraPrediction(const Block& block, Plane plane, int x, int y, bool has_left, bool has_top, bool has_top_right, bool has_bottom_left, PredictionMode mode, TransformSize tx_size); #if LIBGAV1_MAX_BITDEPTH >= 10 template void Tile::IntraPrediction(const Block& block, Plane plane, int x, int y, bool has_left, bool has_top, bool has_top_right, bool has_bottom_left, PredictionMode mode, TransformSize tx_size); #endif constexpr BitMaskSet kPredictionModeSmoothMask(kPredictionModeSmooth, kPredictionModeSmoothHorizontal, kPredictionModeSmoothVertical); bool Tile::IsSmoothPrediction(int row, int column, Plane plane) const { const BlockParameters& bp = *block_parameters_holder_.Find(row, column); PredictionMode mode; if (plane == kPlaneY) { mode = bp.y_mode; } else { if (bp.reference_frame[0] > kReferenceFrameIntra) return false; mode = bp.uv_mode; } return kPredictionModeSmoothMask.Contains(mode); } int Tile::GetIntraEdgeFilterType(const Block& block, Plane plane) const { const int subsampling_x = subsampling_x_[plane]; const int subsampling_y = subsampling_y_[plane]; if (block.top_available[plane]) { const int row = block.row4x4 - 1 - (block.row4x4 & subsampling_y); const int column = block.column4x4 + (~block.column4x4 & subsampling_x); if (IsSmoothPrediction(row, column, plane)) return 1; } if (block.left_available[plane]) { const int row = block.row4x4 + (~block.row4x4 & subsampling_y); const int column = block.column4x4 - 1 - (block.column4x4 & subsampling_x); if (IsSmoothPrediction(row, column, plane)) return 1; } return 0; } template void Tile::DirectionalPrediction(const Block& block, Plane plane, int x, int y, bool has_left, bool has_top, bool needs_left, bool needs_top, int prediction_angle, int width, int height, int max_x, int max_y, TransformSize tx_size, Pixel* const top_row, Pixel* const left_column) { Array2DView buffer(buffer_[plane].rows(), buffer_[plane].columns() / sizeof(Pixel), reinterpret_cast(&buffer_[plane][0][0])); Pixel* const dest = &buffer[y][x]; const ptrdiff_t stride = buffer_[plane].columns(); if (prediction_angle == 90) { dsp_.intra_predictors[tx_size][dsp::kIntraPredictorVertical]( dest, stride, top_row, left_column); return; } if (prediction_angle == 180) { dsp_.intra_predictors[tx_size][dsp::kIntraPredictorHorizontal]( dest, stride, top_row, left_column); return; } bool upsampled_top = false; bool upsampled_left = false; if (sequence_header_.enable_intra_edge_filter) { const int filter_type = GetIntraEdgeFilterType(block, plane); if (prediction_angle > 90 && prediction_angle < 180 && (width + height) >= 24) { // 7.11.2.7. left_column[-1] = top_row[-1] = RightShiftWithRounding( left_column[0] * 5 + top_row[-1] * 6 + top_row[0] * 5, 4); } if (has_top && needs_top) { const int strength = GetIntraEdgeFilterStrength( width, height, filter_type, prediction_angle - 90); if (strength > 0) { const int num_pixels = std::min(width, max_x - x + 1) + ((prediction_angle < 90) ? height : 0) + 1; dsp_.intra_edge_filter(top_row - 1, num_pixels, strength); } } if (has_left && needs_left) { const int strength = GetIntraEdgeFilterStrength( width, height, filter_type, prediction_angle - 180); if (strength > 0) { const int num_pixels = std::min(height, max_y - y + 1) + ((prediction_angle > 180) ? width : 0) + 1; dsp_.intra_edge_filter(left_column - 1, num_pixels, strength); } } upsampled_top = DoIntraEdgeUpsampling(width, height, filter_type, prediction_angle - 90); if (upsampled_top && needs_top) { const int num_pixels = width + ((prediction_angle < 90) ? height : 0); dsp_.intra_edge_upsampler(top_row, num_pixels); } upsampled_left = DoIntraEdgeUpsampling(width, height, filter_type, prediction_angle - 180); if (upsampled_left && needs_left) { const int num_pixels = height + ((prediction_angle > 180) ? width : 0); dsp_.intra_edge_upsampler(left_column, num_pixels); } } if (prediction_angle < 90) { const int dx = GetDirectionalIntraPredictorDerivative(prediction_angle); dsp_.directional_intra_predictor_zone1(dest, stride, top_row, width, height, dx, upsampled_top); } else if (prediction_angle < 180) { const int dx = GetDirectionalIntraPredictorDerivative(180 - prediction_angle); const int dy = GetDirectionalIntraPredictorDerivative(prediction_angle - 90); dsp_.directional_intra_predictor_zone2(dest, stride, top_row, left_column, width, height, dx, dy, upsampled_top, upsampled_left); } else { assert(prediction_angle < 270); const int dy = GetDirectionalIntraPredictorDerivative(270 - prediction_angle); dsp_.directional_intra_predictor_zone3(dest, stride, left_column, width, height, dy, upsampled_left); } } template void Tile::PalettePrediction(const Block& block, const Plane plane, const int start_x, const int start_y, const int x, const int y, const TransformSize tx_size) { const int tx_width = kTransformWidth[tx_size]; const int tx_height = kTransformHeight[tx_size]; const uint16_t* const palette = block.bp->palette_mode_info.color[plane]; const PlaneType plane_type = GetPlaneType(plane); const int x4 = MultiplyBy4(x); const int y4 = MultiplyBy4(y); Array2DView buffer(buffer_[plane].rows(), buffer_[plane].columns() / sizeof(Pixel), reinterpret_cast(&buffer_[plane][0][0])); for (int row = 0; row < tx_height; ++row) { assert(block.bp->prediction_parameters ->color_index_map[plane_type][y4 + row] != nullptr); for (int column = 0; column < tx_width; ++column) { buffer[start_y + row][start_x + column] = palette[block.bp->prediction_parameters ->color_index_map[plane_type][y4 + row][x4 + column]]; } } } template void Tile::PalettePrediction( const Block& block, const Plane plane, const int start_x, const int start_y, const int x, const int y, const TransformSize tx_size); #if LIBGAV1_MAX_BITDEPTH >= 10 template void Tile::PalettePrediction( const Block& block, const Plane plane, const int start_x, const int start_y, const int x, const int y, const TransformSize tx_size); #endif template void Tile::ChromaFromLumaPrediction(const Block& block, const Plane plane, const int start_x, const int start_y, const TransformSize tx_size) { const int subsampling_x = subsampling_x_[plane]; const int subsampling_y = subsampling_y_[plane]; const PredictionParameters& prediction_parameters = *block.bp->prediction_parameters; Array2DView y_buffer( buffer_[kPlaneY].rows(), buffer_[kPlaneY].columns() / sizeof(Pixel), reinterpret_cast(&buffer_[kPlaneY][0][0])); if (!block.scratch_buffer->cfl_luma_buffer_valid) { const int luma_x = start_x << subsampling_x; const int luma_y = start_y << subsampling_y; dsp_.cfl_subsamplers[tx_size][subsampling_x + subsampling_y]( block.scratch_buffer->cfl_luma_buffer, prediction_parameters.max_luma_width - luma_x, prediction_parameters.max_luma_height - luma_y, reinterpret_cast(&y_buffer[luma_y][luma_x]), buffer_[kPlaneY].columns()); block.scratch_buffer->cfl_luma_buffer_valid = true; } Array2DView buffer(buffer_[plane].rows(), buffer_[plane].columns() / sizeof(Pixel), reinterpret_cast(&buffer_[plane][0][0])); dsp_.cfl_intra_predictors[tx_size]( reinterpret_cast(&buffer[start_y][start_x]), buffer_[plane].columns(), block.scratch_buffer->cfl_luma_buffer, (plane == kPlaneU) ? prediction_parameters.cfl_alpha_u : prediction_parameters.cfl_alpha_v); } template void Tile::ChromaFromLumaPrediction( const Block& block, const Plane plane, const int start_x, const int start_y, const TransformSize tx_size); #if LIBGAV1_MAX_BITDEPTH >= 10 template void Tile::ChromaFromLumaPrediction( const Block& block, const Plane plane, const int start_x, const int start_y, const TransformSize tx_size); #endif void Tile::InterIntraPrediction( uint16_t* const prediction_0, const uint8_t* const prediction_mask, const ptrdiff_t prediction_mask_stride, const PredictionParameters& prediction_parameters, const int prediction_width, const int prediction_height, const int subsampling_x, const int subsampling_y, uint8_t* const dest, const ptrdiff_t dest_stride) { assert(prediction_mask != nullptr); assert(prediction_parameters.compound_prediction_type == kCompoundPredictionTypeIntra || prediction_parameters.compound_prediction_type == kCompoundPredictionTypeWedge); // The first buffer of InterIntra is from inter prediction. // The second buffer is from intra prediction. #if LIBGAV1_MAX_BITDEPTH >= 10 if (sequence_header_.color_config.bitdepth > 8) { GetMaskBlendFunc(dsp_, /*is_inter_intra=*/true, prediction_parameters.is_wedge_inter_intra, subsampling_x, subsampling_y)( prediction_0, reinterpret_cast(dest), dest_stride / sizeof(uint16_t), prediction_mask, prediction_mask_stride, prediction_width, prediction_height, dest, dest_stride); return; } #endif const int function_index = prediction_parameters.is_wedge_inter_intra ? subsampling_x + subsampling_y : 0; // |is_inter_intra| prediction values are stored in a Pixel buffer but it is // currently declared as a uint16_t buffer. // TODO(johannkoenig): convert the prediction buffer to a uint8_t buffer and // remove the reinterpret_cast. dsp_.inter_intra_mask_blend_8bpp[function_index]( reinterpret_cast(prediction_0), dest, dest_stride, prediction_mask, prediction_mask_stride, prediction_width, prediction_height); } void Tile::CompoundInterPrediction( const Block& block, const uint8_t* const prediction_mask, const ptrdiff_t prediction_mask_stride, const int prediction_width, const int prediction_height, const int subsampling_x, const int subsampling_y, const int candidate_row, const int candidate_column, uint8_t* dest, const ptrdiff_t dest_stride) { const PredictionParameters& prediction_parameters = *block.bp->prediction_parameters; void* prediction[2]; #if LIBGAV1_MAX_BITDEPTH >= 10 const int bitdepth = sequence_header_.color_config.bitdepth; if (bitdepth > 8) { prediction[0] = block.scratch_buffer->prediction_buffer[0]; prediction[1] = block.scratch_buffer->prediction_buffer[1]; } else { #endif prediction[0] = block.scratch_buffer->compound_prediction_buffer_8bpp[0]; prediction[1] = block.scratch_buffer->compound_prediction_buffer_8bpp[1]; #if LIBGAV1_MAX_BITDEPTH >= 10 } #endif switch (prediction_parameters.compound_prediction_type) { case kCompoundPredictionTypeWedge: case kCompoundPredictionTypeDiffWeighted: GetMaskBlendFunc(dsp_, /*is_inter_intra=*/false, prediction_parameters.is_wedge_inter_intra, subsampling_x, subsampling_y)( prediction[0], prediction[1], /*prediction_stride=*/prediction_width, prediction_mask, prediction_mask_stride, prediction_width, prediction_height, dest, dest_stride); break; case kCompoundPredictionTypeDistance: DistanceWeightedPrediction(prediction[0], prediction[1], prediction_width, prediction_height, candidate_row, candidate_column, dest, dest_stride); break; default: assert(prediction_parameters.compound_prediction_type == kCompoundPredictionTypeAverage); dsp_.average_blend(prediction[0], prediction[1], prediction_width, prediction_height, dest, dest_stride); break; } } GlobalMotion* Tile::GetWarpParams( const Block& block, const Plane plane, const int prediction_width, const int prediction_height, const PredictionParameters& prediction_parameters, const ReferenceFrameType reference_type, bool* const is_local_valid, GlobalMotion* const global_motion_params, GlobalMotion* const local_warp_params) const { if (prediction_width < 8 || prediction_height < 8 || frame_header_.force_integer_mv == 1) { return nullptr; } if (plane == kPlaneY) { *is_local_valid = prediction_parameters.motion_mode == kMotionModeLocalWarp && WarpEstimation( prediction_parameters.num_warp_samples, DivideBy4(prediction_width), DivideBy4(prediction_height), block.row4x4, block.column4x4, block.bp->mv.mv[0], prediction_parameters.warp_estimate_candidates, local_warp_params) && SetupShear(local_warp_params); } if (prediction_parameters.motion_mode == kMotionModeLocalWarp && *is_local_valid) { return local_warp_params; } if (!IsScaled(reference_type)) { GlobalMotionTransformationType global_motion_type = (reference_type != kReferenceFrameIntra) ? global_motion_params->type : kNumGlobalMotionTransformationTypes; const bool is_global_valid = IsGlobalMvBlock(block.bp->is_global_mv_block, global_motion_type) && SetupShear(global_motion_params); // Valid global motion type implies reference type can't be intra. assert(!is_global_valid || reference_type != kReferenceFrameIntra); if (is_global_valid) return global_motion_params; } return nullptr; } bool Tile::InterPrediction(const Block& block, const Plane plane, const int x, const int y, const int prediction_width, const int prediction_height, int candidate_row, int candidate_column, bool* const is_local_valid, GlobalMotion* const local_warp_params) { const int bitdepth = sequence_header_.color_config.bitdepth; const BlockParameters& bp = *block.bp; const BlockParameters& bp_reference = *block_parameters_holder_.Find(candidate_row, candidate_column); const bool is_compound = bp_reference.reference_frame[1] > kReferenceFrameIntra; assert(bp.is_inter); const bool is_inter_intra = bp.reference_frame[1] == kReferenceFrameIntra; const PredictionParameters& prediction_parameters = *block.bp->prediction_parameters; uint8_t* const dest = GetStartPoint(buffer_, plane, x, y, bitdepth); const ptrdiff_t dest_stride = buffer_[plane].columns(); // In bytes. for (int index = 0; index < 1 + static_cast(is_compound); ++index) { const ReferenceFrameType reference_type = bp_reference.reference_frame[index]; GlobalMotion global_motion_params = frame_header_.global_motion[reference_type]; GlobalMotion* warp_params = GetWarpParams(block, plane, prediction_width, prediction_height, prediction_parameters, reference_type, is_local_valid, &global_motion_params, local_warp_params); if (warp_params != nullptr) { if (!BlockWarpProcess(block, plane, index, x, y, prediction_width, prediction_height, warp_params, is_compound, is_inter_intra, dest, dest_stride)) { return false; } } else { const int reference_index = prediction_parameters.use_intra_block_copy ? -1 : frame_header_.reference_frame_index[reference_type - kReferenceFrameLast]; if (!BlockInterPrediction( block, plane, reference_index, bp_reference.mv.mv[index], x, y, prediction_width, prediction_height, candidate_row, candidate_column, block.scratch_buffer->prediction_buffer[index], is_compound, is_inter_intra, dest, dest_stride)) { return false; } } } const int subsampling_x = subsampling_x_[plane]; const int subsampling_y = subsampling_y_[plane]; ptrdiff_t prediction_mask_stride = 0; const uint8_t* prediction_mask = nullptr; if (prediction_parameters.compound_prediction_type == kCompoundPredictionTypeWedge) { const Array2D& wedge_mask = wedge_masks_[GetWedgeBlockSizeIndex(block.size)] [prediction_parameters.wedge_sign] [prediction_parameters.wedge_index]; prediction_mask = wedge_mask[0]; prediction_mask_stride = wedge_mask.columns(); } else if (prediction_parameters.compound_prediction_type == kCompoundPredictionTypeIntra) { // 7.11.3.13. The inter intra masks are precomputed and stored as a set of // look up tables. assert(prediction_parameters.inter_intra_mode < kNumInterIntraModes); prediction_mask = kInterIntraMasks[prediction_parameters.inter_intra_mode] [GetInterIntraMaskLookupIndex(prediction_width)] [GetInterIntraMaskLookupIndex(prediction_height)]; prediction_mask_stride = prediction_width; } else if (prediction_parameters.compound_prediction_type == kCompoundPredictionTypeDiffWeighted) { if (plane == kPlaneY) { assert(prediction_width >= 8); assert(prediction_height >= 8); dsp_.weight_mask[FloorLog2(prediction_width) - 3] [FloorLog2(prediction_height) - 3] [static_cast(prediction_parameters.mask_is_inverse)]( block.scratch_buffer->prediction_buffer[0], block.scratch_buffer->prediction_buffer[1], block.scratch_buffer->weight_mask, kMaxSuperBlockSizeInPixels); } prediction_mask = block.scratch_buffer->weight_mask; prediction_mask_stride = kMaxSuperBlockSizeInPixels; } if (is_compound) { CompoundInterPrediction(block, prediction_mask, prediction_mask_stride, prediction_width, prediction_height, subsampling_x, subsampling_y, candidate_row, candidate_column, dest, dest_stride); } else if (prediction_parameters.motion_mode == kMotionModeObmc) { // Obmc mode is allowed only for single reference (!is_compound). return ObmcPrediction(block, plane, prediction_width, prediction_height); } else if (is_inter_intra) { // InterIntra and obmc must be mutually exclusive. InterIntraPrediction( block.scratch_buffer->prediction_buffer[0], prediction_mask, prediction_mask_stride, prediction_parameters, prediction_width, prediction_height, subsampling_x, subsampling_y, dest, dest_stride); } return true; } bool Tile::ObmcBlockPrediction(const Block& block, const MotionVector& mv, const Plane plane, const int reference_frame_index, const int width, const int height, const int x, const int y, const int candidate_row, const int candidate_column, const ObmcDirection blending_direction) { const int bitdepth = sequence_header_.color_config.bitdepth; // Obmc's prediction needs to be clipped before blending with above/left // prediction blocks. // Obmc prediction is used only when is_compound is false. So it is safe to // use prediction_buffer[1] as a temporary buffer for the Obmc prediction. static_assert(sizeof(block.scratch_buffer->prediction_buffer[1]) >= 64 * 64 * sizeof(uint16_t), ""); auto* const obmc_buffer = reinterpret_cast(block.scratch_buffer->prediction_buffer[1]); const ptrdiff_t obmc_buffer_stride = (bitdepth == 8) ? width : width * sizeof(uint16_t); if (!BlockInterPrediction(block, plane, reference_frame_index, mv, x, y, width, height, candidate_row, candidate_column, nullptr, false, false, obmc_buffer, obmc_buffer_stride)) { return false; } uint8_t* const prediction = GetStartPoint(buffer_, plane, x, y, bitdepth); const ptrdiff_t prediction_stride = buffer_[plane].columns(); dsp_.obmc_blend[blending_direction](prediction, prediction_stride, width, height, obmc_buffer, obmc_buffer_stride); return true; } bool Tile::ObmcPrediction(const Block& block, const Plane plane, const int width, const int height) { const int subsampling_x = subsampling_x_[plane]; const int subsampling_y = subsampling_y_[plane]; if (block.top_available[kPlaneY] && !IsBlockSmallerThan8x8(block.residual_size[plane])) { const int num_limit = std::min(uint8_t{4}, k4x4WidthLog2[block.size]); const int column4x4_max = std::min(block.column4x4 + block.width4x4, frame_header_.columns4x4); const int candidate_row = block.row4x4 - 1; const int block_start_y = MultiplyBy4(block.row4x4) >> subsampling_y; int column4x4 = block.column4x4; const int prediction_height = std::min(height >> 1, 32 >> subsampling_y); for (int i = 0, step; i < num_limit && column4x4 < column4x4_max; column4x4 += step) { const int candidate_column = column4x4 | 1; const BlockParameters& bp_top = *block_parameters_holder_.Find(candidate_row, candidate_column); const int candidate_block_size = bp_top.size; step = Clip3(kNum4x4BlocksWide[candidate_block_size], 2, 16); if (bp_top.reference_frame[0] > kReferenceFrameIntra) { i++; const int candidate_reference_frame_index = frame_header_.reference_frame_index[bp_top.reference_frame[0] - kReferenceFrameLast]; const int prediction_width = std::min(width, MultiplyBy4(step) >> subsampling_x); if (!ObmcBlockPrediction( block, bp_top.mv.mv[0], plane, candidate_reference_frame_index, prediction_width, prediction_height, MultiplyBy4(column4x4) >> subsampling_x, block_start_y, candidate_row, candidate_column, kObmcDirectionVertical)) { return false; } } } } if (block.left_available[kPlaneY]) { const int num_limit = std::min(uint8_t{4}, k4x4HeightLog2[block.size]); const int row4x4_max = std::min(block.row4x4 + block.height4x4, frame_header_.rows4x4); const int candidate_column = block.column4x4 - 1; int row4x4 = block.row4x4; const int block_start_x = MultiplyBy4(block.column4x4) >> subsampling_x; const int prediction_width = std::min(width >> 1, 32 >> subsampling_x); for (int i = 0, step; i < num_limit && row4x4 < row4x4_max; row4x4 += step) { const int candidate_row = row4x4 | 1; const BlockParameters& bp_left = *block_parameters_holder_.Find(candidate_row, candidate_column); const int candidate_block_size = bp_left.size; step = Clip3(kNum4x4BlocksHigh[candidate_block_size], 2, 16); if (bp_left.reference_frame[0] > kReferenceFrameIntra) { i++; const int candidate_reference_frame_index = frame_header_.reference_frame_index[bp_left.reference_frame[0] - kReferenceFrameLast]; const int prediction_height = std::min(height, MultiplyBy4(step) >> subsampling_y); if (!ObmcBlockPrediction( block, bp_left.mv.mv[0], plane, candidate_reference_frame_index, prediction_width, prediction_height, block_start_x, MultiplyBy4(row4x4) >> subsampling_y, candidate_row, candidate_column, kObmcDirectionHorizontal)) { return false; } } } } return true; } void Tile::DistanceWeightedPrediction(void* prediction_0, void* prediction_1, const int width, const int height, const int candidate_row, const int candidate_column, uint8_t* dest, ptrdiff_t dest_stride) { int distance[2]; int weight[2]; for (int reference = 0; reference < 2; ++reference) { const BlockParameters& bp = *block_parameters_holder_.Find(candidate_row, candidate_column); // Note: distance[0] and distance[1] correspond to relative distance // between current frame and reference frame [1] and [0], respectively. distance[1 - reference] = std::min( std::abs(static_cast( current_frame_.reference_info() ->relative_distance_from[bp.reference_frame[reference]])), static_cast(kMaxFrameDistance)); } GetDistanceWeights(distance, weight); dsp_.distance_weighted_blend(prediction_0, prediction_1, weight[0], weight[1], width, height, dest, dest_stride); } void Tile::ScaleMotionVector(const MotionVector& mv, const Plane plane, const int reference_frame_index, const int x, const int y, int* const start_x, int* const start_y, int* const step_x, int* const step_y) { const int reference_upscaled_width = (reference_frame_index == -1) ? frame_header_.upscaled_width : reference_frames_[reference_frame_index]->upscaled_width(); const int reference_height = (reference_frame_index == -1) ? frame_header_.height : reference_frames_[reference_frame_index]->frame_height(); assert(2 * frame_header_.width >= reference_upscaled_width && 2 * frame_header_.height >= reference_height && frame_header_.width <= 16 * reference_upscaled_width && frame_header_.height <= 16 * reference_height); const bool is_scaled_x = reference_upscaled_width != frame_header_.width; const bool is_scaled_y = reference_height != frame_header_.height; const int half_sample = 1 << (kSubPixelBits - 1); int orig_x = (x << kSubPixelBits) + ((2 * mv.mv[1]) >> subsampling_x_[plane]); int orig_y = (y << kSubPixelBits) + ((2 * mv.mv[0]) >> subsampling_y_[plane]); const int rounding_offset = DivideBy2(1 << (kScaleSubPixelBits - kSubPixelBits)); if (is_scaled_x) { const int scale_x = ((reference_upscaled_width << kReferenceScaleShift) + DivideBy2(frame_header_.width)) / frame_header_.width; *step_x = RightShiftWithRoundingSigned( scale_x, kReferenceScaleShift - kScaleSubPixelBits); orig_x += half_sample; // When frame size is 4k and above, orig_x can be above 16 bits, scale_x can // be up to 15 bits. So we use int64_t to hold base_x. const int64_t base_x = static_cast(orig_x) * scale_x - (half_sample << kReferenceScaleShift); *start_x = RightShiftWithRoundingSigned( base_x, kReferenceScaleShift + kSubPixelBits - kScaleSubPixelBits) + rounding_offset; } else { *step_x = 1 << kScaleSubPixelBits; *start_x = LeftShift(orig_x, 6) + rounding_offset; } if (is_scaled_y) { const int scale_y = ((reference_height << kReferenceScaleShift) + DivideBy2(frame_header_.height)) / frame_header_.height; *step_y = RightShiftWithRoundingSigned( scale_y, kReferenceScaleShift - kScaleSubPixelBits); orig_y += half_sample; const int64_t base_y = static_cast(orig_y) * scale_y - (half_sample << kReferenceScaleShift); *start_y = RightShiftWithRoundingSigned( base_y, kReferenceScaleShift + kSubPixelBits - kScaleSubPixelBits) + rounding_offset; } else { *step_y = 1 << kScaleSubPixelBits; *start_y = LeftShift(orig_y, 6) + rounding_offset; } } // static. bool Tile::GetReferenceBlockPosition( const int reference_frame_index, const bool is_scaled, const int width, const int height, const int ref_start_x, const int ref_last_x, const int ref_start_y, const int ref_last_y, const int start_x, const int start_y, const int step_x, const int step_y, const int left_border, const int right_border, const int top_border, const int bottom_border, int* ref_block_start_x, int* ref_block_start_y, int* ref_block_end_x) { *ref_block_start_x = GetPixelPositionFromHighScale(start_x, 0, 0); *ref_block_start_y = GetPixelPositionFromHighScale(start_y, 0, 0); if (reference_frame_index == -1) { return false; } *ref_block_start_x -= kConvolveBorderLeftTop; *ref_block_start_y -= kConvolveBorderLeftTop; *ref_block_end_x = GetPixelPositionFromHighScale(start_x, step_x, width - 1) + kConvolveBorderRight; int ref_block_end_y = GetPixelPositionFromHighScale(start_y, step_y, height - 1) + kConvolveBorderBottom; if (is_scaled) { const int block_height = (((height - 1) * step_y + (1 << kScaleSubPixelBits) - 1) >> kScaleSubPixelBits) + kSubPixelTaps; ref_block_end_y = *ref_block_start_y + block_height - 1; } // Determines if we need to extend beyond the left/right/top/bottom border. return *ref_block_start_x < (ref_start_x - left_border) || *ref_block_end_x > (ref_last_x + right_border) || *ref_block_start_y < (ref_start_y - top_border) || ref_block_end_y > (ref_last_y + bottom_border); } // Builds a block as the input for convolve, by copying the content of // reference frame (either a decoded reference frame, or current frame). // |block_extended_width| is the combined width of the block and its borders. template void Tile::BuildConvolveBlock( const Plane plane, const int reference_frame_index, const bool is_scaled, const int height, const int ref_start_x, const int ref_last_x, const int ref_start_y, const int ref_last_y, const int step_y, const int ref_block_start_x, const int ref_block_end_x, const int ref_block_start_y, uint8_t* block_buffer, ptrdiff_t convolve_buffer_stride, ptrdiff_t block_extended_width) { const YuvBuffer* const reference_buffer = (reference_frame_index == -1) ? current_frame_.buffer() : reference_frames_[reference_frame_index]->buffer(); Array2DView reference_block( reference_buffer->height(plane), reference_buffer->stride(plane) / sizeof(Pixel), reinterpret_cast(reference_buffer->data(plane))); auto* const block_head = reinterpret_cast(block_buffer); convolve_buffer_stride /= sizeof(Pixel); int block_height = height + kConvolveBorderLeftTop + kConvolveBorderBottom; if (is_scaled) { block_height = (((height - 1) * step_y + (1 << kScaleSubPixelBits) - 1) >> kScaleSubPixelBits) + kSubPixelTaps; } const int copy_start_x = Clip3(ref_block_start_x, ref_start_x, ref_last_x); const int copy_start_y = Clip3(ref_block_start_y, ref_start_y, ref_last_y); const int copy_end_x = Clip3(ref_block_end_x, copy_start_x, ref_last_x); const int block_width = copy_end_x - copy_start_x + 1; const bool extend_left = ref_block_start_x < ref_start_x; const bool extend_right = ref_block_end_x > ref_last_x; const bool out_of_left = copy_start_x > ref_block_end_x; const bool out_of_right = copy_end_x < ref_block_start_x; if (out_of_left || out_of_right) { const int ref_x = out_of_left ? copy_start_x : copy_end_x; Pixel* buf_ptr = block_head; for (int y = 0, ref_y = copy_start_y; y < block_height; ++y) { Memset(buf_ptr, reference_block[ref_y][ref_x], block_extended_width); if (ref_block_start_y + y >= ref_start_y && ref_block_start_y + y < ref_last_y) { ++ref_y; } buf_ptr += convolve_buffer_stride; } } else { Pixel* buf_ptr = block_head; const int left_width = copy_start_x - ref_block_start_x; for (int y = 0, ref_y = copy_start_y; y < block_height; ++y) { if (extend_left) { Memset(buf_ptr, reference_block[ref_y][copy_start_x], left_width); } memcpy(buf_ptr + left_width, &reference_block[ref_y][copy_start_x], block_width * sizeof(Pixel)); if (extend_right) { Memset(buf_ptr + left_width + block_width, reference_block[ref_y][copy_end_x], block_extended_width - left_width - block_width); } if (ref_block_start_y + y >= ref_start_y && ref_block_start_y + y < ref_last_y) { ++ref_y; } buf_ptr += convolve_buffer_stride; } } } bool Tile::BlockInterPrediction( const Block& block, const Plane plane, const int reference_frame_index, const MotionVector& mv, const int x, const int y, const int width, const int height, const int candidate_row, const int candidate_column, uint16_t* const prediction, const bool is_compound, const bool is_inter_intra, uint8_t* const dest, const ptrdiff_t dest_stride) { const BlockParameters& bp = *block_parameters_holder_.Find(candidate_row, candidate_column); int start_x; int start_y; int step_x; int step_y; ScaleMotionVector(mv, plane, reference_frame_index, x, y, &start_x, &start_y, &step_x, &step_y); const int horizontal_filter_index = bp.interpolation_filter[1]; const int vertical_filter_index = bp.interpolation_filter[0]; const int subsampling_x = subsampling_x_[plane]; const int subsampling_y = subsampling_y_[plane]; // reference_frame_index equal to -1 indicates using current frame as // reference. const YuvBuffer* const reference_buffer = (reference_frame_index == -1) ? current_frame_.buffer() : reference_frames_[reference_frame_index]->buffer(); const int reference_upscaled_width = (reference_frame_index == -1) ? MultiplyBy4(frame_header_.columns4x4) : reference_frames_[reference_frame_index]->upscaled_width(); const int reference_height = (reference_frame_index == -1) ? MultiplyBy4(frame_header_.rows4x4) : reference_frames_[reference_frame_index]->frame_height(); const int ref_start_x = 0; const int ref_last_x = SubsampledValue(reference_upscaled_width, subsampling_x) - 1; const int ref_start_y = 0; const int ref_last_y = SubsampledValue(reference_height, subsampling_y) - 1; const bool is_scaled = (reference_frame_index != -1) && (frame_header_.width != reference_upscaled_width || frame_header_.height != reference_height); const int bitdepth = sequence_header_.color_config.bitdepth; const int pixel_size = (bitdepth == 8) ? sizeof(uint8_t) : sizeof(uint16_t); int ref_block_start_x; int ref_block_start_y; int ref_block_end_x; const bool extend_block = GetReferenceBlockPosition( reference_frame_index, is_scaled, width, height, ref_start_x, ref_last_x, ref_start_y, ref_last_y, start_x, start_y, step_x, step_y, reference_buffer->left_border(plane), reference_buffer->right_border(plane), reference_buffer->top_border(plane), reference_buffer->bottom_border(plane), &ref_block_start_x, &ref_block_start_y, &ref_block_end_x); // In frame parallel mode, ensure that the reference block has been decoded // and available for referencing. if (reference_frame_index != -1 && frame_parallel_) { int reference_y_max; if (is_scaled) { // TODO(vigneshv): For now, we wait for the entire reference frame to be // decoded if we are using scaled references. This will eventually be // fixed. reference_y_max = reference_height; } else { reference_y_max = std::min(ref_block_start_y + height + kSubPixelTaps, ref_last_y); // For U and V planes with subsampling, we need to multiply // reference_y_max by 2 since we only track the progress of Y planes. reference_y_max = LeftShift(reference_y_max, subsampling_y); } if (reference_frame_progress_cache_[reference_frame_index] < reference_y_max && !reference_frames_[reference_frame_index]->WaitUntil( reference_y_max, &reference_frame_progress_cache_[reference_frame_index])) { return false; } } const uint8_t* block_start = nullptr; ptrdiff_t convolve_buffer_stride; if (!extend_block) { const YuvBuffer* const reference_buffer = (reference_frame_index == -1) ? current_frame_.buffer() : reference_frames_[reference_frame_index]->buffer(); convolve_buffer_stride = reference_buffer->stride(plane); if (reference_frame_index == -1 || is_scaled) { block_start = reference_buffer->data(plane) + ref_block_start_y * reference_buffer->stride(plane) + ref_block_start_x * pixel_size; } else { block_start = reference_buffer->data(plane) + (ref_block_start_y + kConvolveBorderLeftTop) * reference_buffer->stride(plane) + (ref_block_start_x + kConvolveBorderLeftTop) * pixel_size; } } else { // The block width can be at most 2 times as much as current // block's width because of scaling. auto block_extended_width = Align( (2 * width + kConvolveBorderLeftTop + kConvolveBorderRight) * pixel_size, kMaxAlignment); convolve_buffer_stride = block.scratch_buffer->convolve_block_buffer_stride; #if LIBGAV1_MAX_BITDEPTH >= 10 if (bitdepth > 8) { BuildConvolveBlock( plane, reference_frame_index, is_scaled, height, ref_start_x, ref_last_x, ref_start_y, ref_last_y, step_y, ref_block_start_x, ref_block_end_x, ref_block_start_y, block.scratch_buffer->convolve_block_buffer.get(), convolve_buffer_stride, block_extended_width); } else { #endif BuildConvolveBlock( plane, reference_frame_index, is_scaled, height, ref_start_x, ref_last_x, ref_start_y, ref_last_y, step_y, ref_block_start_x, ref_block_end_x, ref_block_start_y, block.scratch_buffer->convolve_block_buffer.get(), convolve_buffer_stride, block_extended_width); #if LIBGAV1_MAX_BITDEPTH >= 10 } #endif block_start = block.scratch_buffer->convolve_block_buffer.get() + (is_scaled ? 0 : kConvolveBorderLeftTop * convolve_buffer_stride + kConvolveBorderLeftTop * pixel_size); } void* const output = (is_compound || is_inter_intra) ? prediction : static_cast(dest); ptrdiff_t output_stride = (is_compound || is_inter_intra) ? /*prediction_stride=*/width : dest_stride; #if LIBGAV1_MAX_BITDEPTH >= 10 // |is_inter_intra| calculations are written to the |prediction| buffer. // Unlike the |is_compound| calculations the output is Pixel and not uint16_t. // convolve_func() expects |output_stride| to be in bytes and not Pixels. // |prediction_stride| is in units of uint16_t. Adjust |output_stride| to // account for this. if (is_inter_intra && sequence_header_.color_config.bitdepth > 8) { output_stride *= 2; } #endif assert(output != nullptr); if (is_scaled) { dsp::ConvolveScaleFunc convolve_func = dsp_.convolve_scale[is_compound]; assert(convolve_func != nullptr); convolve_func(block_start, convolve_buffer_stride, horizontal_filter_index, vertical_filter_index, start_x, start_y, step_x, step_y, width, height, output, output_stride); } else { const int horizontal_filter_id = (start_x >> 6) & kSubPixelMask; const int vertical_filter_id = (start_y >> 6) & kSubPixelMask; dsp::ConvolveFunc convolve_func = dsp_.convolve[reference_frame_index == -1][is_compound] [vertical_filter_id != 0][horizontal_filter_id != 0]; assert(convolve_func != nullptr); convolve_func(block_start, convolve_buffer_stride, horizontal_filter_index, vertical_filter_index, horizontal_filter_id, vertical_filter_id, width, height, output, output_stride); } return true; } bool Tile::BlockWarpProcess(const Block& block, const Plane plane, const int index, const int block_start_x, const int block_start_y, const int width, const int height, GlobalMotion* const warp_params, const bool is_compound, const bool is_inter_intra, uint8_t* const dest, const ptrdiff_t dest_stride) { assert(width >= 8 && height >= 8); const BlockParameters& bp = *block.bp; const int reference_frame_index = frame_header_.reference_frame_index[bp.reference_frame[index] - kReferenceFrameLast]; const uint8_t* const source = reference_frames_[reference_frame_index]->buffer()->data(plane); ptrdiff_t source_stride = reference_frames_[reference_frame_index]->buffer()->stride(plane); const int source_width = reference_frames_[reference_frame_index]->buffer()->width(plane); const int source_height = reference_frames_[reference_frame_index]->buffer()->height(plane); uint16_t* const prediction = block.scratch_buffer->prediction_buffer[index]; // In frame parallel mode, ensure that the reference block has been decoded // and available for referencing. if (frame_parallel_) { int reference_y_max = -1; // Find out the maximum y-coordinate for warping. for (int start_y = block_start_y; start_y < block_start_y + height; start_y += 8) { for (int start_x = block_start_x; start_x < block_start_x + width; start_x += 8) { const int src_x = (start_x + 4) << subsampling_x_[plane]; const int src_y = (start_y + 4) << subsampling_y_[plane]; const int dst_y = src_x * warp_params->params[4] + src_y * warp_params->params[5] + warp_params->params[1]; const int y4 = dst_y >> subsampling_y_[plane]; const int iy4 = y4 >> kWarpedModelPrecisionBits; reference_y_max = std::max(iy4 + 8, reference_y_max); } } // For U and V planes with subsampling, we need to multiply reference_y_max // by 2 since we only track the progress of Y planes. reference_y_max = LeftShift(reference_y_max, subsampling_y_[plane]); if (reference_frame_progress_cache_[reference_frame_index] < reference_y_max && !reference_frames_[reference_frame_index]->WaitUntil( reference_y_max, &reference_frame_progress_cache_[reference_frame_index])) { return false; } } if (is_compound) { dsp_.warp_compound(source, source_stride, source_width, source_height, warp_params->params, subsampling_x_[plane], subsampling_y_[plane], block_start_x, block_start_y, width, height, warp_params->alpha, warp_params->beta, warp_params->gamma, warp_params->delta, prediction, /*prediction_stride=*/width); } else { void* const output = is_inter_intra ? static_cast(prediction) : dest; ptrdiff_t output_stride = is_inter_intra ? /*prediction_stride=*/width : dest_stride; #if LIBGAV1_MAX_BITDEPTH >= 10 // |is_inter_intra| calculations are written to the |prediction| buffer. // Unlike the |is_compound| calculations the output is Pixel and not // uint16_t. warp_clip() expects |output_stride| to be in bytes and not // Pixels. |prediction_stride| is in units of uint16_t. Adjust // |output_stride| to account for this. if (is_inter_intra && sequence_header_.color_config.bitdepth > 8) { output_stride *= 2; } #endif dsp_.warp(source, source_stride, source_width, source_height, warp_params->params, subsampling_x_[plane], subsampling_y_[plane], block_start_x, block_start_y, width, height, warp_params->alpha, warp_params->beta, warp_params->gamma, warp_params->delta, output, output_stride); } return true; } } // namespace libgav1