1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_CONTAINER_INTERNAL_TEST_ALLOCATOR_H_
#define ABSL_CONTAINER_INTERNAL_TEST_ALLOCATOR_H_
#include <cstddef>
#include <cstdint>
#include <memory>
#include <type_traits>
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
// This is a stateful allocator, but the state lives outside of the
// allocator (in whatever test is using the allocator). This is odd
// but helps in tests where the allocator is propagated into nested
// containers - that chain of allocators uses the same state and is
// thus easier to query for aggregate allocation information.
template <typename T>
class CountingAllocator {
public:
using Allocator = std::allocator<T>;
using AllocatorTraits = std::allocator_traits<Allocator>;
using value_type = typename AllocatorTraits::value_type;
using pointer = typename AllocatorTraits::pointer;
using const_pointer = typename AllocatorTraits::const_pointer;
using size_type = typename AllocatorTraits::size_type;
using difference_type = typename AllocatorTraits::difference_type;
CountingAllocator() = default;
explicit CountingAllocator(int64_t* bytes_used) : bytes_used_(bytes_used) {}
CountingAllocator(int64_t* bytes_used, int64_t* instance_count)
: bytes_used_(bytes_used), instance_count_(instance_count) {}
template <typename U>
CountingAllocator(const CountingAllocator<U>& x)
: bytes_used_(x.bytes_used_), instance_count_(x.instance_count_) {}
pointer allocate(
size_type n,
typename AllocatorTraits::const_void_pointer hint = nullptr) {
Allocator allocator;
pointer ptr = AllocatorTraits::allocate(allocator, n, hint);
if (bytes_used_ != nullptr) {
*bytes_used_ += n * sizeof(T);
}
return ptr;
}
void deallocate(pointer p, size_type n) {
Allocator allocator;
AllocatorTraits::deallocate(allocator, p, n);
if (bytes_used_ != nullptr) {
*bytes_used_ -= n * sizeof(T);
}
}
template <typename U, typename... Args>
void construct(U* p, Args&&... args) {
Allocator allocator;
AllocatorTraits::construct(allocator, p, std::forward<Args>(args)...);
if (instance_count_ != nullptr) {
*instance_count_ += 1;
}
}
template <typename U>
void destroy(U* p) {
Allocator allocator;
// Ignore GCC warning bug.
#if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(12, 0)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wuse-after-free"
#endif
AllocatorTraits::destroy(allocator, p);
#if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(12, 0)
#pragma GCC diagnostic pop
#endif
if (instance_count_ != nullptr) {
*instance_count_ -= 1;
}
}
template <typename U>
class rebind {
public:
using other = CountingAllocator<U>;
};
friend bool operator==(const CountingAllocator& a,
const CountingAllocator& b) {
return a.bytes_used_ == b.bytes_used_ &&
a.instance_count_ == b.instance_count_;
}
friend bool operator!=(const CountingAllocator& a,
const CountingAllocator& b) {
return !(a == b);
}
int64_t* bytes_used_ = nullptr;
int64_t* instance_count_ = nullptr;
};
template <typename T>
struct CopyAssignPropagatingCountingAlloc : public CountingAllocator<T> {
using propagate_on_container_copy_assignment = std::true_type;
using Base = CountingAllocator<T>;
using Base::Base;
template <typename U>
explicit CopyAssignPropagatingCountingAlloc(
const CopyAssignPropagatingCountingAlloc<U>& other)
: Base(other.bytes_used_, other.instance_count_) {}
template <typename U>
struct rebind {
using other = CopyAssignPropagatingCountingAlloc<U>;
};
};
template <typename T>
struct MoveAssignPropagatingCountingAlloc : public CountingAllocator<T> {
using propagate_on_container_move_assignment = std::true_type;
using Base = CountingAllocator<T>;
using Base::Base;
template <typename U>
explicit MoveAssignPropagatingCountingAlloc(
const MoveAssignPropagatingCountingAlloc<U>& other)
: Base(other.bytes_used_, other.instance_count_) {}
template <typename U>
struct rebind {
using other = MoveAssignPropagatingCountingAlloc<U>;
};
};
template <typename T>
struct SwapPropagatingCountingAlloc : public CountingAllocator<T> {
using propagate_on_container_swap = std::true_type;
using Base = CountingAllocator<T>;
using Base::Base;
template <typename U>
explicit SwapPropagatingCountingAlloc(
const SwapPropagatingCountingAlloc<U>& other)
: Base(other.bytes_used_, other.instance_count_) {}
template <typename U>
struct rebind {
using other = SwapPropagatingCountingAlloc<U>;
};
};
template <typename T>
struct PropagatingCountingAlloc : public CountingAllocator<T> {
using propagate_on_container_copy_assignment = std::true_type;
using propagate_on_container_move_assignment = std::true_type;
using propagate_on_container_swap = std::true_type;
using Base = CountingAllocator<T>;
using Base::Base;
template <typename U>
explicit PropagatingCountingAlloc(const PropagatingCountingAlloc<U> &other)
: Base(other.bytes_used_, other.instance_count_) {}
template <typename U>
struct rebind {
using other = PropagatingCountingAlloc<U>;
};
};
// Tries to allocate memory at the minimum alignment even when the default
// allocator uses a higher alignment.
template <typename T>
struct MinimumAlignmentAlloc : std::allocator<T> {
MinimumAlignmentAlloc() = default;
template <typename U>
explicit MinimumAlignmentAlloc(const MinimumAlignmentAlloc<U>& /*other*/) {}
template <class U>
struct rebind {
using other = MinimumAlignmentAlloc<U>;
};
T* allocate(size_t n) {
T* ptr = std::allocator<T>::allocate(n + 1);
char* cptr = reinterpret_cast<char*>(ptr);
cptr += alignof(T);
return reinterpret_cast<T*>(cptr);
}
void deallocate(T* ptr, size_t n) {
char* cptr = reinterpret_cast<char*>(ptr);
cptr -= alignof(T);
std::allocator<T>::deallocate(reinterpret_cast<T*>(cptr), n + 1);
}
};
} // namespace container_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_TEST_ALLOCATOR_H_
|