aboutsummaryrefslogtreecommitdiff
path: root/absl/container/internal/btree.h
diff options
context:
space:
mode:
Diffstat (limited to 'absl/container/internal/btree.h')
-rw-r--r--absl/container/internal/btree.h1090
1 files changed, 662 insertions, 428 deletions
diff --git a/absl/container/internal/btree.h b/absl/container/internal/btree.h
index 0bb38366..01f4e749 100644
--- a/absl/container/internal/btree.h
+++ b/absl/container/internal/btree.h
@@ -58,6 +58,7 @@
#include <type_traits>
#include <utility>
+#include "absl/base/internal/raw_logging.h"
#include "absl/base/macros.h"
#include "absl/container/internal/common.h"
#include "absl/container/internal/compressed_tuple.h"
@@ -74,12 +75,24 @@ namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
+#ifdef ABSL_BTREE_ENABLE_GENERATIONS
+#error ABSL_BTREE_ENABLE_GENERATIONS cannot be directly set
+#elif defined(ABSL_HAVE_ADDRESS_SANITIZER) || \
+ defined(ABSL_HAVE_MEMORY_SANITIZER)
+// When compiled in sanitizer mode, we add generation integers to the nodes and
+// iterators. When iterators are used, we validate that the container has not
+// been mutated since the iterator was constructed.
+#define ABSL_BTREE_ENABLE_GENERATIONS
+#endif
+
+template <typename Compare, typename T, typename U>
+using compare_result_t = absl::result_of_t<const Compare(const T &, const U &)>;
+
// A helper class that indicates if the Compare parameter is a key-compare-to
// comparator.
template <typename Compare, typename T>
using btree_is_key_compare_to =
- std::is_convertible<absl::result_of_t<Compare(const T &, const T &)>,
- absl::weak_ordering>;
+ std::is_convertible<compare_result_t<Compare, T, T>, absl::weak_ordering>;
struct StringBtreeDefaultLess {
using is_transparent = void;
@@ -88,7 +101,12 @@ struct StringBtreeDefaultLess {
// Compatibility constructor.
StringBtreeDefaultLess(std::less<std::string>) {} // NOLINT
- StringBtreeDefaultLess(std::less<string_view>) {} // NOLINT
+ StringBtreeDefaultLess(std::less<absl::string_view>) {} // NOLINT
+
+ // Allow converting to std::less for use in key_comp()/value_comp().
+ explicit operator std::less<std::string>() const { return {}; }
+ explicit operator std::less<absl::string_view>() const { return {}; }
+ explicit operator std::less<absl::Cord>() const { return {}; }
absl::weak_ordering operator()(absl::string_view lhs,
absl::string_view rhs) const {
@@ -115,7 +133,12 @@ struct StringBtreeDefaultGreater {
StringBtreeDefaultGreater() = default;
StringBtreeDefaultGreater(std::greater<std::string>) {} // NOLINT
- StringBtreeDefaultGreater(std::greater<string_view>) {} // NOLINT
+ StringBtreeDefaultGreater(std::greater<absl::string_view>) {} // NOLINT
+
+ // Allow converting to std::greater for use in key_comp()/value_comp().
+ explicit operator std::greater<std::string>() const { return {}; }
+ explicit operator std::greater<absl::string_view>() const { return {}; }
+ explicit operator std::greater<absl::Cord>() const { return {}; }
absl::weak_ordering operator()(absl::string_view lhs,
absl::string_view rhs) const {
@@ -136,49 +159,140 @@ struct StringBtreeDefaultGreater {
}
};
-// A helper class to convert a boolean comparison into a three-way "compare-to"
-// comparison that returns an `absl::weak_ordering`. This helper
-// class is specialized for less<std::string>, greater<std::string>,
-// less<string_view>, greater<string_view>, less<absl::Cord>, and
-// greater<absl::Cord>.
-//
-// key_compare_to_adapter is provided so that btree users
-// automatically get the more efficient compare-to code when using common
-// Abseil string types with common comparison functors.
-// These string-like specializations also turn on heterogeneous lookup by
-// default.
+// See below comments for checked_compare.
+template <typename Compare, bool is_class = std::is_class<Compare>::value>
+struct checked_compare_base : Compare {
+ using Compare::Compare;
+ explicit checked_compare_base(Compare c) : Compare(std::move(c)) {}
+ const Compare &comp() const { return *this; }
+};
template <typename Compare>
-struct key_compare_to_adapter {
- using type = Compare;
+struct checked_compare_base<Compare, false> {
+ explicit checked_compare_base(Compare c) : compare(std::move(c)) {}
+ const Compare &comp() const { return compare; }
+ Compare compare;
+};
+
+// A mechanism for opting out of checked_compare for use only in btree_test.cc.
+struct BtreeTestOnlyCheckedCompareOptOutBase {};
+
+// A helper class to adapt the specified comparator for two use cases:
+// (1) When using common Abseil string types with common comparison functors,
+// convert a boolean comparison into a three-way comparison that returns an
+// `absl::weak_ordering`. This helper class is specialized for
+// less<std::string>, greater<std::string>, less<string_view>,
+// greater<string_view>, less<absl::Cord>, and greater<absl::Cord>.
+// (2) Adapt the comparator to diagnose cases of non-strict-weak-ordering (see
+// https://en.cppreference.com/w/cpp/named_req/Compare) in debug mode. Whenever
+// a comparison is made, we will make assertions to verify that the comparator
+// is valid.
+template <typename Compare, typename Key>
+struct key_compare_adapter {
+ // Inherit from checked_compare_base to support function pointers and also
+ // keep empty-base-optimization (EBO) support for classes.
+ // Note: we can't use CompressedTuple here because that would interfere
+ // with the EBO for `btree::rightmost_`. `btree::rightmost_` is itself a
+ // CompressedTuple and nested `CompressedTuple`s don't support EBO.
+ // TODO(b/214288561): use CompressedTuple instead once it supports EBO for
+ // nested `CompressedTuple`s.
+ struct checked_compare : checked_compare_base<Compare> {
+ private:
+ using Base = typename checked_compare::checked_compare_base;
+ using Base::comp;
+
+ // If possible, returns whether `t` is equivalent to itself. We can only do
+ // this for `Key`s because we can't be sure that it's safe to call
+ // `comp()(k, k)` otherwise. Even if SFINAE allows it, there could be a
+ // compilation failure inside the implementation of the comparison operator.
+ bool is_self_equivalent(const Key &k) const {
+ // Note: this works for both boolean and three-way comparators.
+ return comp()(k, k) == 0;
+ }
+ // If we can't compare `t` with itself, returns true unconditionally.
+ template <typename T>
+ bool is_self_equivalent(const T &) const {
+ return true;
+ }
+
+ public:
+ using Base::Base;
+ checked_compare(Compare comp) : Base(std::move(comp)) {} // NOLINT
+
+ // Allow converting to Compare for use in key_comp()/value_comp().
+ explicit operator Compare() const { return comp(); }
+
+ template <typename T, typename U,
+ absl::enable_if_t<
+ std::is_same<bool, compare_result_t<Compare, T, U>>::value,
+ int> = 0>
+ bool operator()(const T &lhs, const U &rhs) const {
+ // NOTE: if any of these assertions fail, then the comparator does not
+ // establish a strict-weak-ordering (see
+ // https://en.cppreference.com/w/cpp/named_req/Compare).
+ assert(is_self_equivalent(lhs));
+ assert(is_self_equivalent(rhs));
+ const bool lhs_comp_rhs = comp()(lhs, rhs);
+ assert(!lhs_comp_rhs || !comp()(rhs, lhs));
+ return lhs_comp_rhs;
+ }
+
+ template <
+ typename T, typename U,
+ absl::enable_if_t<std::is_convertible<compare_result_t<Compare, T, U>,
+ absl::weak_ordering>::value,
+ int> = 0>
+ absl::weak_ordering operator()(const T &lhs, const U &rhs) const {
+ // NOTE: if any of these assertions fail, then the comparator does not
+ // establish a strict-weak-ordering (see
+ // https://en.cppreference.com/w/cpp/named_req/Compare).
+ assert(is_self_equivalent(lhs));
+ assert(is_self_equivalent(rhs));
+ const absl::weak_ordering lhs_comp_rhs = comp()(lhs, rhs);
+#ifndef NDEBUG
+ const absl::weak_ordering rhs_comp_lhs = comp()(rhs, lhs);
+ if (lhs_comp_rhs > 0) {
+ assert(rhs_comp_lhs < 0 && "lhs_comp_rhs > 0 -> rhs_comp_lhs < 0");
+ } else if (lhs_comp_rhs == 0) {
+ assert(rhs_comp_lhs == 0 && "lhs_comp_rhs == 0 -> rhs_comp_lhs == 0");
+ } else {
+ assert(rhs_comp_lhs > 0 && "lhs_comp_rhs < 0 -> rhs_comp_lhs > 0");
+ }
+#endif
+ return lhs_comp_rhs;
+ }
+ };
+ using type = absl::conditional_t<
+ std::is_base_of<BtreeTestOnlyCheckedCompareOptOutBase, Compare>::value,
+ Compare, checked_compare>;
};
template <>
-struct key_compare_to_adapter<std::less<std::string>> {
+struct key_compare_adapter<std::less<std::string>, std::string> {
using type = StringBtreeDefaultLess;
};
template <>
-struct key_compare_to_adapter<std::greater<std::string>> {
+struct key_compare_adapter<std::greater<std::string>, std::string> {
using type = StringBtreeDefaultGreater;
};
template <>
-struct key_compare_to_adapter<std::less<absl::string_view>> {
+struct key_compare_adapter<std::less<absl::string_view>, absl::string_view> {
using type = StringBtreeDefaultLess;
};
template <>
-struct key_compare_to_adapter<std::greater<absl::string_view>> {
+struct key_compare_adapter<std::greater<absl::string_view>, absl::string_view> {
using type = StringBtreeDefaultGreater;
};
template <>
-struct key_compare_to_adapter<std::less<absl::Cord>> {
+struct key_compare_adapter<std::less<absl::Cord>, absl::Cord> {
using type = StringBtreeDefaultLess;
};
template <>
-struct key_compare_to_adapter<std::greater<absl::Cord>> {
+struct key_compare_adapter<std::greater<absl::Cord>, absl::Cord> {
using type = StringBtreeDefaultGreater;
};
@@ -214,19 +328,70 @@ struct prefers_linear_node_search<
T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>>
: T::absl_btree_prefer_linear_node_search {};
+template <typename Compare, typename Key>
+constexpr bool compare_has_valid_result_type() {
+ using compare_result_type = compare_result_t<Compare, Key, Key>;
+ return std::is_same<compare_result_type, bool>::value ||
+ std::is_convertible<compare_result_type, absl::weak_ordering>::value;
+}
+
+template <typename original_key_compare, typename value_type>
+class map_value_compare {
+ template <typename Params>
+ friend class btree;
+
+ // Note: this `protected` is part of the API of std::map::value_compare. See
+ // https://en.cppreference.com/w/cpp/container/map/value_compare.
+ protected:
+ explicit map_value_compare(original_key_compare c) : comp(std::move(c)) {}
+
+ original_key_compare comp; // NOLINT
+
+ public:
+ auto operator()(const value_type &lhs, const value_type &rhs) const
+ -> decltype(comp(lhs.first, rhs.first)) {
+ return comp(lhs.first, rhs.first);
+ }
+};
+
template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
- bool Multi, typename SlotPolicy>
+ bool IsMulti, bool IsMap, typename SlotPolicy>
struct common_params {
+ using original_key_compare = Compare;
+
// If Compare is a common comparator for a string-like type, then we adapt it
// to use heterogeneous lookup and to be a key-compare-to comparator.
- using key_compare = typename key_compare_to_adapter<Compare>::type;
+ // We also adapt the comparator to diagnose invalid comparators in debug mode.
+ // We disable this when `Compare` is invalid in a way that will cause
+ // adaptation to fail (having invalid return type) so that we can give a
+ // better compilation failure in static_assert_validation. If we don't do
+ // this, then there will be cascading compilation failures that are confusing
+ // for users.
+ using key_compare =
+ absl::conditional_t<!compare_has_valid_result_type<Compare, Key>(),
+ Compare,
+ typename key_compare_adapter<Compare, Key>::type>;
+
+ static constexpr bool kIsKeyCompareStringAdapted =
+ std::is_same<key_compare, StringBtreeDefaultLess>::value ||
+ std::is_same<key_compare, StringBtreeDefaultGreater>::value;
+ static constexpr bool kIsKeyCompareTransparent =
+ IsTransparent<original_key_compare>::value ||
+ kIsKeyCompareStringAdapted;
+ static constexpr bool kEnableGenerations =
+#ifdef ABSL_BTREE_ENABLE_GENERATIONS
+ true;
+#else
+ false;
+#endif
+
// A type which indicates if we have a key-compare-to functor or a plain old
// key-compare functor.
using is_key_compare_to = btree_is_key_compare_to<key_compare, Key>;
using allocator_type = Alloc;
using key_type = Key;
- using size_type = std::make_signed<size_t>::type;
+ using size_type = size_t;
using difference_type = ptrdiff_t;
using slot_policy = SlotPolicy;
@@ -238,6 +403,12 @@ struct common_params {
using reference = value_type &;
using const_reference = const value_type &;
+ using value_compare =
+ absl::conditional_t<IsMap,
+ map_value_compare<original_key_compare, value_type>,
+ original_key_compare>;
+ using is_map_container = std::integral_constant<bool, IsMap>;
+
// For the given lookup key type, returns whether we can have multiple
// equivalent keys in the btree. If this is a multi-container, then we can.
// Otherwise, we can have multiple equivalent keys only if all of the
@@ -248,27 +419,25 @@ struct common_params {
// that we know has the same equivalence classes for all lookup types.
template <typename LookupKey>
constexpr static bool can_have_multiple_equivalent_keys() {
- return Multi ||
- (IsTransparent<key_compare>::value &&
- !std::is_same<LookupKey, Key>::value &&
- !std::is_same<key_compare, StringBtreeDefaultLess>::value &&
- !std::is_same<key_compare, StringBtreeDefaultGreater>::value);
+ return IsMulti || (IsTransparent<key_compare>::value &&
+ !std::is_same<LookupKey, Key>::value &&
+ !kIsKeyCompareStringAdapted);
}
enum {
kTargetNodeSize = TargetNodeSize,
- // Upper bound for the available space for values. This is largest for leaf
+ // Upper bound for the available space for slots. This is largest for leaf
// nodes, which have overhead of at least a pointer + 4 bytes (for storing
// 3 field_types and an enum).
- kNodeValueSpace =
+ kNodeSlotSpace =
TargetNodeSize - /*minimum overhead=*/(sizeof(void *) + 4),
};
- // This is an integral type large enough to hold as many
- // ValueSize-values as will fit a node of TargetNodeSize bytes.
+ // This is an integral type large enough to hold as many slots as will fit a
+ // node of TargetNodeSize bytes.
using node_count_type =
- absl::conditional_t<(kNodeValueSpace / sizeof(value_type) >
+ absl::conditional_t<(kNodeSlotSpace / sizeof(slot_type) >
(std::numeric_limits<uint8_t>::max)()),
uint16_t, uint8_t>; // NOLINT
@@ -291,116 +460,10 @@ struct common_params {
slot_policy::destroy(alloc, slot);
}
static void transfer(Alloc *alloc, slot_type *new_slot, slot_type *old_slot) {
- construct(alloc, new_slot, old_slot);
- destroy(alloc, old_slot);
- }
- static void swap(Alloc *alloc, slot_type *a, slot_type *b) {
- slot_policy::swap(alloc, a, b);
- }
- static void move(Alloc *alloc, slot_type *src, slot_type *dest) {
- slot_policy::move(alloc, src, dest);
- }
-};
-
-// A parameters structure for holding the type parameters for a btree_map.
-// Compare and Alloc should be nothrow copy-constructible.
-template <typename Key, typename Data, typename Compare, typename Alloc,
- int TargetNodeSize, bool Multi>
-struct map_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
- map_slot_policy<Key, Data>> {
- using super_type = typename map_params::common_params;
- using mapped_type = Data;
- // This type allows us to move keys when it is safe to do so. It is safe
- // for maps in which value_type and mutable_value_type are layout compatible.
- using slot_policy = typename super_type::slot_policy;
- using slot_type = typename super_type::slot_type;
- using value_type = typename super_type::value_type;
- using init_type = typename super_type::init_type;
-
- using key_compare = typename super_type::key_compare;
- // Inherit from key_compare for empty base class optimization.
- struct value_compare : private key_compare {
- value_compare() = default;
- explicit value_compare(const key_compare &cmp) : key_compare(cmp) {}
-
- template <typename T, typename U>
- auto operator()(const T &left, const U &right) const
- -> decltype(std::declval<key_compare>()(left.first, right.first)) {
- return key_compare::operator()(left.first, right.first);
- }
- };
- using is_map_container = std::true_type;
-
- template <typename V>
- static auto key(const V &value) -> decltype(value.first) {
- return value.first;
- }
- static const Key &key(const slot_type *s) { return slot_policy::key(s); }
- static const Key &key(slot_type *s) { return slot_policy::key(s); }
- // For use in node handle.
- static auto mutable_key(slot_type *s)
- -> decltype(slot_policy::mutable_key(s)) {
- return slot_policy::mutable_key(s);
- }
- static mapped_type &value(value_type *value) { return value->second; }
-};
-
-// This type implements the necessary functions from the
-// absl::container_internal::slot_type interface.
-template <typename Key>
-struct set_slot_policy {
- using slot_type = Key;
- using value_type = Key;
- using mutable_value_type = Key;
-
- static value_type &element(slot_type *slot) { return *slot; }
- static const value_type &element(const slot_type *slot) { return *slot; }
-
- template <typename Alloc, class... Args>
- static void construct(Alloc *alloc, slot_type *slot, Args &&... args) {
- absl::allocator_traits<Alloc>::construct(*alloc, slot,
- std::forward<Args>(args)...);
- }
-
- template <typename Alloc>
- static void construct(Alloc *alloc, slot_type *slot, slot_type *other) {
- absl::allocator_traits<Alloc>::construct(*alloc, slot, std::move(*other));
- }
-
- template <typename Alloc>
- static void destroy(Alloc *alloc, slot_type *slot) {
- absl::allocator_traits<Alloc>::destroy(*alloc, slot);
- }
-
- template <typename Alloc>
- static void swap(Alloc * /*alloc*/, slot_type *a, slot_type *b) {
- using std::swap;
- swap(*a, *b);
- }
-
- template <typename Alloc>
- static void move(Alloc * /*alloc*/, slot_type *src, slot_type *dest) {
- *dest = std::move(*src);
+ slot_policy::transfer(alloc, new_slot, old_slot);
}
};
-// A parameters structure for holding the type parameters for a btree_set.
-// Compare and Alloc should be nothrow copy-constructible.
-template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
- bool Multi>
-struct set_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
- set_slot_policy<Key>> {
- using value_type = Key;
- using slot_type = typename set_params::common_params::slot_type;
- using value_compare = typename set_params::common_params::key_compare;
- using is_map_container = std::false_type;
-
- template <typename V>
- static const V &key(const V &value) { return value; }
- static const Key &key(const slot_type *slot) { return *slot; }
- static const Key &key(slot_type *slot) { return *slot; }
-};
-
// An adapter class that converts a lower-bound compare into an upper-bound
// compare. Note: there is no need to make a version of this adapter specialized
// for key-compare-to functors because the upper-bound (the first value greater
@@ -435,8 +498,8 @@ struct SearchResult {
template <typename V>
struct SearchResult<V, false> {
SearchResult() {}
- explicit SearchResult(V value) : value(value) {}
- SearchResult(V value, MatchKind /*match*/) : value(value) {}
+ explicit SearchResult(V v) : value(v) {}
+ SearchResult(V v, MatchKind /*match*/) : value(v) {}
V value;
@@ -453,6 +516,7 @@ class btree_node {
using field_type = typename Params::node_count_type;
using allocator_type = typename Params::allocator_type;
using slot_type = typename Params::slot_type;
+ using original_key_compare = typename Params::original_key_compare;
public:
using params_type = Params;
@@ -474,21 +538,28 @@ class btree_node {
// - Otherwise, choose binary.
// TODO(ezb): Might make sense to add condition(s) based on node-size.
using use_linear_search = std::integral_constant<
- bool,
- has_linear_node_search_preference<key_compare>::value
- ? prefers_linear_node_search<key_compare>::value
- : has_linear_node_search_preference<key_type>::value
+ bool, has_linear_node_search_preference<original_key_compare>::value
+ ? prefers_linear_node_search<original_key_compare>::value
+ : has_linear_node_search_preference<key_type>::value
? prefers_linear_node_search<key_type>::value
: std::is_arithmetic<key_type>::value &&
- (std::is_same<std::less<key_type>, key_compare>::value ||
+ (std::is_same<std::less<key_type>,
+ original_key_compare>::value ||
std::is_same<std::greater<key_type>,
- key_compare>::value)>;
+ original_key_compare>::value)>;
- // This class is organized by gtl::Layout as if it had the following
- // structure:
+ // This class is organized by absl::container_internal::Layout as if it had
+ // the following structure:
// // A pointer to the node's parent.
// btree_node *parent;
//
+ // // When ABSL_BTREE_ENABLE_GENERATIONS is defined, we also have a
+ // // generation integer in order to check that when iterators are
+ // // used, they haven't been invalidated already. Only the generation on
+ // // the root is used, but we have one on each node because whether a node
+ // // is root or not can change.
+ // uint32_t generation;
+ //
// // The position of the node in the node's parent.
// field_type position;
// // The index of the first populated value in `values`.
@@ -535,23 +606,27 @@ class btree_node {
btree_node() = default;
private:
- using layout_type = absl::container_internal::Layout<btree_node *, field_type,
- slot_type, btree_node *>;
+ using layout_type =
+ absl::container_internal::Layout<btree_node *, uint32_t, field_type,
+ slot_type, btree_node *>;
constexpr static size_type SizeWithNSlots(size_type n) {
- return layout_type(/*parent*/ 1,
- /*position, start, finish, max_count*/ 4,
- /*slots*/ n,
- /*children*/ 0)
+ return layout_type(
+ /*parent*/ 1,
+ /*generation*/ params_type::kEnableGenerations ? 1 : 0,
+ /*position, start, finish, max_count*/ 4,
+ /*slots*/ n,
+ /*children*/ 0)
.AllocSize();
}
- // A lower bound for the overhead of fields other than values in a leaf node.
+ // A lower bound for the overhead of fields other than slots in a leaf node.
constexpr static size_type MinimumOverhead() {
- return SizeWithNSlots(1) - sizeof(value_type);
+ return SizeWithNSlots(1) - sizeof(slot_type);
}
// Compute how many values we can fit onto a leaf node taking into account
// padding.
- constexpr static size_type NodeTargetSlots(const int begin, const int end) {
+ constexpr static size_type NodeTargetSlots(const size_type begin,
+ const size_type end) {
return begin == end ? begin
: SizeWithNSlots((begin + end) / 2 + 1) >
params_type::kTargetNodeSize
@@ -580,16 +655,20 @@ class btree_node {
// Leaves can have less than kNodeSlots values.
constexpr static layout_type LeafLayout(const int slot_count = kNodeSlots) {
- return layout_type(/*parent*/ 1,
- /*position, start, finish, max_count*/ 4,
- /*slots*/ slot_count,
- /*children*/ 0);
+ return layout_type(
+ /*parent*/ 1,
+ /*generation*/ params_type::kEnableGenerations ? 1 : 0,
+ /*position, start, finish, max_count*/ 4,
+ /*slots*/ slot_count,
+ /*children*/ 0);
}
constexpr static layout_type InternalLayout() {
- return layout_type(/*parent*/ 1,
- /*position, start, finish, max_count*/ 4,
- /*slots*/ kNodeSlots,
- /*children*/ kNodeSlots + 1);
+ return layout_type(
+ /*parent*/ 1,
+ /*generation*/ params_type::kEnableGenerations ? 1 : 0,
+ /*position, start, finish, max_count*/ 4,
+ /*slots*/ kNodeSlots,
+ /*children*/ kNodeSlots + 1);
}
constexpr static size_type LeafSize(const int slot_count = kNodeSlots) {
return LeafLayout(slot_count).AllocSize();
@@ -603,44 +682,47 @@ class btree_node {
template <size_type N>
inline typename layout_type::template ElementType<N> *GetField() {
// We assert that we don't read from values that aren't there.
- assert(N < 3 || !leaf());
+ assert(N < 4 || is_internal());
return InternalLayout().template Pointer<N>(reinterpret_cast<char *>(this));
}
template <size_type N>
inline const typename layout_type::template ElementType<N> *GetField() const {
- assert(N < 3 || !leaf());
+ assert(N < 4 || is_internal());
return InternalLayout().template Pointer<N>(
reinterpret_cast<const char *>(this));
}
void set_parent(btree_node *p) { *GetField<0>() = p; }
- field_type &mutable_finish() { return GetField<1>()[2]; }
- slot_type *slot(int i) { return &GetField<2>()[i]; }
+ field_type &mutable_finish() { return GetField<2>()[2]; }
+ slot_type *slot(int i) { return &GetField<3>()[i]; }
slot_type *start_slot() { return slot(start()); }
slot_type *finish_slot() { return slot(finish()); }
- const slot_type *slot(int i) const { return &GetField<2>()[i]; }
- void set_position(field_type v) { GetField<1>()[0] = v; }
- void set_start(field_type v) { GetField<1>()[1] = v; }
- void set_finish(field_type v) { GetField<1>()[2] = v; }
+ const slot_type *slot(int i) const { return &GetField<3>()[i]; }
+ void set_position(field_type v) { GetField<2>()[0] = v; }
+ void set_start(field_type v) { GetField<2>()[1] = v; }
+ void set_finish(field_type v) { GetField<2>()[2] = v; }
// This method is only called by the node init methods.
- void set_max_count(field_type v) { GetField<1>()[3] = v; }
+ void set_max_count(field_type v) { GetField<2>()[3] = v; }
public:
// Whether this is a leaf node or not. This value doesn't change after the
// node is created.
- bool leaf() const { return GetField<1>()[3] != kInternalNodeMaxCount; }
+ bool is_leaf() const { return GetField<2>()[3] != kInternalNodeMaxCount; }
+ // Whether this is an internal node or not. This value doesn't change after
+ // the node is created.
+ bool is_internal() const { return !is_leaf(); }
// Getter for the position of this node in its parent.
- field_type position() const { return GetField<1>()[0]; }
+ field_type position() const { return GetField<2>()[0]; }
// Getter for the offset of the first value in the `values` array.
field_type start() const {
- // TODO(ezb): when floating storage is implemented, return GetField<1>()[1];
- assert(GetField<1>()[1] == 0);
+ // TODO(ezb): when floating storage is implemented, return GetField<2>()[1];
+ assert(GetField<2>()[1] == 0);
return 0;
}
// Getter for the offset after the last value in the `values` array.
- field_type finish() const { return GetField<1>()[2]; }
+ field_type finish() const { return GetField<2>()[2]; }
// Getters for the number of values stored in this node.
field_type count() const {
@@ -650,7 +732,7 @@ class btree_node {
field_type max_count() const {
// Internal nodes have max_count==kInternalNodeMaxCount.
// Leaf nodes have max_count in [1, kNodeSlots].
- const field_type max_count = GetField<1>()[3];
+ const field_type max_count = GetField<2>()[3];
return max_count == field_type{kInternalNodeMaxCount}
? field_type{kNodeSlots}
: max_count;
@@ -661,21 +743,44 @@ class btree_node {
// Getter for whether the node is the root of the tree. The parent of the
// root of the tree is the leftmost node in the tree which is guaranteed to
// be a leaf.
- bool is_root() const { return parent()->leaf(); }
+ bool is_root() const { return parent()->is_leaf(); }
void make_root() {
assert(parent()->is_root());
+ set_generation(parent()->generation());
set_parent(parent()->parent());
}
+ // Gets the root node's generation integer, which is the one used by the tree.
+ uint32_t *get_root_generation() const {
+ assert(params_type::kEnableGenerations);
+ const btree_node *curr = this;
+ for (; !curr->is_root(); curr = curr->parent()) continue;
+ return const_cast<uint32_t *>(&curr->GetField<1>()[0]);
+ }
+
+ // Returns the generation for iterator validation.
+ uint32_t generation() const {
+ return params_type::kEnableGenerations ? *get_root_generation() : 0;
+ }
+ // Updates generation. Should only be called on a root node or during node
+ // initialization.
+ void set_generation(uint32_t generation) {
+ if (params_type::kEnableGenerations) GetField<1>()[0] = generation;
+ }
+ // Updates the generation. We do this whenever the node is mutated.
+ void next_generation() {
+ if (params_type::kEnableGenerations) ++*get_root_generation();
+ }
+
// Getters for the key/value at position i in the node.
const key_type &key(int i) const { return params_type::key(slot(i)); }
reference value(int i) { return params_type::element(slot(i)); }
const_reference value(int i) const { return params_type::element(slot(i)); }
// Getters/setter for the child at position i in the node.
- btree_node *child(int i) const { return GetField<3>()[i]; }
+ btree_node *child(int i) const { return GetField<4>()[i]; }
btree_node *start_child() const { return child(start()); }
- btree_node *&mutable_child(int i) { return GetField<3>()[i]; }
+ btree_node *&mutable_child(int i) { return GetField<4>()[i]; }
void clear_child(int i) {
absl::container_internal::SanitizerPoisonObject(&mutable_child(i));
}
@@ -832,7 +937,8 @@ class btree_node {
void merge(btree_node *src, allocator_type *alloc);
// Node allocation/deletion routines.
- void init_leaf(btree_node *parent, int max_count) {
+ void init_leaf(int max_count, btree_node *parent) {
+ set_generation(0);
set_parent(parent);
set_position(0);
set_start(0);
@@ -842,7 +948,7 @@ class btree_node {
start_slot(), max_count * sizeof(slot_type));
}
void init_internal(btree_node *parent) {
- init_leaf(parent, kNodeSlots);
+ init_leaf(kNodeSlots, parent);
// Set `max_count` to a sentinel value to indicate that this node is
// internal.
set_max_count(kInternalNodeMaxCount);
@@ -861,15 +967,18 @@ class btree_node {
private:
template <typename... Args>
void value_init(const field_type i, allocator_type *alloc, Args &&... args) {
+ next_generation();
absl::container_internal::SanitizerUnpoisonObject(slot(i));
params_type::construct(alloc, slot(i), std::forward<Args>(args)...);
}
void value_destroy(const field_type i, allocator_type *alloc) {
+ next_generation();
params_type::destroy(alloc, slot(i));
absl::container_internal::SanitizerPoisonObject(slot(i));
}
void value_destroy_n(const field_type i, const field_type n,
allocator_type *alloc) {
+ next_generation();
for (slot_type *s = slot(i), *end = slot(i + n); s != end; ++s) {
params_type::destroy(alloc, s);
absl::container_internal::SanitizerPoisonObject(s);
@@ -885,6 +994,7 @@ class btree_node {
// Transfers value from slot `src_i` in `src_node` to slot `dest_i` in `this`.
void transfer(const size_type dest_i, const size_type src_i,
btree_node *src_node, allocator_type *alloc) {
+ next_generation();
transfer(slot(dest_i), src_node->slot(src_i), alloc);
}
@@ -893,6 +1003,7 @@ class btree_node {
void transfer_n(const size_type n, const size_type dest_i,
const size_type src_i, btree_node *src_node,
allocator_type *alloc) {
+ next_generation();
for (slot_type *src = src_node->slot(src_i), *end = src + n,
*dest = slot(dest_i);
src != end; ++src, ++dest) {
@@ -905,6 +1016,7 @@ class btree_node {
void transfer_n_backward(const size_type n, const size_type dest_i,
const size_type src_i, btree_node *src_node,
allocator_type *alloc) {
+ next_generation();
for (slot_type *src = src_node->slot(src_i + n - 1), *end = src - n,
*dest = slot(dest_i + n - 1);
src != end; --src, --dest) {
@@ -915,13 +1027,13 @@ class btree_node {
template <typename P>
friend class btree;
template <typename N, typename R, typename P>
- friend struct btree_iterator;
+ friend class btree_iterator;
friend class BtreeNodePeer;
+ friend struct btree_access;
};
template <typename Node, typename Reference, typename Pointer>
-struct btree_iterator {
- private:
+class btree_iterator {
using key_type = typename Node::key_type;
using size_type = typename Node::size_type;
using params_type = typename Node::params_type;
@@ -949,9 +1061,15 @@ struct btree_iterator {
using reference = Reference;
using iterator_category = std::bidirectional_iterator_tag;
- btree_iterator() : node(nullptr), position(-1) {}
- explicit btree_iterator(Node *n) : node(n), position(n->start()) {}
- btree_iterator(Node *n, int p) : node(n), position(p) {}
+ btree_iterator() : btree_iterator(nullptr, -1) {}
+ explicit btree_iterator(Node *n) : btree_iterator(n, n->start()) {}
+ btree_iterator(Node *n, int p) : node_(n), position_(p) {
+#ifdef ABSL_BTREE_ENABLE_GENERATIONS
+ // Use `~uint32_t{}` as a sentinel value for iterator generations so it
+ // doesn't match the initial value for the actual generation.
+ generation_ = n != nullptr ? n->generation() : ~uint32_t{};
+#endif
+ }
// NOTE: this SFINAE allows for implicit conversions from iterator to
// const_iterator, but it specifically avoids hiding the copy constructor so
@@ -962,58 +1080,32 @@ struct btree_iterator {
std::is_same<btree_iterator, const_iterator>::value,
int> = 0>
btree_iterator(const btree_iterator<N, R, P> other) // NOLINT
- : node(other.node), position(other.position) {}
-
- private:
- // This SFINAE allows explicit conversions from const_iterator to
- // iterator, but also avoids hiding the copy constructor.
- // NOTE: the const_cast is safe because this constructor is only called by
- // non-const methods and the container owns the nodes.
- template <typename N, typename R, typename P,
- absl::enable_if_t<
- std::is_same<btree_iterator<N, R, P>, const_iterator>::value &&
- std::is_same<btree_iterator, iterator>::value,
- int> = 0>
- explicit btree_iterator(const btree_iterator<N, R, P> other)
- : node(const_cast<node_type *>(other.node)), position(other.position) {}
-
- // Increment/decrement the iterator.
- void increment() {
- if (node->leaf() && ++position < node->finish()) {
- return;
- }
- increment_slow();
- }
- void increment_slow();
-
- void decrement() {
- if (node->leaf() && --position >= node->start()) {
- return;
- }
- decrement_slow();
+ : node_(other.node_), position_(other.position_) {
+#ifdef ABSL_BTREE_ENABLE_GENERATIONS
+ generation_ = other.generation_;
+#endif
}
- void decrement_slow();
- public:
bool operator==(const iterator &other) const {
- return node == other.node && position == other.position;
+ return node_ == other.node_ && position_ == other.position_;
}
bool operator==(const const_iterator &other) const {
- return node == other.node && position == other.position;
+ return node_ == other.node_ && position_ == other.position_;
}
bool operator!=(const iterator &other) const {
- return node != other.node || position != other.position;
+ return node_ != other.node_ || position_ != other.position_;
}
bool operator!=(const const_iterator &other) const {
- return node != other.node || position != other.position;
+ return node_ != other.node_ || position_ != other.position_;
}
// Accessors for the key/value the iterator is pointing at.
reference operator*() const {
- ABSL_HARDENING_ASSERT(node != nullptr);
- ABSL_HARDENING_ASSERT(node->start() <= position);
- ABSL_HARDENING_ASSERT(node->finish() > position);
- return node->value(position);
+ ABSL_HARDENING_ASSERT(node_ != nullptr);
+ ABSL_HARDENING_ASSERT(node_->start() <= position_);
+ ABSL_HARDENING_ASSERT(node_->finish() > position_);
+ assert_valid_generation();
+ return node_->value(position_);
}
pointer operator->() const { return &operator*(); }
@@ -1051,23 +1143,84 @@ struct btree_iterator {
friend class btree_multiset_container;
template <typename TreeType, typename CheckerType>
friend class base_checker;
+ friend struct btree_access;
- const key_type &key() const { return node->key(position); }
- slot_type *slot() { return node->slot(position); }
+ // This SFINAE allows explicit conversions from const_iterator to
+ // iterator, but also avoids hiding the copy constructor.
+ // NOTE: the const_cast is safe because this constructor is only called by
+ // non-const methods and the container owns the nodes.
+ template <typename N, typename R, typename P,
+ absl::enable_if_t<
+ std::is_same<btree_iterator<N, R, P>, const_iterator>::value &&
+ std::is_same<btree_iterator, iterator>::value,
+ int> = 0>
+ explicit btree_iterator(const btree_iterator<N, R, P> other)
+ : node_(const_cast<node_type *>(other.node_)),
+ position_(other.position_) {
+#ifdef ABSL_BTREE_ENABLE_GENERATIONS
+ generation_ = other.generation_;
+#endif
+ }
+
+ // Increment/decrement the iterator.
+ void increment() {
+ assert_valid_generation();
+ if (node_->is_leaf() && ++position_ < node_->finish()) {
+ return;
+ }
+ increment_slow();
+ }
+ void increment_slow();
+
+ void decrement() {
+ assert_valid_generation();
+ if (node_->is_leaf() && --position_ >= node_->start()) {
+ return;
+ }
+ decrement_slow();
+ }
+ void decrement_slow();
+
+ // Updates the generation. For use internally right before we return an
+ // iterator to the user.
+ void update_generation() {
+#ifdef ABSL_BTREE_ENABLE_GENERATIONS
+ if (node_ != nullptr) generation_ = node_->generation();
+#endif
+ }
+
+ const key_type &key() const { return node_->key(position_); }
+ decltype(std::declval<Node *>()->slot(0)) slot() {
+ return node_->slot(position_);
+ }
+
+ void assert_valid_generation() const {
+#ifdef ABSL_BTREE_ENABLE_GENERATIONS
+ if (node_ != nullptr && node_->generation() != generation_) {
+ ABSL_INTERNAL_LOG(
+ FATAL,
+ "Attempting to use an invalidated iterator. The corresponding b-tree "
+ "container has been mutated since this iterator was constructed.");
+ }
+#endif
+ }
// The node in the tree the iterator is pointing at.
- Node *node;
+ Node *node_;
// The position within the node of the tree the iterator is pointing at.
// NOTE: this is an int rather than a field_type because iterators can point
// to invalid positions (such as -1) in certain circumstances.
- int position;
+ int position_;
+#ifdef ABSL_BTREE_ENABLE_GENERATIONS
+ // Used to check that the iterator hasn't been invalidated.
+ uint32_t generation_;
+#endif
};
template <typename Params>
class btree {
using node_type = btree_node<Params>;
using is_key_compare_to = typename Params::is_key_compare_to;
- using init_type = typename Params::init_type;
using field_type = typename node_type::field_type;
// We use a static empty node for the root/leftmost/rightmost of empty btrees
@@ -1075,6 +1228,9 @@ class btree {
struct alignas(node_type::Alignment()) EmptyNodeType : node_type {
using field_type = typename node_type::field_type;
node_type *parent;
+#ifdef ABSL_BTREE_ENABLE_GENERATIONS
+ uint32_t generation = 0;
+#endif
field_type position = 0;
field_type start = 0;
field_type finish = 0;
@@ -1129,6 +1285,7 @@ class btree {
using size_type = typename Params::size_type;
using difference_type = typename Params::difference_type;
using key_compare = typename Params::key_compare;
+ using original_key_compare = typename Params::original_key_compare;
using value_compare = typename Params::value_compare;
using allocator_type = typename Params::allocator_type;
using reference = typename Params::reference;
@@ -1147,14 +1304,6 @@ class btree {
using slot_type = typename Params::slot_type;
private:
- // For use in copy_or_move_values_in_order.
- const value_type &maybe_move_from_iterator(const_iterator it) { return *it; }
- value_type &&maybe_move_from_iterator(iterator it) {
- // This is a destructive operation on the other container so it's safe for
- // us to const_cast and move from the keys here even if it's a set.
- return std::move(const_cast<value_type &>(*it));
- }
-
// Copies or moves (depending on the template parameter) the values in
// other into this btree in their order in other. This btree must be empty
// before this method is called. This method is used in copy construction,
@@ -1167,7 +1316,7 @@ class btree {
public:
btree(const key_compare &comp, const allocator_type &alloc)
- : root_(comp, alloc, EmptyNode()), rightmost_(EmptyNode()), size_(0) {}
+ : root_(EmptyNode()), rightmost_(comp, alloc, EmptyNode()), size_(0) {}
btree(const btree &other) : btree(other, other.allocator()) {}
btree(const btree &other, const allocator_type &alloc)
@@ -1175,10 +1324,10 @@ class btree {
copy_or_move_values_in_order(other);
}
btree(btree &&other) noexcept
- : root_(std::move(other.root_)),
- rightmost_(absl::exchange(other.rightmost_, EmptyNode())),
+ : root_(absl::exchange(other.root_, EmptyNode())),
+ rightmost_(std::move(other.rightmost_)),
size_(absl::exchange(other.size_, 0)) {
- other.mutable_root() = EmptyNode();
+ other.mutable_rightmost() = EmptyNode();
}
btree(btree &&other, const allocator_type &alloc)
: btree(other.key_comp(), alloc) {
@@ -1203,9 +1352,9 @@ class btree {
iterator begin() { return iterator(leftmost()); }
const_iterator begin() const { return const_iterator(leftmost()); }
- iterator end() { return iterator(rightmost_, rightmost_->finish()); }
+ iterator end() { return iterator(rightmost(), rightmost()->finish()); }
const_iterator end() const {
- return const_iterator(rightmost_, rightmost_->finish());
+ return const_iterator(rightmost(), rightmost()->finish());
}
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
@@ -1331,14 +1480,16 @@ class btree {
void swap(btree &other);
const key_compare &key_comp() const noexcept {
- return root_.template get<0>();
+ return rightmost_.template get<0>();
}
template <typename K1, typename K2>
bool compare_keys(const K1 &a, const K2 &b) const {
return compare_internal::compare_result_as_less_than(key_comp()(a, b));
}
- value_compare value_comp() const { return value_compare(key_comp()); }
+ value_compare value_comp() const {
+ return value_compare(original_key_compare(key_comp()));
+ }
// Verifies the structure of the btree.
void verify() const;
@@ -1376,6 +1527,7 @@ class btree {
}
// The total number of bytes used by the btree.
+ // TODO(b/169338300): update to support node_btree_*.
size_type bytes_used() const {
node_stats stats = internal_stats(root());
if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) {
@@ -1419,11 +1571,20 @@ class btree {
allocator_type get_allocator() const { return allocator(); }
private:
+ friend struct btree_access;
+
// Internal accessor routines.
- node_type *root() { return root_.template get<2>(); }
- const node_type *root() const { return root_.template get<2>(); }
- node_type *&mutable_root() noexcept { return root_.template get<2>(); }
- key_compare *mutable_key_comp() noexcept { return &root_.template get<0>(); }
+ node_type *root() { return root_; }
+ const node_type *root() const { return root_; }
+ node_type *&mutable_root() noexcept { return root_; }
+ node_type *rightmost() { return rightmost_.template get<2>(); }
+ const node_type *rightmost() const { return rightmost_.template get<2>(); }
+ node_type *&mutable_rightmost() noexcept {
+ return rightmost_.template get<2>();
+ }
+ key_compare *mutable_key_comp() noexcept {
+ return &rightmost_.template get<0>();
+ }
// The leftmost node is stored as the parent of the root node.
node_type *leftmost() { return root()->parent(); }
@@ -1431,10 +1592,10 @@ class btree {
// Allocator routines.
allocator_type *mutable_allocator() noexcept {
- return &root_.template get<1>();
+ return &rightmost_.template get<1>();
}
const allocator_type &allocator() const noexcept {
- return root_.template get<1>();
+ return rightmost_.template get<1>();
}
// Allocates a correctly aligned node of at least size bytes using the
@@ -1453,12 +1614,12 @@ class btree {
}
node_type *new_leaf_node(node_type *parent) {
node_type *n = allocate(node_type::LeafSize());
- n->init_leaf(parent, kNodeSlots);
+ n->init_leaf(kNodeSlots, parent);
return n;
}
node_type *new_leaf_root_node(const int max_count) {
node_type *n = allocate(node_type::LeafSize(max_count));
- n->init_leaf(/*parent=*/n, max_count);
+ n->init_leaf(max_count, /*parent=*/n);
return n;
}
@@ -1482,10 +1643,10 @@ class btree {
void try_shrink();
iterator internal_end(iterator iter) {
- return iter.node != nullptr ? iter : end();
+ return iter.node_ != nullptr ? iter : end();
}
const_iterator internal_end(const_iterator iter) const {
- return iter.node != nullptr ? iter : end();
+ return iter.node_ != nullptr ? iter : end();
}
// Emplaces a value into the btree immediately before iter. Requires that
@@ -1495,9 +1656,8 @@ class btree {
// Returns an iterator pointing to the first value >= the value "iter" is
// pointing at. Note that "iter" might be pointing to an invalid location such
- // as iter.position == iter.node->finish(). This routine simply moves iter up
- // in the tree to a valid location.
- // Requires: iter.node is non-null.
+ // as iter.position_ == iter.node_->finish(). This routine simply moves iter
+ // up in the tree to a valid location. Requires: iter.node_ is non-null.
template <typename IterType>
static IterType internal_last(IterType iter);
@@ -1533,7 +1693,7 @@ class btree {
if (node == nullptr || (node == root() && empty())) {
return node_stats(0, 0);
}
- if (node->leaf()) {
+ if (node->is_leaf()) {
return node_stats(1, 0);
}
node_stats res(0, 1);
@@ -1543,15 +1703,14 @@ class btree {
return res;
}
- // We use compressed tuple in order to save space because key_compare and
- // allocator_type are usually empty.
- absl::container_internal::CompressedTuple<key_compare, allocator_type,
- node_type *>
- root_;
+ node_type *root_;
// A pointer to the rightmost node. Note that the leftmost node is stored as
- // the root's parent.
- node_type *rightmost_;
+ // the root's parent. We use compressed tuple in order to save space because
+ // key_compare and allocator_type are usually empty.
+ absl::container_internal::CompressedTuple<key_compare, allocator_type,
+ node_type *>
+ rightmost_;
// Number of values.
size_type size_;
@@ -1575,8 +1734,8 @@ inline void btree_node<P>::emplace_value(const size_type i,
value_init(i, alloc, std::forward<Args>(args)...);
set_finish(finish() + 1);
- if (!leaf() && finish() > i + 1) {
- for (int j = finish(); j > i + 1; --j) {
+ if (is_internal() && finish() > i + 1) {
+ for (field_type j = finish(); j > i + 1; --j) {
set_child(j, child(j - 1));
}
clear_child(i + 1);
@@ -1593,7 +1752,7 @@ inline void btree_node<P>::remove_values(const field_type i,
const field_type src_i = i + to_erase;
transfer_n(orig_finish - src_i, i, src_i, this, alloc);
- if (!leaf()) {
+ if (is_internal()) {
// Delete all children between begin and end.
for (int j = 0; j < to_erase; ++j) {
clear_and_delete(child(i + j + 1), alloc);
@@ -1630,7 +1789,7 @@ void btree_node<P>::rebalance_right_to_left(const int to_move,
right->transfer_n(right->count() - to_move, right->start(),
right->start() + to_move, right, alloc);
- if (!leaf()) {
+ if (is_internal()) {
// Move the child pointers from the right to the left node.
for (int i = 0; i < to_move; ++i) {
init_child(finish() + i + 1, right->child(i));
@@ -1677,7 +1836,7 @@ void btree_node<P>::rebalance_left_to_right(const int to_move,
// 4) Move the new delimiting value to the parent from the left node.
parent()->transfer(position(), finish() - to_move, this, alloc);
- if (!leaf()) {
+ if (is_internal()) {
// Move the child pointers from the left to the right node.
for (int i = right->finish(); i >= right->start(); --i) {
right->init_child(i + to_move, right->child(i));
@@ -1723,7 +1882,7 @@ void btree_node<P>::split(const int insert_position, btree_node *dest,
value_destroy(finish(), alloc);
parent()->init_child(position() + 1, dest);
- if (!leaf()) {
+ if (is_internal()) {
for (int i = dest->start(), j = finish() + 1; i <= dest->finish();
++i, ++j) {
assert(child(j) != nullptr);
@@ -1744,7 +1903,7 @@ void btree_node<P>::merge(btree_node *src, allocator_type *alloc) {
// Move the values from the right to the left node.
transfer_n(src->count(), finish() + 1, src->start(), src, alloc);
- if (!leaf()) {
+ if (is_internal()) {
// Move the child pointers from the right to the left node.
for (int i = src->start(), j = finish() + 1; i <= src->finish(); ++i, ++j) {
init_child(j, src->child(i));
@@ -1762,7 +1921,7 @@ void btree_node<P>::merge(btree_node *src, allocator_type *alloc) {
template <typename P>
void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) {
- if (node->leaf()) {
+ if (node->is_leaf()) {
node->value_destroy_n(node->start(), node->count(), alloc);
deallocate(LeafSize(node->max_count()), node, alloc);
return;
@@ -1776,7 +1935,15 @@ void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) {
btree_node *delete_root_parent = node->parent();
// Navigate to the leftmost leaf under node, and then delete upwards.
- while (!node->leaf()) node = node->start_child();
+ while (node->is_internal()) node = node->start_child();
+#ifdef ABSL_BTREE_ENABLE_GENERATIONS
+ // When generations are enabled, we delete the leftmost leaf last in case it's
+ // the parent of the root and we need to check whether it's a leaf before we
+ // can update the root's generation.
+ // TODO(ezb): if we change btree_node::is_root to check a bool inside the node
+ // instead of checking whether the parent is a leaf, we can remove this logic.
+ btree_node *leftmost_leaf = node;
+#endif
// Use `int` because `pos` needs to be able to hold `kNodeSlots+1`, which
// isn't guaranteed to be a valid `field_type`.
int pos = node->position();
@@ -1786,14 +1953,17 @@ void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) {
assert(pos <= parent->finish());
do {
node = parent->child(pos);
- if (!node->leaf()) {
+ if (node->is_internal()) {
// Navigate to the leftmost leaf under node.
- while (!node->leaf()) node = node->start_child();
+ while (node->is_internal()) node = node->start_child();
pos = node->position();
parent = node->parent();
}
node->value_destroy_n(node->start(), node->count(), alloc);
- deallocate(LeafSize(node->max_count()), node, alloc);
+#ifdef ABSL_BTREE_ENABLE_GENERATIONS
+ if (leftmost_leaf != node)
+#endif
+ deallocate(LeafSize(node->max_count()), node, alloc);
++pos;
} while (pos <= parent->finish());
@@ -1805,7 +1975,12 @@ void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) {
parent = node->parent();
node->value_destroy_n(node->start(), node->count(), alloc);
deallocate(InternalSize(), node, alloc);
- if (parent == delete_root_parent) return;
+ if (parent == delete_root_parent) {
+#ifdef ABSL_BTREE_ENABLE_GENERATIONS
+ deallocate(LeafSize(leftmost_leaf->max_count()), leftmost_leaf, alloc);
+#endif
+ return;
+ }
++pos;
} while (pos > parent->finish());
}
@@ -1815,49 +1990,49 @@ void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) {
// btree_iterator methods
template <typename N, typename R, typename P>
void btree_iterator<N, R, P>::increment_slow() {
- if (node->leaf()) {
- assert(position >= node->finish());
+ if (node_->is_leaf()) {
+ assert(position_ >= node_->finish());
btree_iterator save(*this);
- while (position == node->finish() && !node->is_root()) {
- assert(node->parent()->child(node->position()) == node);
- position = node->position();
- node = node->parent();
+ while (position_ == node_->finish() && !node_->is_root()) {
+ assert(node_->parent()->child(node_->position()) == node_);
+ position_ = node_->position();
+ node_ = node_->parent();
}
// TODO(ezb): assert we aren't incrementing end() instead of handling.
- if (position == node->finish()) {
+ if (position_ == node_->finish()) {
*this = save;
}
} else {
- assert(position < node->finish());
- node = node->child(position + 1);
- while (!node->leaf()) {
- node = node->start_child();
+ assert(position_ < node_->finish());
+ node_ = node_->child(position_ + 1);
+ while (node_->is_internal()) {
+ node_ = node_->start_child();
}
- position = node->start();
+ position_ = node_->start();
}
}
template <typename N, typename R, typename P>
void btree_iterator<N, R, P>::decrement_slow() {
- if (node->leaf()) {
- assert(position <= -1);
+ if (node_->is_leaf()) {
+ assert(position_ <= -1);
btree_iterator save(*this);
- while (position < node->start() && !node->is_root()) {
- assert(node->parent()->child(node->position()) == node);
- position = node->position() - 1;
- node = node->parent();
+ while (position_ < node_->start() && !node_->is_root()) {
+ assert(node_->parent()->child(node_->position()) == node_);
+ position_ = node_->position() - 1;
+ node_ = node_->parent();
}
// TODO(ezb): assert we aren't decrementing begin() instead of handling.
- if (position < node->start()) {
+ if (position_ < node_->start()) {
*this = save;
}
} else {
- assert(position >= node->start());
- node = node->child(position);
- while (!node->leaf()) {
- node = node->child(node->finish());
+ assert(position_ >= node_->start());
+ node_ = node_->child(position_);
+ while (node_->is_internal()) {
+ node_ = node_->child(node_->finish());
}
- position = node->finish() - 1;
+ position_ = node_->finish() - 1;
}
}
@@ -1875,12 +2050,12 @@ void btree<P>::copy_or_move_values_in_order(Btree &other) {
// values is the same order we'll store them in.
auto iter = other.begin();
if (iter == other.end()) return;
- insert_multi(maybe_move_from_iterator(iter));
+ insert_multi(iter.slot());
++iter;
for (; iter != other.end(); ++iter) {
// If the btree is not empty, we can just insert the new value at the end
// of the tree.
- internal_emplace(end(), maybe_move_from_iterator(iter));
+ internal_emplace(end(), iter.slot());
}
}
@@ -1900,15 +2075,12 @@ constexpr bool btree<P>::static_assert_validation() {
"target node size too large");
// Verify that key_compare returns an absl::{weak,strong}_ordering or bool.
- using compare_result_type =
- absl::result_of_t<key_compare(key_type, key_type)>;
static_assert(
- std::is_same<compare_result_type, bool>::value ||
- std::is_convertible<compare_result_type, absl::weak_ordering>::value,
+ compare_has_valid_result_type<key_compare, key_type>(),
"key comparison function must return absl::{weak,strong}_ordering or "
"bool.");
- // Test the assumption made in setting kNodeValueSpace.
+ // Test the assumption made in setting kNodeSlotSpace.
static_assert(node_type::MinimumOverhead() >= sizeof(void *) + 4,
"node space assumption incorrect");
@@ -1962,7 +2134,7 @@ template <typename K, typename... Args>
auto btree<P>::insert_unique(const K &key, Args &&... args)
-> std::pair<iterator, bool> {
if (empty()) {
- mutable_root() = rightmost_ = new_leaf_root_node(1);
+ mutable_root() = mutable_rightmost() = new_leaf_root_node(1);
}
SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key);
@@ -1975,7 +2147,7 @@ auto btree<P>::insert_unique(const K &key, Args &&... args)
}
} else {
iterator last = internal_last(iter);
- if (last.node && !compare_keys(key, last.key())) {
+ if (last.node_ && !compare_keys(key, last.key())) {
// The key already exists in the tree, do nothing.
return {last, false};
}
@@ -2020,8 +2192,11 @@ template <typename P>
template <typename InputIterator>
void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, char) {
for (; b != e; ++b) {
- init_type value(*b);
- insert_hint_unique(end(), params_type::key(value), std::move(value));
+ // Use a node handle to manage a temp slot.
+ auto node_handle =
+ CommonAccess::Construct<node_handle_type>(get_allocator(), *b);
+ slot_type *slot = CommonAccess::GetSlot(node_handle);
+ insert_hint_unique(end(), params_type::key(slot), slot);
}
}
@@ -2029,11 +2204,11 @@ template <typename P>
template <typename ValueType>
auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator {
if (empty()) {
- mutable_root() = rightmost_ = new_leaf_root_node(1);
+ mutable_root() = mutable_rightmost() = new_leaf_root_node(1);
}
iterator iter = internal_upper_bound(key);
- if (iter.node == nullptr) {
+ if (iter.node_ == nullptr) {
iter = end();
}
return internal_emplace(iter, std::forward<ValueType>(v));
@@ -2093,15 +2268,15 @@ auto btree<P>::operator=(btree &&other) noexcept -> btree & {
using std::swap;
if (absl::allocator_traits<
allocator_type>::propagate_on_container_copy_assignment::value) {
- // Note: `root_` also contains the allocator and the key comparator.
swap(root_, other.root_);
+ // Note: `rightmost_` also contains the allocator and the key comparator.
swap(rightmost_, other.rightmost_);
swap(size_, other.size_);
} else {
if (allocator() == other.allocator()) {
swap(mutable_root(), other.mutable_root());
swap(*mutable_key_comp(), *other.mutable_key_comp());
- swap(rightmost_, other.rightmost_);
+ swap(mutable_rightmost(), other.mutable_rightmost());
swap(size_, other.size_);
} else {
// We aren't allowed to propagate the allocator and the allocator is
@@ -2119,22 +2294,29 @@ auto btree<P>::operator=(btree &&other) noexcept -> btree & {
template <typename P>
auto btree<P>::erase(iterator iter) -> iterator {
- bool internal_delete = false;
- if (!iter.node->leaf()) {
- // Deletion of a value on an internal node. First, move the largest value
- // from our left child here, then delete that position (in remove_values()
- // below). We can get to the largest value from our left child by
- // decrementing iter.
+ iter.node_->value_destroy(iter.position_, mutable_allocator());
+ iter.update_generation();
+
+ const bool internal_delete = iter.node_->is_internal();
+ if (internal_delete) {
+ // Deletion of a value on an internal node. First, transfer the largest
+ // value from our left child here, then erase/rebalance from that position.
+ // We can get to the largest value from our left child by decrementing iter.
iterator internal_iter(iter);
--iter;
- assert(iter.node->leaf());
- params_type::move(mutable_allocator(), iter.node->slot(iter.position),
- internal_iter.node->slot(internal_iter.position));
- internal_delete = true;
- }
-
- // Delete the key from the leaf.
- iter.node->remove_values(iter.position, /*to_erase=*/1, mutable_allocator());
+ assert(iter.node_->is_leaf());
+ internal_iter.node_->transfer(internal_iter.position_, iter.position_,
+ iter.node_, mutable_allocator());
+ } else {
+ // Shift values after erased position in leaf. In the internal case, we
+ // don't need to do this because the leaf position is the end of the node.
+ const field_type transfer_from = iter.position_ + 1;
+ const field_type num_to_transfer = iter.node_->finish() - transfer_from;
+ iter.node_->transfer_n(num_to_transfer, iter.position_, transfer_from,
+ iter.node_, mutable_allocator());
+ }
+ // Update node finish and container size.
+ iter.node_->set_finish(iter.node_->finish() - 1);
--size_;
// We want to return the next value after the one we just erased. If we
@@ -2142,7 +2324,7 @@ auto btree<P>::erase(iterator iter) -> iterator {
// value is ++(++iter). If we erased from a leaf node (internal_delete ==
// false) then the next value is ++iter. Note that ++iter may point to an
// internal node and the value in the internal node may move to a leaf node
- // (iter.node) when rebalancing is performed at the leaf level.
+ // (iter.node_) when rebalancing is performed at the leaf level.
iterator res = rebalance_after_delete(iter);
@@ -2159,14 +2341,14 @@ auto btree<P>::rebalance_after_delete(iterator iter) -> iterator {
iterator res(iter);
bool first_iteration = true;
for (;;) {
- if (iter.node == root()) {
+ if (iter.node_ == root()) {
try_shrink();
if (empty()) {
return end();
}
break;
}
- if (iter.node->count() >= kMinNodeValues) {
+ if (iter.node_->count() >= kMinNodeValues) {
break;
}
bool merged = try_merge_or_rebalance(&iter);
@@ -2179,14 +2361,15 @@ auto btree<P>::rebalance_after_delete(iterator iter) -> iterator {
if (!merged) {
break;
}
- iter.position = iter.node->position();
- iter.node = iter.node->parent();
+ iter.position_ = iter.node_->position();
+ iter.node_ = iter.node_->parent();
}
+ res.update_generation();
// Adjust our return value. If we're pointing at the end of a node, advance
// the iterator.
- if (res.position == res.node->finish()) {
- res.position = res.node->finish() - 1;
+ if (res.position_ == res.node_->finish()) {
+ res.position_ = res.node_->finish() - 1;
++res;
}
@@ -2203,33 +2386,36 @@ auto btree<P>::erase_range(iterator begin, iterator end)
return {0, begin};
}
- if (count == size_) {
+ if (static_cast<size_type>(count) == size_) {
clear();
return {count, this->end()};
}
- if (begin.node == end.node) {
- assert(end.position > begin.position);
- begin.node->remove_values(begin.position, end.position - begin.position,
- mutable_allocator());
+ if (begin.node_ == end.node_) {
+ assert(end.position_ > begin.position_);
+ begin.node_->remove_values(begin.position_, end.position_ - begin.position_,
+ mutable_allocator());
size_ -= count;
return {count, rebalance_after_delete(begin)};
}
const size_type target_size = size_ - count;
while (size_ > target_size) {
- if (begin.node->leaf()) {
+ if (begin.node_->is_leaf()) {
const size_type remaining_to_erase = size_ - target_size;
- const size_type remaining_in_node = begin.node->finish() - begin.position;
+ const size_type remaining_in_node =
+ begin.node_->finish() - begin.position_;
const size_type to_erase =
(std::min)(remaining_to_erase, remaining_in_node);
- begin.node->remove_values(begin.position, to_erase, mutable_allocator());
+ begin.node_->remove_values(begin.position_, to_erase,
+ mutable_allocator());
size_ -= to_erase;
begin = rebalance_after_delete(begin);
} else {
begin = erase(begin);
}
}
+ begin.update_generation();
return {count, begin};
}
@@ -2238,8 +2424,7 @@ void btree<P>::clear() {
if (!empty()) {
node_type::clear_and_delete(root(), mutable_allocator());
}
- mutable_root() = EmptyNode();
- rightmost_ = EmptyNode();
+ mutable_root() = mutable_rightmost() = EmptyNode();
size_ = 0;
}
@@ -2248,15 +2433,15 @@ void btree<P>::swap(btree &other) {
using std::swap;
if (absl::allocator_traits<
allocator_type>::propagate_on_container_swap::value) {
- // Note: `root_` also contains the allocator and the key comparator.
- swap(root_, other.root_);
+ // Note: `rightmost_` also contains the allocator and the key comparator.
+ swap(rightmost_, other.rightmost_);
} else {
// It's undefined behavior if the allocators are unequal here.
assert(allocator() == other.allocator());
- swap(mutable_root(), other.mutable_root());
+ swap(mutable_rightmost(), other.mutable_rightmost());
swap(*mutable_key_comp(), *other.mutable_key_comp());
}
- swap(rightmost_, other.rightmost_);
+ swap(mutable_root(), other.mutable_root());
swap(size_, other.size_);
}
@@ -2264,18 +2449,18 @@ template <typename P>
void btree<P>::verify() const {
assert(root() != nullptr);
assert(leftmost() != nullptr);
- assert(rightmost_ != nullptr);
+ assert(rightmost() != nullptr);
assert(empty() || size() == internal_verify(root(), nullptr, nullptr));
- assert(leftmost() == (++const_iterator(root(), -1)).node);
- assert(rightmost_ == (--const_iterator(root(), root()->finish())).node);
- assert(leftmost()->leaf());
- assert(rightmost_->leaf());
+ assert(leftmost() == (++const_iterator(root(), -1)).node_);
+ assert(rightmost() == (--const_iterator(root(), root()->finish())).node_);
+ assert(leftmost()->is_leaf());
+ assert(rightmost()->is_leaf());
}
template <typename P>
void btree<P>::rebalance_or_split(iterator *iter) {
- node_type *&node = iter->node;
- int &insert_position = iter->position;
+ node_type *&node = iter->node_;
+ int &insert_position = iter->position_;
assert(node->count() == node->max_count());
assert(kNodeSlots == node->max_count());
@@ -2350,19 +2535,20 @@ void btree<P>::rebalance_or_split(iterator *iter) {
// Create a new root node and set the current root node as the child of the
// new root.
parent = new_internal_node(parent);
+ parent->set_generation(root()->generation());
parent->init_child(parent->start(), root());
mutable_root() = parent;
// If the former root was a leaf node, then it's now the rightmost node.
- assert(!parent->start_child()->leaf() ||
- parent->start_child() == rightmost_);
+ assert(parent->start_child()->is_internal() ||
+ parent->start_child() == rightmost());
}
// Split the node.
node_type *split_node;
- if (node->leaf()) {
+ if (node->is_leaf()) {
split_node = new_leaf_node(parent);
node->split(insert_position, split_node, mutable_allocator());
- if (rightmost_ == node) rightmost_ = split_node;
+ if (rightmost() == node) mutable_rightmost() = split_node;
} else {
split_node = new_internal_node(parent);
node->split(insert_position, split_node, mutable_allocator());
@@ -2377,55 +2563,56 @@ void btree<P>::rebalance_or_split(iterator *iter) {
template <typename P>
void btree<P>::merge_nodes(node_type *left, node_type *right) {
left->merge(right, mutable_allocator());
- if (rightmost_ == right) rightmost_ = left;
+ if (rightmost() == right) mutable_rightmost() = left;
}
template <typename P>
bool btree<P>::try_merge_or_rebalance(iterator *iter) {
- node_type *parent = iter->node->parent();
- if (iter->node->position() > parent->start()) {
+ node_type *parent = iter->node_->parent();
+ if (iter->node_->position() > parent->start()) {
// Try merging with our left sibling.
- node_type *left = parent->child(iter->node->position() - 1);
+ node_type *left = parent->child(iter->node_->position() - 1);
assert(left->max_count() == kNodeSlots);
- if (1U + left->count() + iter->node->count() <= kNodeSlots) {
- iter->position += 1 + left->count();
- merge_nodes(left, iter->node);
- iter->node = left;
+ if (1U + left->count() + iter->node_->count() <= kNodeSlots) {
+ iter->position_ += 1 + left->count();
+ merge_nodes(left, iter->node_);
+ iter->node_ = left;
return true;
}
}
- if (iter->node->position() < parent->finish()) {
+ if (iter->node_->position() < parent->finish()) {
// Try merging with our right sibling.
- node_type *right = parent->child(iter->node->position() + 1);
+ node_type *right = parent->child(iter->node_->position() + 1);
assert(right->max_count() == kNodeSlots);
- if (1U + iter->node->count() + right->count() <= kNodeSlots) {
- merge_nodes(iter->node, right);
+ if (1U + iter->node_->count() + right->count() <= kNodeSlots) {
+ merge_nodes(iter->node_, right);
return true;
}
// Try rebalancing with our right sibling. We don't perform rebalancing if
- // we deleted the first element from iter->node and the node is not
+ // we deleted the first element from iter->node_ and the node is not
// empty. This is a small optimization for the common pattern of deleting
// from the front of the tree.
if (right->count() > kMinNodeValues &&
- (iter->node->count() == 0 || iter->position > iter->node->start())) {
- int to_move = (right->count() - iter->node->count()) / 2;
+ (iter->node_->count() == 0 || iter->position_ > iter->node_->start())) {
+ int to_move = (right->count() - iter->node_->count()) / 2;
to_move = (std::min)(to_move, right->count() - 1);
- iter->node->rebalance_right_to_left(to_move, right, mutable_allocator());
+ iter->node_->rebalance_right_to_left(to_move, right, mutable_allocator());
return false;
}
}
- if (iter->node->position() > parent->start()) {
+ if (iter->node_->position() > parent->start()) {
// Try rebalancing with our left sibling. We don't perform rebalancing if
- // we deleted the last element from iter->node and the node is not
+ // we deleted the last element from iter->node_ and the node is not
// empty. This is a small optimization for the common pattern of deleting
// from the back of the tree.
- node_type *left = parent->child(iter->node->position() - 1);
+ node_type *left = parent->child(iter->node_->position() - 1);
if (left->count() > kMinNodeValues &&
- (iter->node->count() == 0 || iter->position < iter->node->finish())) {
- int to_move = (left->count() - iter->node->count()) / 2;
+ (iter->node_->count() == 0 ||
+ iter->position_ < iter->node_->finish())) {
+ int to_move = (left->count() - iter->node_->count()) / 2;
to_move = (std::min)(to_move, left->count() - 1);
- left->rebalance_left_to_right(to_move, iter->node, mutable_allocator());
- iter->position += to_move;
+ left->rebalance_left_to_right(to_move, iter->node_, mutable_allocator());
+ iter->position_ += to_move;
return false;
}
}
@@ -2439,9 +2626,9 @@ void btree<P>::try_shrink() {
return;
}
// Deleted the last item on the root node, shrink the height of the tree.
- if (orig_root->leaf()) {
+ if (orig_root->is_leaf()) {
assert(size() == 0);
- mutable_root() = rightmost_ = EmptyNode();
+ mutable_root() = mutable_rightmost() = EmptyNode();
} else {
node_type *child = orig_root->start_child();
child->make_root();
@@ -2453,15 +2640,16 @@ void btree<P>::try_shrink() {
template <typename P>
template <typename IterType>
inline IterType btree<P>::internal_last(IterType iter) {
- assert(iter.node != nullptr);
- while (iter.position == iter.node->finish()) {
- iter.position = iter.node->position();
- iter.node = iter.node->parent();
- if (iter.node->leaf()) {
- iter.node = nullptr;
+ assert(iter.node_ != nullptr);
+ while (iter.position_ == iter.node_->finish()) {
+ iter.position_ = iter.node_->position();
+ iter.node_ = iter.node_->parent();
+ if (iter.node_->is_leaf()) {
+ iter.node_ = nullptr;
break;
}
}
+ iter.update_generation();
return iter;
}
@@ -2469,37 +2657,39 @@ template <typename P>
template <typename... Args>
inline auto btree<P>::internal_emplace(iterator iter, Args &&... args)
-> iterator {
- if (!iter.node->leaf()) {
+ if (iter.node_->is_internal()) {
// We can't insert on an internal node. Instead, we'll insert after the
// previous value which is guaranteed to be on a leaf node.
--iter;
- ++iter.position;
+ ++iter.position_;
}
- const field_type max_count = iter.node->max_count();
+ const field_type max_count = iter.node_->max_count();
allocator_type *alloc = mutable_allocator();
- if (iter.node->count() == max_count) {
+ if (iter.node_->count() == max_count) {
// Make room in the leaf for the new item.
if (max_count < kNodeSlots) {
// Insertion into the root where the root is smaller than the full node
// size. Simply grow the size of the root node.
- assert(iter.node == root());
- iter.node =
+ assert(iter.node_ == root());
+ iter.node_ =
new_leaf_root_node((std::min<int>)(kNodeSlots, 2 * max_count));
// Transfer the values from the old root to the new root.
node_type *old_root = root();
- node_type *new_root = iter.node;
+ node_type *new_root = iter.node_;
new_root->transfer_n(old_root->count(), new_root->start(),
old_root->start(), old_root, alloc);
new_root->set_finish(old_root->finish());
old_root->set_finish(old_root->start());
+ new_root->set_generation(old_root->generation());
node_type::clear_and_delete(old_root, alloc);
- mutable_root() = rightmost_ = new_root;
+ mutable_root() = mutable_rightmost() = new_root;
} else {
rebalance_or_split(&iter);
}
}
- iter.node->emplace_value(iter.position, alloc, std::forward<Args>(args)...);
+ iter.node_->emplace_value(iter.position_, alloc, std::forward<Args>(args)...);
++size_;
+ iter.update_generation();
return iter;
}
@@ -2510,8 +2700,8 @@ inline auto btree<P>::internal_locate(const K &key) const
iterator iter(const_cast<node_type *>(root()));
for (;;) {
SearchResult<int, is_key_compare_to::value> res =
- iter.node->lower_bound(key, key_comp());
- iter.position = res.value;
+ iter.node_->lower_bound(key, key_comp());
+ iter.position_ = res.value;
if (res.IsEq()) {
return {iter, MatchKind::kEq};
}
@@ -2519,10 +2709,10 @@ inline auto btree<P>::internal_locate(const K &key) const
// down the tree if the keys are equal, but determining equality would
// require doing an extra comparison on each node on the way down, and we
// will need to go all the way to the leaf node in the expected case.
- if (iter.node->leaf()) {
+ if (iter.node_->is_leaf()) {
break;
}
- iter.node = iter.node->child(iter.position);
+ iter.node_ = iter.node_->child(iter.position_);
}
// Note: in the non-key-compare-to case, the key may actually be equivalent
// here (and the MatchKind::kNe is ignored).
@@ -2542,13 +2732,13 @@ auto btree<P>::internal_lower_bound(const K &key) const
SearchResult<int, is_key_compare_to::value> res;
bool seen_eq = false;
for (;;) {
- res = iter.node->lower_bound(key, key_comp());
- iter.position = res.value;
- if (iter.node->leaf()) {
+ res = iter.node_->lower_bound(key, key_comp());
+ iter.position_ = res.value;
+ if (iter.node_->is_leaf()) {
break;
}
seen_eq = seen_eq || res.IsEq();
- iter.node = iter.node->child(iter.position);
+ iter.node_ = iter.node_->child(iter.position_);
}
if (res.IsEq()) return {iter, MatchKind::kEq};
return {internal_last(iter), seen_eq ? MatchKind::kEq : MatchKind::kNe};
@@ -2559,11 +2749,11 @@ template <typename K>
auto btree<P>::internal_upper_bound(const K &key) const -> iterator {
iterator iter(const_cast<node_type *>(root()));
for (;;) {
- iter.position = iter.node->upper_bound(key, key_comp());
- if (iter.node->leaf()) {
+ iter.position_ = iter.node_->upper_bound(key, key_comp());
+ if (iter.node_->is_leaf()) {
break;
}
- iter.node = iter.node->child(iter.position);
+ iter.node_ = iter.node_->child(iter.position_);
}
return internal_last(iter);
}
@@ -2578,7 +2768,7 @@ auto btree<P>::internal_find(const K &key) const -> iterator {
}
} else {
const iterator iter = internal_last(res.value);
- if (iter.node != nullptr && !compare_keys(key, iter.key())) {
+ if (iter.node_ != nullptr && !compare_keys(key, iter.key())) {
return iter;
}
}
@@ -2600,7 +2790,7 @@ int btree<P>::internal_verify(const node_type *node, const key_type *lo,
assert(!compare_keys(node->key(i), node->key(i - 1)));
}
int count = node->count();
- if (!node->leaf()) {
+ if (node->is_internal()) {
for (int i = node->start(); i <= node->finish(); ++i) {
assert(node->child(i) != nullptr);
assert(node->child(i)->parent() == node);
@@ -2613,6 +2803,50 @@ int btree<P>::internal_verify(const node_type *node, const key_type *lo,
return count;
}
+struct btree_access {
+ template <typename BtreeContainer, typename Pred>
+ static auto erase_if(BtreeContainer &container, Pred pred)
+ -> typename BtreeContainer::size_type {
+ const auto initial_size = container.size();
+ auto &tree = container.tree_;
+ auto *alloc = tree.mutable_allocator();
+ for (auto it = container.begin(); it != container.end();) {
+ if (!pred(*it)) {
+ ++it;
+ continue;
+ }
+ auto *node = it.node_;
+ if (node->is_internal()) {
+ // Handle internal nodes normally.
+ it = container.erase(it);
+ continue;
+ }
+ // If this is a leaf node, then we do all the erases from this node
+ // at once before doing rebalancing.
+
+ // The current position to transfer slots to.
+ int to_pos = it.position_;
+ node->value_destroy(it.position_, alloc);
+ while (++it.position_ < node->finish()) {
+ it.update_generation();
+ if (pred(*it)) {
+ node->value_destroy(it.position_, alloc);
+ } else {
+ node->transfer(node->slot(to_pos++), node->slot(it.position_), alloc);
+ }
+ }
+ const int num_deleted = node->finish() - to_pos;
+ tree.size_ -= num_deleted;
+ node->set_finish(to_pos);
+ it.position_ = to_pos;
+ it = tree.rebalance_after_delete(it);
+ }
+ return initial_size - container.size();
+ }
+};
+
+#undef ABSL_BTREE_ENABLE_GENERATIONS
+
} // namespace container_internal
ABSL_NAMESPACE_END
} // namespace absl