aboutsummaryrefslogtreecommitdiff
path: root/works/life/computer-organization-experiment/cpu.vhdl
blob: 2110436dbb764ebd7dca6bc05dc70a5637ad1859 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
library ieee;

subtype word of std_logic_vector(31 downto 0);
constant clock_time : time := 10 ns;

entity register is
    port (
        CLK: in std_logic; -- Rising edge -> Read; Falling edge -> Write.
        W: in word; -- The data to write.
        ENABLE: in std_logic; -- If 1 then at falling edge of clock, W will be written.
        ZERO: in std_logic; -- If 1 then at rising edge of clock, 0 will be output to R.
        R: out word; -- The data to read.
    )
end entity;

architecture Behavioral of register is
    signal V: word;
begin
    process(CLK)
    begin
        if rising_edge(CLK) then
            if ZERO = '1' then
                R <= (others => '0');
            else
                R <= V;
            end if;
        end if;
        if falling_edge(CLK) and ENABLE = '1' then
            V <= W;
        end if;
    end process;
end architecture;

entity register_file is
    port (
        CLK: in std_logic;
        ENABLE: in std_logic;
        ZERO1, ZERO2: in std_logic;
        R1, R2, W: in std_logic_vector(4 downto 0);
        WD: in std_logic_vector(31 downto 0);
        RD1, RD2: out std_logic_vector(31 downto 0);
    )
end entity;

architecture Behavioral of register_file is
    type reg_file_type is array (0 to 31) of std_logic_vector(31 downto 0);
    signal reg_file: reg_file_type := (others => '0');
begin
    process (CLK)
    begin
        if rising_edge(CLK) then
            if ZERO1 = '1' then
                RD1 <= (others => '0');
            else
                RD1 <= reg_file(to_integer(R1));
            end if;
            if ZERO2 = '1' then
                RD2 <= (others => '0');
            else
                RD2 <= reg_file(to_integer(R2));
            end if;
        end if;
        if falling_edge(CLK) and ENABLE = '1' then
            reg_file(to_integer(W)) <= WD;
        end if;
    end;
end architecture;

entity alu is
    port (
        A, B: in std_logic_vector(31 downto 0);
        ALUC: in std_logic_vector(3 downto 0);
        S: out std_logic_vector(31 downto 0);
        Z: out std_logic
    );
end entity;

architecture Behavioral of alu is
begin
    S <= A + B when ALUC(2 downto 0) ?= B"000"
         else A - B when ALUC(2 downto 0) ?= B"010"
         else A and B when ALUC(2 downto 0) ?= B"100"
         else A or B when ALUC(2 downto 0) ?= B"101"
         else A xor B when ALUC(2 downto 0) ?= B"110"
         else std_logic_vector(signed(A) sll 16) and H"FFFF0000" when ALUC(2 downto 0) ?= B"110"
         else std_logic_vector(signed(A) sll to_integer(unsigned(B))) when ALUC ?= B"0011"
         else std_logic_vector(signed(A) srl to_integer(unsigned(B))) when ALUC ?= B"0111"
         else std_logic_vector(signed(A) sra to_integer(unsigned(B))) when ALUC ?= B"1111";
    Z <= S ?= H"00000000";
end architecture;

entity clock is
    port(CLK: out std_logic)
end entity;

architecture Behavioral of clock is
begin
    CLK <= not CLK after clock_time;
end architecture;

type memory_type = array (0 to 1023) of std_logic_vector(31 downto 0);

entity cpu is
    port (memory: in memory_type)
end entity;

architecture Behavioral of cpu is
    signal pc: std_logic_vector(31 downto 0);
    signal pc_to_write: std_logic_vector(31 downto 0);

    signal enable_mem: std_logic;
    signal write_mem: std_logic;

    signal CLK: in std_logic;
    signal WRITE_REG: in std_logic;
    signal R1, R2, W: in std_logic_vector(4 downto 0);
    signal WD: in std_logic_vector(31 downto 0);
    signal RD1, RD2: out std_logic_vector(31 downto 0);

    signal A, B: in std_logic_vector(31 downto 0);
    signal ALUC: in std_logic_vector(3 downto 0);
    signal S: out std_logic_vector(31 downto 0);
    signal Z: out std_logic);
begin
    pc_reg: register
        port map (
            CLK => CLK,
            ENABLE => '1',
            ZERO => '0',
            W => pc_to_write,
            R => pc
        );
    reg: register_file
        port map(
            CLK => CLK,
            ENABLE => WRITE_REG,
            R1 => R1,
            R2 => R2,
            W => W,
            WD => WD,
            RD1 => RD1,
            RD2 => RD2
        );
    alu: alu
        port map(
            A => A,
            B => B,
            ALUC => ALUC,
            S => S,
            Z => Z
        );
    logic: process is
        variable ins: std_logic_vector(31 downto 0);
    begin
        ins <= memory(to_integer(pc));
        pc_to_write <= pc + H"00000001";

        WRITE_REG <= '0';
        enable_mem <= '0';


        if ins(31 downto 16) = B"000010" then
            pc_to_write(25 downto 0) <= ins(25 downto 0);
            pc_to_write(31 downto 26) <= (others => '0');
        else if ins(31 downto 16) = B"000011" then
            W <= 1;
            WD <= pc_to_write;
            WRITE_REG <= '1';
            pc_to_write(25 downto 0) <= ins(25 downto 0);
            pc_to_write(31 downto 26) <= (others => '0');
        else if ins(31 downto 26) = B"000000" then
            if ins(5) = '1' then
                R1 <= ins(25 downto 21);
                R2 <= ins(20 downto 16);
                ALUC <= ins(3 downto 0);
                A <= RD1;
                B <= RD2;
                W <= ins(15 downto 11);
                WRITE_REG <= '1';
                WD <= S;
            else if ins(3) = '0' then
                R1 <= ins(20 downto 16);
                ALUC(3 downto 2) <= ins(1 downto 0);
                ALUC(1 downto 0) <= B"11";
                A <= RD1;
                B(31 downto 5) <= (others => '0');
                B(4 downto 0) <= ins(10 downto 6);
                W <= ins(15 downto 11);
                WRITE_REG <= '1';
                WD <= S;
            else
                R1 <= ins(25 downto 16)
                WRITE_REG <= '0';
                pc_to_write <= RD1;
            end if;
        else
            if ins(31) = '1' then
                enable_mem <= '1';
                R1 <= ins(25 downto 21);
                ALUC <= B"0000";
                A <= RD1;
                B(15 downto 0) <= ins(15 downto 0);
                B(31 downto 16) <= H"0000";
                if ins(29) = '1' then
                    W <= ins(20 downto 16);
                    write_mem <= '0';
                else
                    R2 <= ins(20 downto 16);
                    write_mem <= '1';
                end if;
            else if ins(29 downto 26) = B"1111" then
                WRITE_REG <= '1';
                W <= ins(20 downto 16);
                WD(31 downto 16) <= ins(15 downto 0);
            else if ins(29) = '1' then
                R1 <= ins(25 downto 21);
                ALUC <= ins(29 downto 26);
                A <= RD1;
                B(15 downto 0) <= ins(15 downto 0);
                B(31 downto 16) <= H"0000";
                W <= ins(20 downto 16);
                WRITE_REG <= '1';
                WD <= S;
            else
                R1 <= ins(25 downto 21);
                R2 <= ins(20 downto 16);
                ALUC <= B"0010";
                A <= R1;
                B <= R2;
                if Z = '1' then
                    pc_to_write <= pc_to_write + to_integer(ins(15 downto 0));
                end if;
                WRITE_REG <= '0';
            end if;
        end if;

        if enable_mem then
            if write_mem then
                WRITE_REG <= '0';
                memory(S) <= RD2;
            else
                WRITE_REG <= '1';
                WD <= memory(S);
            end if;
        end if;
        
    end process;
end architecture;