diff options
Diffstat (limited to 'absl/strings/numbers.cc')
-rw-r--r-- | absl/strings/numbers.cc | 440 |
1 files changed, 107 insertions, 333 deletions
diff --git a/absl/strings/numbers.cc b/absl/strings/numbers.cc index 882c3a8b..b57d9e82 100644 --- a/absl/strings/numbers.cc +++ b/absl/strings/numbers.cc @@ -20,9 +20,7 @@ #include <algorithm> #include <cassert> #include <cfloat> // for DBL_DIG and FLT_DIG -#include <climits> #include <cmath> // for HUGE_VAL -#include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> @@ -30,7 +28,6 @@ #include <iterator> #include <limits> #include <system_error> // NOLINT(build/c++11) -#include <type_traits> #include <utility> #include "absl/base/attributes.h" @@ -159,71 +156,28 @@ constexpr uint32_t kTwoZeroBytes = 0x0101 * '0'; constexpr uint64_t kFourZeroBytes = 0x01010101 * '0'; constexpr uint64_t kEightZeroBytes = 0x0101010101010101ull * '0'; -template <typename T> -constexpr T Pow(T base, uint32_t n) { - // Exponentiation by squaring - return static_cast<T>((n > 1 ? Pow(base * base, n >> 1) : static_cast<T>(1)) * - ((n & 1) ? base : static_cast<T>(1))); -} - -// Given n, calculates C where the following holds for all 0 <= x < Pow(100, n): -// x / Pow(10, n) == x * C / Pow(2, n * 10) -// In other words, it allows us to divide by a power of 10 via a single -// multiplication and bit shifts, assuming the input will be smaller than the -// square of that power of 10. -template <typename T> -constexpr T ComputePowerOf100DivisionCoefficient(uint32_t n) { - if (n > 4) { - // This doesn't work for large powers of 100, due to overflow - abort(); - } - T denom = 16 - 1; - T num = (denom + 1) - 10; - T gcd = 3; // Greatest common divisor of numerator and denominator - denom = Pow(denom / gcd, n); - num = Pow(num / gcd, 9 * n); - T quotient = num / denom; - if (num % denom >= denom / 2) { - // Round up, since the remainder is more than half the denominator - ++quotient; - } - return quotient; -} - -// * kDivisionBy10Mul / kDivisionBy10Div is a division by 10 for values from 0 -// to 99. It's also a division of a structure [k takes 2 bytes][m takes 2 -// bytes], then * kDivisionBy10Mul / kDivisionBy10Div will be [k / 10][m / 10]. -// It allows parallel division. -constexpr uint64_t kDivisionBy10Mul = - ComputePowerOf100DivisionCoefficient<uint64_t>(1); -static_assert(kDivisionBy10Mul == 103, - "division coefficient for 10 is incorrect"); +// * 103 / 1024 is a division by 10 for values from 0 to 99. It's also a +// division of a structure [k takes 2 bytes][m takes 2 bytes], then * 103 / 1024 +// will be [k / 10][m / 10]. It allows parallel division. +constexpr uint64_t kDivisionBy10Mul = 103u; constexpr uint64_t kDivisionBy10Div = 1 << 10; -// * kDivisionBy100Mul / kDivisionBy100Div is a division by 100 for values from -// 0 to 9999. -constexpr uint64_t kDivisionBy100Mul = - ComputePowerOf100DivisionCoefficient<uint64_t>(2); -static_assert(kDivisionBy100Mul == 10486, - "division coefficient for 100 is incorrect"); +// * 10486 / 1048576 is a division by 100 for values from 0 to 9999. +constexpr uint64_t kDivisionBy100Mul = 10486u; constexpr uint64_t kDivisionBy100Div = 1 << 20; -static_assert(ComputePowerOf100DivisionCoefficient<uint64_t>(3) == 1073742, - "division coefficient for 1000 is incorrect"); - -// Same as `PrepareEightDigits`, but produces 2 digits for integers < 100. -inline uint32_t PrepareTwoDigitsImpl(uint32_t i, bool reversed) { - assert(i < 100); - uint32_t div10 = (i * kDivisionBy10Mul) / kDivisionBy10Div; - uint32_t mod10 = i - 10u * div10; - return (div10 << (reversed ? 8 : 0)) + (mod10 << (reversed ? 0 : 8)); -} -inline uint32_t PrepareTwoDigits(uint32_t i) { - return PrepareTwoDigitsImpl(i, false); +// Encode functions write the ASCII output of input `n` to `out_str`. +inline char* EncodeHundred(uint32_t n, absl::Nonnull<char*> out_str) { + int num_digits = static_cast<int>(n - 10) >> 8; + uint32_t div10 = (n * kDivisionBy10Mul) / kDivisionBy10Div; + uint32_t mod10 = n - 10u * div10; + uint32_t base = kTwoZeroBytes + div10 + (mod10 << 8); + base >>= num_digits & 8; + little_endian::Store16(out_str, static_cast<uint16_t>(base)); + return out_str + 2 + num_digits; } -// Same as `PrepareEightDigits`, but produces 4 digits for integers < 10000. -inline uint32_t PrepareFourDigitsImpl(uint32_t n, bool reversed) { +inline char* EncodeTenThousand(uint32_t n, absl::Nonnull<char*> out_str) { // We split lower 2 digits and upper 2 digits of n into 2 byte consecutive // blocks. 123 -> [\0\1][\0\23]. We divide by 10 both blocks // (it's 1 division + zeroing upper bits), and compute modulo 10 as well "in @@ -231,19 +185,22 @@ inline uint32_t PrepareFourDigitsImpl(uint32_t n, bool reversed) { // strip trailing zeros, add ASCII '0000' and return. uint32_t div100 = (n * kDivisionBy100Mul) / kDivisionBy100Div; uint32_t mod100 = n - 100ull * div100; - uint32_t hundreds = - (mod100 << (reversed ? 0 : 16)) + (div100 << (reversed ? 16 : 0)); + uint32_t hundreds = (mod100 << 16) + div100; uint32_t tens = (hundreds * kDivisionBy10Mul) / kDivisionBy10Div; tens &= (0xFull << 16) | 0xFull; - tens = (tens << (reversed ? 8 : 0)) + - static_cast<uint32_t>((hundreds - 10ull * tens) << (reversed ? 0 : 8)); - return tens; -} -inline uint32_t PrepareFourDigits(uint32_t n) { - return PrepareFourDigitsImpl(n, false); -} -inline uint32_t PrepareFourDigitsReversed(uint32_t n) { - return PrepareFourDigitsImpl(n, true); + tens += (hundreds - 10ull * tens) << 8; + ABSL_ASSUME(tens != 0); + // The result can contain trailing zero bits, we need to strip them to a first + // significant byte in a final representation. For example, for n = 123, we + // have tens to have representation \0\1\2\3. We do `& -8` to round + // to a multiple to 8 to strip zero bytes, not all zero bits. + // countr_zero to help. + // 0 minus 8 to make MSVC happy. + uint32_t zeroes = static_cast<uint32_t>(absl::countr_zero(tens)) & (0 - 8u); + tens += kFourZeroBytes; + tens >>= zeroes; + little_endian::Store32(out_str, tens); + return out_str + sizeof(tens) - zeroes / 8; } // Helper function to produce an ASCII representation of `i`. @@ -259,309 +216,126 @@ inline uint32_t PrepareFourDigitsReversed(uint32_t n) { // // Note two leading zeros: // EXPECT_EQ(absl::string_view(ascii, 8), "00102030"); // -// If `Reversed` is set to true, the result becomes reversed to "03020100". -// // Pre-condition: `i` must be less than 100000000. -inline uint64_t PrepareEightDigitsImpl(uint32_t i, bool reversed) { +inline uint64_t PrepareEightDigits(uint32_t i) { ABSL_ASSUME(i < 10000'0000); // Prepare 2 blocks of 4 digits "in parallel". uint32_t hi = i / 10000; uint32_t lo = i % 10000; - uint64_t merged = (uint64_t{hi} << (reversed ? 32 : 0)) | - (uint64_t{lo} << (reversed ? 0 : 32)); + uint64_t merged = hi | (uint64_t{lo} << 32); uint64_t div100 = ((merged * kDivisionBy100Mul) / kDivisionBy100Div) & ((0x7Full << 32) | 0x7Full); uint64_t mod100 = merged - 100ull * div100; - uint64_t hundreds = - (mod100 << (reversed ? 0 : 16)) + (div100 << (reversed ? 16 : 0)); + uint64_t hundreds = (mod100 << 16) + div100; uint64_t tens = (hundreds * kDivisionBy10Mul) / kDivisionBy10Div; tens &= (0xFull << 48) | (0xFull << 32) | (0xFull << 16) | 0xFull; - tens = (tens << (reversed ? 8 : 0)) + - ((hundreds - 10ull * tens) << (reversed ? 0 : 8)); + tens += (hundreds - 10ull * tens) << 8; return tens; } -inline uint64_t PrepareEightDigits(uint32_t i) { - return PrepareEightDigitsImpl(i, false); -} -inline uint64_t PrepareEightDigitsReversed(uint32_t i) { - return PrepareEightDigitsImpl(i, true); -} -template <typename T, typename BackwardIt> -class FastUIntToStringConverter { - static_assert( - std::is_same<T, decltype(+std::declval<T>())>::value, - "to avoid code bloat, only instantiate this for int and larger types"); - static_assert(std::is_unsigned<T>::value, - "this class is only for unsigned types"); - - public: - // Outputs the given number backward (like with std::copy_backward), - // starting from the end of the string. - // The number of digits in the number must have been already measured and - // passed *exactly*, otherwise the behavior is undefined. - // (This is an optimization, as calculating the number of digits again would - // slow down the hot path.) - // Returns an iterator to the start of the suffix that was appended. - static BackwardIt FastIntToBufferBackward(T v, BackwardIt end) { - // THIS IS A HOT FUNCTION with a very deliberate structure to exploit branch - // prediction and shorten the critical path for smaller numbers. - // Do not move around the if/else blocks or attempt to simplify it - // without benchmarking any changes. - - if (v < 10) { - goto AT_LEAST_1 /* NOTE: mandatory for the 0 case */; - } - if (v < 1000) { - goto AT_LEAST_10; - } - if (v < 10000000) { - goto AT_LEAST_1000; - } - - if (v >= 100000000 / 10) { - if (v >= 10000000000000000 / 10) { - DoFastIntToBufferBackward<8>(v, end); - } - DoFastIntToBufferBackward<8>(v, end); - } - - if (v >= 10000 / 10) { - AT_LEAST_1000: - DoFastIntToBufferBackward<4>(v, end); - } - - if (v >= 100 / 10) { - AT_LEAST_10: - DoFastIntToBufferBackward<2>(v, end); - } - - if (v >= 10 / 10) { - AT_LEAST_1: - end = DoFastIntToBufferBackward(v, end, std::integral_constant<int, 1>()); - } - return end; +inline ABSL_ATTRIBUTE_ALWAYS_INLINE absl::Nonnull<char*> EncodeFullU32( + uint32_t n, absl::Nonnull<char*> out_str) { + if (n < 10) { + *out_str = static_cast<char>('0' + n); + return out_str + 1; } - - private: - // Only assume pointers are contiguous for now. String and vector iterators - // could be special-cased as well, but there's no need for them here. - // With C++20 we can probably switch to std::contiguous_iterator_tag. - static constexpr bool kIsContiguousIterator = - std::is_pointer<BackwardIt>::value; - - template <int Exponent> - static void DoFastIntToBufferBackward(T& v, BackwardIt& end) { - constexpr T kModulus = Pow<T>(10, Exponent); - T remainder = static_cast<T>(v % kModulus); - v = static_cast<T>(v / kModulus); - end = DoFastIntToBufferBackward(remainder, end, - std::integral_constant<int, Exponent>()); - } - - static BackwardIt DoFastIntToBufferBackward(const T&, BackwardIt end, - std::integral_constant<int, 0>) { - return end; - } - - static BackwardIt DoFastIntToBufferBackward(T v, BackwardIt end, - std::integral_constant<int, 1>) { - *--end = static_cast<char>('0' + v); - return DoFastIntToBufferBackward(v, end, std::integral_constant<int, 0>()); - } - - static BackwardIt DoFastIntToBufferBackward(T v, BackwardIt end, - std::integral_constant<int, 4>) { - if (kIsContiguousIterator) { - const uint32_t digits = - PrepareFourDigits(static_cast<uint32_t>(v)) + kFourZeroBytes; - end -= sizeof(digits); - little_endian::Store32(&*end, digits); - } else { - uint32_t digits = - PrepareFourDigitsReversed(static_cast<uint32_t>(v)) + kFourZeroBytes; - for (size_t i = 0; i < sizeof(digits); ++i) { - *--end = static_cast<char>(digits); - digits >>= CHAR_BIT; - } - } - return end; + if (n < 100'000'000) { + uint64_t bottom = PrepareEightDigits(n); + ABSL_ASSUME(bottom != 0); + // 0 minus 8 to make MSVC happy. + uint32_t zeroes = + static_cast<uint32_t>(absl::countr_zero(bottom)) & (0 - 8u); + little_endian::Store64(out_str, (bottom + kEightZeroBytes) >> zeroes); + return out_str + sizeof(bottom) - zeroes / 8; } - - static BackwardIt DoFastIntToBufferBackward(T v, BackwardIt end, - std::integral_constant<int, 8>) { - if (kIsContiguousIterator) { - const uint64_t digits = - PrepareEightDigits(static_cast<uint32_t>(v)) + kEightZeroBytes; - end -= sizeof(digits); - little_endian::Store64(&*end, digits); - } else { - uint64_t digits = PrepareEightDigitsReversed(static_cast<uint32_t>(v)) + - kEightZeroBytes; - for (size_t i = 0; i < sizeof(digits); ++i) { - *--end = static_cast<char>(digits); - digits >>= CHAR_BIT; - } - } - return end; - } - - template <int Digits> - static BackwardIt DoFastIntToBufferBackward( - T v, BackwardIt end, std::integral_constant<int, Digits>) { - constexpr int kLogModulus = Digits - Digits / 2; - constexpr T kModulus = Pow(static_cast<T>(10), kLogModulus); - bool is_safe_to_use_division_trick = Digits <= 8; - T quotient, remainder; - if (is_safe_to_use_division_trick) { - constexpr uint64_t kCoefficient = - ComputePowerOf100DivisionCoefficient<uint64_t>(kLogModulus); - quotient = (v * kCoefficient) >> (10 * kLogModulus); - remainder = v - quotient * kModulus; - } else { - quotient = v / kModulus; - remainder = v % kModulus; - } - end = DoFastIntToBufferBackward(remainder, end, - std::integral_constant<int, kLogModulus>()); - return DoFastIntToBufferBackward( - quotient, end, std::integral_constant<int, Digits - kLogModulus>()); - } -}; - -// Returns an iterator to the start of the suffix that was appended -template <typename T, typename BackwardIt> -std::enable_if_t<std::is_unsigned<T>::value, BackwardIt> -DoFastIntToBufferBackward(T v, BackwardIt end, uint32_t digits) { - using PromotedT = std::decay_t<decltype(+v)>; - using Converter = FastUIntToStringConverter<PromotedT, BackwardIt>; - (void)digits; - return Converter().FastIntToBufferBackward(v, end); + uint32_t div08 = n / 100'000'000; + uint32_t mod08 = n % 100'000'000; + uint64_t bottom = PrepareEightDigits(mod08) + kEightZeroBytes; + out_str = EncodeHundred(div08, out_str); + little_endian::Store64(out_str, bottom); + return out_str + sizeof(bottom); } -template <typename T, typename BackwardIt> -std::enable_if_t<std::is_signed<T>::value, BackwardIt> -DoFastIntToBufferBackward(T v, BackwardIt end, uint32_t digits) { - if (absl::numbers_internal::IsNegative(v)) { - // Store the minus sign *before* we produce the number itself, not after. - // This gets us a tail call. - end[-static_cast<ptrdiff_t>(digits) - 1] = '-'; +inline ABSL_ATTRIBUTE_ALWAYS_INLINE char* EncodeFullU64(uint64_t i, + char* buffer) { + if (i <= std::numeric_limits<uint32_t>::max()) { + return EncodeFullU32(static_cast<uint32_t>(i), buffer); } - return DoFastIntToBufferBackward( - absl::numbers_internal::UnsignedAbsoluteValue(v), end, digits); -} - -template <class T> -std::enable_if_t<std::is_integral<T>::value, int> -GetNumDigitsOrNegativeIfNegativeImpl(T v) { - const auto /* either bool or std::false_type */ is_negative = - absl::numbers_internal::IsNegative(v); - const int digits = static_cast<int>(absl::numbers_internal::Base10Digits( - absl::numbers_internal::UnsignedAbsoluteValue(v))); - return is_negative ? ~digits : digits; + uint32_t mod08; + if (i < 1'0000'0000'0000'0000ull) { + uint32_t div08 = static_cast<uint32_t>(i / 100'000'000ull); + mod08 = static_cast<uint32_t>(i % 100'000'000ull); + buffer = EncodeFullU32(div08, buffer); + } else { + uint64_t div08 = i / 100'000'000ull; + mod08 = static_cast<uint32_t>(i % 100'000'000ull); + uint32_t div016 = static_cast<uint32_t>(div08 / 100'000'000ull); + uint32_t div08mod08 = static_cast<uint32_t>(div08 % 100'000'000ull); + uint64_t mid_result = PrepareEightDigits(div08mod08) + kEightZeroBytes; + buffer = EncodeTenThousand(div016, buffer); + little_endian::Store64(buffer, mid_result); + buffer += sizeof(mid_result); + } + uint64_t mod_result = PrepareEightDigits(mod08) + kEightZeroBytes; + little_endian::Store64(buffer, mod_result); + return buffer + sizeof(mod_result); } } // namespace void numbers_internal::PutTwoDigits(uint32_t i, absl::Nonnull<char*> buf) { - little_endian::Store16( - buf, static_cast<uint16_t>(PrepareTwoDigits(i) + kTwoZeroBytes)); + assert(i < 100); + uint32_t base = kTwoZeroBytes; + uint32_t div10 = (i * kDivisionBy10Mul) / kDivisionBy10Div; + uint32_t mod10 = i - 10u * div10; + base += div10 + (mod10 << 8); + little_endian::Store16(buf, static_cast<uint16_t>(base)); } absl::Nonnull<char*> numbers_internal::FastIntToBuffer( - uint32_t i, absl::Nonnull<char*> buffer) { - const uint32_t digits = absl::numbers_internal::Base10Digits(i); - buffer += digits; - *buffer = '\0'; // We're going backward, so store this first - FastIntToBufferBackward(i, buffer, digits); - return buffer; + uint32_t n, absl::Nonnull<char*> out_str) { + out_str = EncodeFullU32(n, out_str); + *out_str = '\0'; + return out_str; } absl::Nonnull<char*> numbers_internal::FastIntToBuffer( int32_t i, absl::Nonnull<char*> buffer) { - buffer += static_cast<int>(i < 0); - uint32_t digits = absl::numbers_internal::Base10Digits( - absl::numbers_internal::UnsignedAbsoluteValue(i)); - buffer += digits; - *buffer = '\0'; // We're going backward, so store this first - FastIntToBufferBackward(i, buffer, digits); + uint32_t u = static_cast<uint32_t>(i); + if (i < 0) { + *buffer++ = '-'; + // We need to do the negation in modular (i.e., "unsigned") + // arithmetic; MSVC++ apparently warns for plain "-u", so + // we write the equivalent expression "0 - u" instead. + u = 0 - u; + } + buffer = EncodeFullU32(u, buffer); + *buffer = '\0'; return buffer; } absl::Nonnull<char*> numbers_internal::FastIntToBuffer( uint64_t i, absl::Nonnull<char*> buffer) { - uint32_t digits = absl::numbers_internal::Base10Digits(i); - buffer += digits; - *buffer = '\0'; // We're going backward, so store this first - FastIntToBufferBackward(i, buffer, digits); + buffer = EncodeFullU64(i, buffer); + *buffer = '\0'; return buffer; } absl::Nonnull<char*> numbers_internal::FastIntToBuffer( int64_t i, absl::Nonnull<char*> buffer) { - buffer += static_cast<int>(i < 0); - uint32_t digits = absl::numbers_internal::Base10Digits( - absl::numbers_internal::UnsignedAbsoluteValue(i)); - buffer += digits; - *buffer = '\0'; // We're going backward, so store this first - FastIntToBufferBackward(i, buffer, digits); + uint64_t u = static_cast<uint64_t>(i); + if (i < 0) { + *buffer++ = '-'; + // We need to do the negation in modular (i.e., "unsigned") + // arithmetic; MSVC++ apparently warns for plain "-u", so + // we write the equivalent expression "0 - u" instead. + u = 0 - u; + } + buffer = EncodeFullU64(u, buffer); + *buffer = '\0'; return buffer; } -absl::Nonnull<char*> numbers_internal::FastIntToBufferBackward( - uint32_t i, absl::Nonnull<char*> buffer_end, uint32_t exact_digit_count) { - return DoFastIntToBufferBackward(i, buffer_end, exact_digit_count); -} - -absl::Nonnull<char*> numbers_internal::FastIntToBufferBackward( - int32_t i, absl::Nonnull<char*> buffer_end, uint32_t exact_digit_count) { - return DoFastIntToBufferBackward(i, buffer_end, exact_digit_count); -} - -absl::Nonnull<char*> numbers_internal::FastIntToBufferBackward( - uint64_t i, absl::Nonnull<char*> buffer_end, uint32_t exact_digit_count) { - return DoFastIntToBufferBackward(i, buffer_end, exact_digit_count); -} - -absl::Nonnull<char*> numbers_internal::FastIntToBufferBackward( - int64_t i, absl::Nonnull<char*> buffer_end, uint32_t exact_digit_count) { - return DoFastIntToBufferBackward(i, buffer_end, exact_digit_count); -} - -int numbers_internal::GetNumDigitsOrNegativeIfNegative(signed char v) { - return GetNumDigitsOrNegativeIfNegativeImpl(v); -} -int numbers_internal::GetNumDigitsOrNegativeIfNegative(unsigned char v) { - return GetNumDigitsOrNegativeIfNegativeImpl(v); -} -int numbers_internal::GetNumDigitsOrNegativeIfNegative(short v) { // NOLINT - return GetNumDigitsOrNegativeIfNegativeImpl(v); -} -int numbers_internal::GetNumDigitsOrNegativeIfNegative( - unsigned short v) { // NOLINT - return GetNumDigitsOrNegativeIfNegativeImpl(v); -} -int numbers_internal::GetNumDigitsOrNegativeIfNegative(int v) { - return GetNumDigitsOrNegativeIfNegativeImpl(v); -} -int numbers_internal::GetNumDigitsOrNegativeIfNegative(unsigned int v) { - return GetNumDigitsOrNegativeIfNegativeImpl(v); -} -int numbers_internal::GetNumDigitsOrNegativeIfNegative(long v) { // NOLINT - return GetNumDigitsOrNegativeIfNegativeImpl(v); -} -int numbers_internal::GetNumDigitsOrNegativeIfNegative( - unsigned long v) { // NOLINT - return GetNumDigitsOrNegativeIfNegativeImpl(v); -} -int numbers_internal::GetNumDigitsOrNegativeIfNegative(long long v) { // NOLINT - return GetNumDigitsOrNegativeIfNegativeImpl(v); -} -int numbers_internal::GetNumDigitsOrNegativeIfNegative( - unsigned long long v) { // NOLINT - return GetNumDigitsOrNegativeIfNegativeImpl(v); -} - // Given a 128-bit number expressed as a pair of uint64_t, high half first, // return that number multiplied by the given 32-bit value. If the result is // too large to fit in a 128-bit number, divide it by 2 until it fits. |