1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
library ieee;
subtype word of std_logic_vector(31 downto 0);
constant clock_time : time := 10 ns;
entity register is
port (
CLK: in std_logic; -- Rising edge -> Read; Falling edge -> Write.
W: in word; -- The data to write.
ENABLE: in std_logic; -- If 1 then at falling edge of clock, W will be written.
ZERO: in std_logic; -- If 1 then at rising edge of clock, 0 will be output to R.
R: out word; -- The data to read.
)
end entity;
architecture Behavioral of register is
signal V: word;
begin
process(CLK)
begin
if rising_edge(CLK) then
if ZERO = '1' then
R <= (others => '0');
else
R <= V;
end if;
end if;
if falling_edge(CLK) and ENABLE = '1' then
V <= W;
end if;
end process;
end architecture;
entity register_file is
port (
CLK: in std_logic;
ENABLE: in std_logic;
ZERO1, ZERO2: in std_logic;
R1, R2, W: in std_logic_vector(4 downto 0);
WD: in std_logic_vector(31 downto 0);
RD1, RD2: out std_logic_vector(31 downto 0);
)
end entity;
architecture Behavioral of register_file is
type reg_file_type is array (0 to 31) of std_logic_vector(31 downto 0);
signal reg_file: reg_file_type := (others => '0');
begin
process (CLK)
begin
if rising_edge(CLK) then
if ZERO1 = '1' then
RD1 <= (others => '0');
else
RD1 <= reg_file(to_integer(R1));
end if;
if ZERO2 = '1' then
RD2 <= (others => '0');
else
RD2 <= reg_file(to_integer(R2));
end if;
end if;
if falling_edge(CLK) and ENABLE = '1' then
reg_file(to_integer(W)) <= WD;
end if;
end;
end architecture;
entity alu is
port (
A, B: in std_logic_vector(31 downto 0);
ALUC: in std_logic_vector(3 downto 0);
S: out std_logic_vector(31 downto 0);
Z: out std_logic);
end entity;
architecture Behavioral of alu is
begin
S <= A + B when ALUC(2 downto 0) ?= B"000"
else A - B when ALUC(2 downto 0) ?= B"010"
else A and B when ALUC(2 downto 0) ?= B"100"
else A or B when ALUC(2 downto 0) ?= B"101"
else A xor B when ALUC(2 downto 0) ?= B"110"
else std_logic_vector(signed(A) sll 16) and H"FFFF0000" when ALUC(2 downto 0) ?= B"110"
else std_logic_vector(signed(A) sll to_integer(unsigned(B))) when ALUC ?= B"0011"
else std_logic_vector(signed(A) srl to_integer(unsigned(B))) when ALUC ?= B"0111"
else std_logic_vector(signed(A) sra to_integer(unsigned(B))) when ALUC ?= B"1111";
Z <= S ?= H"00000000";
end architecture;
entity clock is
port(CLK: out std_logic)
end entity;
architecture Behavioral of clock is
begin
CLK <= not CLK after clock_time;
end architecture;
type memory_type = array (0 to 1023) of std_logic_vector(31 downto 0);
entity cpu is
port (memory: in memory_type)
end entity;
architecture Behavioral of cpu is
signal pc: std_logic_vector(31 downto 0);
signal pc_to_write: std_logic_vector(31 downto 0);
signal CLK: in std_logic;
signal WRITE_REG: in std_logic;
signal R1, R2, W: in std_logic_vector(4 downto 0);
signal WD: in std_logic_vector(31 downto 0);
signal RD1, RD2: out std_logic_vector(31 downto 0);
signal A, B: in std_logic_vector(31 downto 0);
signal ALUC: in std_logic_vector(3 downto 0);
signal S: out std_logic_vector(31 downto 0);
signal Z: out std_logic);
begin
pc_reg: register
port map (
CLK => CLK,
ENABLE => '1',
ZERO => '0',
W => pc_to_write,
R => pc
);
reg: register_file
port map(
CLK => CLK,
ENABLE => WRITE_REG,
R1 => R1,
R2 => R2,
W => W,
WD => WD,
RD1 => RD1,
RD2 => RD2
);
alu: alu
port map(
A => A,
B => B,
ALUC => ALUC,
S => S,
Z => Z
);
logic: process is
variable ins: std_logic_vector(31 downto 0);
begin
ins <= memory(to_integer(pc));
pc_to_write <= pc + H"00000001";
if ins(31 downto 26) = B"000000" then
if ins(5) = '1' then
R1 <= ins(25 downto 21);
R2 <= ins(20 downto 16);
ALUC <= ins(3 downto 0);
A <= RD1;
B <= RD2;
W <= ins(15 downto 11);
WRITE_REG <= '1';
WD <= S;
else if ins(3) = '0' then
R1 <= ins(20 downto 16);
ALUC(3 downto 2) <= ins(1 downto 0);
ALUC(1 downto 0) <= B"11";
A <= RD1;
B(31 downto 5) <= (others => '0');
B(4 downto 0) <= ins(10 downto 6);
W <= ins(15 downto 11);
WRITE_REG <= '1';
WD <= S;
else
R1 <= ins(25 downto 16)
WRITE_REG <= '0';
pc_to_write <= RD1;
end if;
else
-- TODO: Implement this.
end if;
end process;
end architecture;
|