aboutsummaryrefslogtreecommitdiff
path: root/absl/debugging/internal/demangle_rust.cc
blob: 36f54161a739d1a482d62c4124e8c62beacc7932 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
// Copyright 2024 The Abseil Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/debugging/internal/demangle_rust.h"

#include <cstddef>
#include <cstdint>
#include <cstring>
#include <limits>

#include "absl/base/attributes.h"
#include "absl/base/config.h"

namespace absl {
ABSL_NAMESPACE_BEGIN
namespace debugging_internal {

namespace {

// Same step limit as the C++ demangler in demangle.cc uses.
constexpr int kMaxReturns = 1 << 17;

bool IsDigit(char c) { return '0' <= c && c <= '9'; }
bool IsLower(char c) { return 'a' <= c && c <= 'z'; }
bool IsUpper(char c) { return 'A' <= c && c <= 'Z'; }
bool IsAlpha(char c) { return IsLower(c) || IsUpper(c); }
bool IsIdentifierChar(char c) { return IsAlpha(c) || IsDigit(c) || c == '_'; }

const char* BasicTypeName(char c) {
  switch (c) {
    case 'a': return "i8";
    case 'b': return "bool";
    case 'c': return "char";
    case 'd': return "f64";
    case 'e': return "str";
    case 'f': return "f32";
    case 'h': return "u8";
    case 'i': return "isize";
    case 'j': return "usize";
    case 'l': return "i32";
    case 'm': return "u32";
    case 'n': return "i128";
    case 'o': return "u128";
    case 'p': return "_";
    case 's': return "i16";
    case 't': return "u16";
    case 'u': return "()";
    case 'v': return "...";
    case 'x': return "i64";
    case 'y': return "u64";
    case 'z': return "!";
  }
  return nullptr;
}

// Parser for Rust symbol mangling v0, whose grammar is defined here:
//
// https://doc.rust-lang.org/rustc/symbol-mangling/v0.html#symbol-grammar-summary
class RustSymbolParser {
 public:
  // Prepares to demangle the given encoding, a Rust symbol name starting with
  // _R, into the output buffer [out, out_end).  The caller is expected to
  // continue by calling the new object's Parse function.
  RustSymbolParser(const char* encoding, char* out, char* const out_end)
      : encoding_(encoding), out_(out), out_end_(out_end) {
    if (out_ != out_end_) *out_ = '\0';
  }

  // Parses the constructor's encoding argument, writing output into the range
  // [out, out_end).  Returns true on success and false for input whose
  // structure was not recognized or exceeded implementation limits, such as by
  // nesting structures too deep.  In either case *this should not be used
  // again.
  ABSL_MUST_USE_RESULT bool Parse() && {
    // Recursively parses the grammar production named by callee, then resumes
    // execution at the next statement.
    //
    // Recursive-descent parsing is a beautifully readable translation of a
    // grammar, but it risks stack overflow if implemented by naive recursion on
    // the C++ call stack.  So we simulate recursion by goto and switch instead,
    // keeping a bounded stack of "return addresses" in the stack_ member.
    //
    // The callee argument is a statement label.  We goto that label after
    // saving the "return address" on stack_.  The next continue statement in
    // the for loop below "returns" from this "call".
    //
    // The caller argument names the return point.  Each value of caller must
    // appear in only one ABSL_DEMANGLER_RECURSE call and be listed in the
    // definition of enum ReturnAddress.  The switch implements the control
    // transfer from the end of a "called" subroutine back to the statement
    // after the "call".
    //
    // Note that not all the grammar productions have to be packed into the
    // switch, but only those which appear in a cycle in the grammar.  Anything
    // acyclic can be written as ordinary functions and function calls, e.g.,
    // ParseIdentifier.
#define ABSL_DEMANGLER_RECURSE(callee, caller) \
    do { \
      if (depth_ == data_stack_pointer_) return false; \
      /* The next continue will switch on this saved value ... */ \
      stack_[depth_++] = caller; \
      goto callee; \
      /* ... and will land here, resuming the suspended code. */ \
      case caller: {} \
    } while (0)

    // Parse the encoding, counting completed recursive calls to guard against
    // excessively complex input and infinite-loop bugs.
    int iter = 0;
    goto whole_encoding;
    for (; iter < kMaxReturns && depth_ > 0; ++iter) {
      // This switch resumes the code path most recently suspended by
      // ABSL_DEMANGLER_RECURSE.
      switch (static_cast<ReturnAddress>(stack_[--depth_])) {
        //
        // symbol-name ->
        // _R decimal-number? path instantiating-crate? vendor-specific-suffix?
        whole_encoding:
          if (!Eat('_') || !Eat('R')) return false;
          // decimal-number? is always empty today, so proceed to path, which
          // can't start with a decimal digit.
          ABSL_DEMANGLER_RECURSE(path, kInstantiatingCrate);
          if (IsAlpha(Peek())) {
            ++silence_depth_;  // Print nothing more from here on.
            ABSL_DEMANGLER_RECURSE(path, kVendorSpecificSuffix);
          }
          switch (Take()) {
            case '.': case '$': case '\0': return true;
          }
          return false;  // unexpected trailing content

        // path -> crate-root | inherent-impl | trait-impl | trait-definition |
        //         nested-path | generic-args | backref
        //
        // Note that ABSL_DEMANGLER_RECURSE does not work inside a nested switch
        // (which would hide the generated case label).  Thus we jump out of the
        // inner switch with gotos before performing any fake recursion.
        path:
          switch (Take()) {
            case 'C': goto crate_root;
            case 'M': return false;  // inherent-impl not yet implemented
            case 'X': return false;  // trait-impl not yet implemented
            case 'Y': goto trait_definition;
            case 'N': goto nested_path;
            case 'I': return false;  // generic-args not yet implemented
            case 'B': goto path_backref;
            default: return false;
          }

        // crate-root -> C identifier (C consumed above)
        crate_root:
          if (!ParseIdentifier()) return false;
          continue;

        // trait-definition -> Y type path (Y already consumed)
        trait_definition:
          if (!Emit("<")) return false;
          ABSL_DEMANGLER_RECURSE(type, kTraitDefinitionInfix);
          if (!Emit(" as ")) return false;
          ABSL_DEMANGLER_RECURSE(path, kTraitDefinitionEnding);
          if (!Emit(">")) return false;
          continue;

        // nested-path -> N namespace path identifier (N already consumed)
        // namespace -> lower | upper
        nested_path:
          // Uppercase namespaces must be saved on the stack so we can print
          // ::{closure#0} or ::{shim:vtable#0} or ::{X:name#0} as needed.
          if (IsUpper(Peek())) {
            if (!PushByte(static_cast<std::uint8_t>(Take()))) return false;
            ABSL_DEMANGLER_RECURSE(path, kIdentifierInUppercaseNamespace);
            if (!Emit("::")) return false;
            if (!ParseIdentifier(static_cast<char>(PopByte()))) return false;
            continue;
          }

          // Lowercase namespaces, however, are never represented in the output;
          // they all emit just ::name.
          if (IsLower(Take())) {
            ABSL_DEMANGLER_RECURSE(path, kIdentifierInLowercaseNamespace);
            if (!Emit("::")) return false;
            if (!ParseIdentifier()) return false;
            continue;
          }

          // Neither upper or lower
          return false;

        // type -> basic-type | array-type | slice-type | tuple-type |
        //         ref-type | mut-ref-type | const-ptr-type | mut-ptr-type |
        //         fn-type | dyn-trait-type | path | backref
        //
        // We use ifs instead of switch (Take()) because the default case jumps
        // to path, which will need to see the first character not yet Taken
        // from the input.  Because we do not use a nested switch here,
        // ABSL_DEMANGLER_RECURSE works fine in the 'S' case.
        type:
          if (IsLower(Peek())) {
            const char* type_name = BasicTypeName(Take());
            if (type_name == nullptr || !Emit(type_name)) return false;
            continue;
          }
          if (Eat('A')) return false;  // array-type not yet implemented
          if (Eat('S')) {
            if (!Emit("[")) return false;
            ABSL_DEMANGLER_RECURSE(type, kSliceEnding);
            if (!Emit("]")) return false;
            continue;
          }
          if (Eat('T')) goto tuple_type;
          if (Eat('R')) {
            if (!Emit("&")) return false;
            if (Eat('L')) return false;  // lifetime not yet implemented
            goto type;
          }
          if (Eat('Q')) {
            if (!Emit("&mut ")) return false;
            if (Eat('L')) return false;  // lifetime not yet implemented
            goto type;
          }
          if (Eat('P')) {
            if (!Emit("*const ")) return false;
            goto type;
          }
          if (Eat('O')) {
            if (!Emit("*mut ")) return false;
            goto type;
          }
          if (Eat('F')) return false;  // fn-type not yet implemented
          if (Eat('D')) return false;  // dyn-trait-type not yet implemented
          if (Eat('B')) goto type_backref;
          goto path;

        // tuple-type -> T type* E (T already consumed)
        tuple_type:
          if (!Emit("(")) return false;

          // The toolchain should call the unit type u instead of TE, but the
          // grammar and other demanglers also recognize TE, so we do too.
          if (Eat('E')) {
            if (!Emit(")")) return false;
            continue;
          }

          // A tuple with one element is rendered (type,) instead of (type).
          ABSL_DEMANGLER_RECURSE(type, kAfterFirstTupleElement);
          if (Eat('E')) {
            if (!Emit(",)")) return false;
            continue;
          }

          // A tuple with two elements is of course (x, y).
          if (!Emit(", ")) return false;
          ABSL_DEMANGLER_RECURSE(type, kAfterSecondTupleElement);
          if (Eat('E')) {
            if (!Emit(")")) return false;
            continue;
          }

          // And (x, y, z) for three elements.
          if (!Emit(", ")) return false;
          ABSL_DEMANGLER_RECURSE(type, kAfterThirdTupleElement);
          if (Eat('E')) {
            if (!Emit(")")) return false;
            continue;
          }

          // For longer tuples we write (x, y, z, ...), printing none of the
          // content of the fourth and later types.  Thus we avoid exhausting
          // output buffers and human readers' patience when some library has a
          // long tuple as an implementation detail, without having to
          // completely obfuscate all tuples.
          if (!Emit(", ...)")) return false;
          ++silence_depth_;
          while (!Eat('E')) {
            ABSL_DEMANGLER_RECURSE(type, kAfterSubsequentTupleElement);
          }
          --silence_depth_;
          continue;

        // backref -> B base-62-number (B already consumed)
        //
        // The BeginBackref call parses and range-checks the base-62-number.  We
        // always do that much.
        //
        // The recursive call parses and prints what the backref points at.  We
        // save CPU and stack by skipping this work if the output would be
        // suppressed anyway.
        path_backref:
          if (!BeginBackref()) return false;
          if (silence_depth_ == 0) {
            ABSL_DEMANGLER_RECURSE(path, kPathBackrefEnding);
          }
          EndBackref();
          continue;

        // This represents the same backref production as in path_backref but
        // parses the target as a type instead of a path.
        type_backref:
          if (!BeginBackref()) return false;
          if (silence_depth_ == 0) {
            ABSL_DEMANGLER_RECURSE(type, kTypeBackrefEnding);
          }
          EndBackref();
          continue;
      }
    }

    return false;  // hit iteration limit or a bug in our stack handling
  }

 private:
  // Enumerates resumption points for ABSL_DEMANGLER_RECURSE calls.
  enum ReturnAddress : std::uint8_t {
    kInstantiatingCrate,
    kVendorSpecificSuffix,
    kIdentifierInUppercaseNamespace,
    kIdentifierInLowercaseNamespace,
    kTraitDefinitionInfix,
    kTraitDefinitionEnding,
    kSliceEnding,
    kAfterFirstTupleElement,
    kAfterSecondTupleElement,
    kAfterThirdTupleElement,
    kAfterSubsequentTupleElement,
    kPathBackrefEnding,
    kTypeBackrefEnding,
  };

  // Element counts for the stack arrays.  Larger stack sizes accommodate more
  // deeply nested names at the cost of a larger footprint on the C++ call
  // stack.
  enum {
    // Maximum (recursive calls + N<uppercase> nested-names) open at one time.
    kStackSize = 256,

    // Maximum number of nested backrefs.  We can keep this stack pretty small
    // because we do not follow backrefs inside generic-args or other contexts
    // that suppress printing, so deep stacking is unlikely in practice.
    kPositionStackSize = 16,
  };

  // Returns the next input character without consuming it.
  char Peek() const { return encoding_[pos_]; }

  // Consumes and returns the next input character.
  char Take() { return encoding_[pos_++]; }

  // If the next input character is the given character, consumes it and returns
  // true; otherwise returns false without consuming a character.
  ABSL_MUST_USE_RESULT bool Eat(char want) {
    if (encoding_[pos_] != want) return false;
    ++pos_;
    return true;
  }

  // Provided there is enough remaining output space, appends c to the output,
  // writing a fresh NUL terminator afterward, and returns true.  Returns false
  // if the output buffer had less than two bytes free.
  ABSL_MUST_USE_RESULT bool EmitChar(char c) {
    if (silence_depth_ > 0) return true;
    if (out_end_ - out_ < 2) return false;
    *out_++ = c;
    *out_ = '\0';
    return true;
  }

  // Provided there is enough remaining output space, appends the C string token
  // to the output, followed by a NUL character, and returns true.  Returns
  // false if not everything fit into the output buffer.
  ABSL_MUST_USE_RESULT bool Emit(const char* token) {
    if (silence_depth_ > 0) return true;
    const std::size_t token_length = std::strlen(token);
    const std::size_t bytes_to_copy = token_length + 1;  // token and final NUL
    if (static_cast<std::size_t>(out_end_ - out_) < bytes_to_copy) return false;
    std::memcpy(out_, token, bytes_to_copy);
    out_ += token_length;
    return true;
  }

  // Provided there is enough remaining output space, appends the decimal form
  // of disambiguator (if it's nonnegative) or "?" (if it's negative) to the
  // output, followed by a NUL character, and returns true.  Returns false if
  // not everything fit into the output buffer.
  ABSL_MUST_USE_RESULT bool EmitDisambiguator(int disambiguator) {
    if (disambiguator < 0) return EmitChar('?');  // parsed but too large
    if (disambiguator == 0) return EmitChar('0');
    // Convert disambiguator to decimal text.  Three digits per byte is enough
    // because 999 > 256.  The bound will remain correct even if future
    // maintenance changes the type of the disambiguator variable.
    char digits[3 * sizeof(disambiguator)] = {};
    std::size_t leading_digit_index = sizeof(digits) - 1;
    for (; disambiguator > 0; disambiguator /= 10) {
      digits[--leading_digit_index] =
          static_cast<char>('0' + disambiguator % 10);
    }
    return Emit(digits + leading_digit_index);
  }

  // Consumes an optional disambiguator (s123_) from the input.
  //
  // On success returns true and fills value with the encoded value if it was
  // not too big, otherwise with -1.  If the optional disambiguator was omitted,
  // value is 0.  On parse failure returns false and sets value to -1.
  ABSL_MUST_USE_RESULT bool ParseDisambiguator(int& value) {
    value = -1;

    // disambiguator = s base-62-number
    //
    // Disambiguators are optional.  An omitted disambiguator is zero.
    if (!Eat('s')) {
      value = 0;
      return true;
    }
    int base_62_value = 0;
    if (!ParseBase62Number(base_62_value)) return false;
    value = base_62_value < 0 ? -1 : base_62_value + 1;
    return true;
  }

  // Consumes a base-62 number like _ or 123_ from the input.
  //
  // On success returns true and fills value with the encoded value if it was
  // not too big, otherwise with -1.  On parse failure returns false and sets
  // value to -1.
  ABSL_MUST_USE_RESULT bool ParseBase62Number(int& value) {
    value = -1;

    // base-62-number = (digit | lower | upper)* _
    //
    // An empty base-62 digit sequence means 0.
    if (Eat('_')) {
      value = 0;
      return true;
    }

    // A nonempty digit sequence denotes its base-62 value plus 1.
    int encoded_number = 0;
    bool overflowed = false;
    while (IsAlpha(Peek()) || IsDigit(Peek())) {
      const char c = Take();
      if (encoded_number >= std::numeric_limits<int>::max()/62) {
        // If we are close to overflowing an int, keep parsing but stop updating
        // encoded_number and remember to return -1 at the end.  The point is to
        // avoid undefined behavior while parsing crate-root disambiguators,
        // which are large in practice but not shown in demangling, while
        // successfully computing closure and shim disambiguators, which are
        // typically small and are printed out.
        overflowed = true;
      } else {
        int digit;
        if (IsDigit(c)) {
          digit = c - '0';
        } else if (IsLower(c)) {
          digit = c - 'a' + 10;
        } else {
          digit = c - 'A' + 36;
        }
        encoded_number = 62 * encoded_number + digit;
      }
    }

    if (!Eat('_')) return false;
    if (!overflowed) value = encoded_number + 1;
    return true;
  }

  // Consumes an identifier from the input, returning true on success.
  //
  // A nonzero uppercase_namespace specifies the character after the N in a
  // nested-identifier, e.g., 'C' for a closure, allowing ParseIdentifier to
  // write out the name with the conventional decoration for that namespace.
  ABSL_MUST_USE_RESULT bool ParseIdentifier(char uppercase_namespace = '\0') {
    // identifier -> disambiguator? undisambiguated-identifier
    int disambiguator = 0;
    if (!ParseDisambiguator(disambiguator)) return false;

    // undisambiguated-identifier -> u? decimal-number _? bytes
    const bool is_punycoded = Eat('u');
    if (!IsDigit(Peek())) return false;
    int num_bytes = 0;
    if (!ParseDecimalNumber(num_bytes)) return false;
    (void)Eat('_');  // optional separator, needed if a digit follows

    // Emit the beginnings of braced forms like {shim:vtable#0}.
    if (uppercase_namespace == '\0') {
      // Decoding of Punycode is not yet implemented.  For now we emit
      // "{Punycode ...}" with the raw encoding inside.
      if (is_punycoded && !Emit("{Punycode ")) return false;
    } else {
      switch (uppercase_namespace) {
        case 'C':
          if (!Emit("{closure")) return false;
          break;
        case 'S':
          if (!Emit("{shim")) return false;
          break;
        default:
          if (!EmitChar('{') || !EmitChar(uppercase_namespace)) return false;
          break;
      }
      if (num_bytes > 0 && !Emit(":")) return false;
    }

    // Emit the name itself.
    for (int i = 0; i < num_bytes; ++i) {
      const char c = Take();
      if (!IsIdentifierChar(c) &&
          // The spec gives toolchains the choice of Punycode or raw UTF-8 for
          // identifiers containing code points above 0x7f, so accept bytes with
          // the high bit set if this is not a u... encoding.
          (is_punycoded || (c & 0x80) == 0)) {
        return false;
      }
      if (!EmitChar(c)) return false;
    }

    // Emit the endings of braced forms: "#42}" or "}".
    if (uppercase_namespace != '\0') {
      if (!EmitChar('#')) return false;
      if (!EmitDisambiguator(disambiguator)) return false;
    }
    if (uppercase_namespace != '\0' || is_punycoded) {
      if (!EmitChar('}')) return false;
    }

    return true;
  }

  // Consumes a decimal number like 0 or 123 from the input.  On success returns
  // true and fills value with the encoded value.  If the encoded value is too
  // large or otherwise unparsable, returns false and sets value to -1.
  ABSL_MUST_USE_RESULT bool ParseDecimalNumber(int& value) {
    value = -1;
    if (!IsDigit(Peek())) return false;
    int encoded_number = Take() - '0';
    if (encoded_number == 0) {
      // Decimal numbers are never encoded with extra leading zeroes.
      value = 0;
      return true;
    }
    while (IsDigit(Peek()) &&
           // avoid overflow
           encoded_number < std::numeric_limits<int>::max()/10) {
      encoded_number = 10 * encoded_number + (Take() - '0');
    }
    if (IsDigit(Peek())) return false;  // too big
    value = encoded_number;
    return true;
  }

  // Pushes byte onto the data stack (the right side of stack_) and returns
  // true if stack_ is not full, else returns false.
  ABSL_MUST_USE_RESULT bool PushByte(std::uint8_t byte) {
    if (depth_ == data_stack_pointer_) return false;
    stack_[--data_stack_pointer_] = byte;
    return true;
  }

  // Pops the last pushed data byte from stack_.  Requires that the data stack
  // is not empty (data_stack_pointer_ < kStackSize).
  std::uint8_t PopByte() { return stack_[data_stack_pointer_++]; }

  // Pushes position onto the position stack and returns true if the stack is
  // not full, else returns false.
  ABSL_MUST_USE_RESULT bool PushPosition(int position) {
    if (position_depth_ == kPositionStackSize) return false;
    position_stack_[position_depth_++] = position;
    return true;
  }

  // Pops the last pushed input position.  Requires that the position stack is
  // not empty (position_depth_ > 0).
  int PopPosition() { return position_stack_[--position_depth_]; }

  // Consumes a base-62-number denoting a backref target, pushes the current
  // input position on the data stack, and sets the input position to the
  // beginning of the backref target.  Returns true on success.  Returns false
  // if parsing failed, the stack is exhausted, or the backref target position
  // is out of range.
  ABSL_MUST_USE_RESULT bool BeginBackref() {
    // backref = B base-62-number (B already consumed)
    //
    // Reject backrefs that don't parse, overflow int, or don't point backward.
    // If the offset looks fine, adjust it to account for the _R prefix.
    int offset = 0;
    const int offset_of_this_backref =
        pos_ - 2 /* _R */ - 1 /* B already consumed */;
    if (!ParseBase62Number(offset) || offset < 0 ||
        offset >= offset_of_this_backref) {
      return false;
    }
    offset += 2;

    // Save the old position to restore later.
    if (!PushPosition(pos_)) return false;

    // Move the input position to the backref target.
    //
    // Note that we do not check whether the new position points to the
    // beginning of a construct matching the context in which the backref
    // appeared.  We just jump to it and see whether nested parsing succeeds.
    // We therefore accept various wrong manglings, e.g., a type backref
    // pointing to an 'l' character inside an identifier, which happens to mean
    // i32 when parsed as a type mangling.  This saves the complexity and RAM
    // footprint of remembering which offsets began which kinds of
    // substructures.  Existing demanglers take similar shortcuts.
    pos_ = offset;
    return true;
  }

  // Cleans up after a backref production by restoring the previous input
  // position from the data stack.
  void EndBackref() { pos_ = PopPosition(); }

  // Call and data stacks reside in stack_.  The leftmost depth_ elements
  // contain ReturnAddresses pushed by ABSL_DEMANGLER_RECURSE.  The elements
  // from index data_stack_pointer_ to the right edge of stack_ contain bytes
  // pushed by PushByte.
  std::uint8_t stack_[kStackSize] = {};
  int data_stack_pointer_ = kStackSize;
  int depth_ = 0;

  // The leftmost position_depth_ elements of position_stack_ contain the input
  // positions to return to after fully printing the targets of backrefs.
  int position_stack_[kPositionStackSize] = {};
  int position_depth_ = 0;

  // Anything parsed while silence_depth_ > 0 contributes nothing to the
  // demangled output.  For constructs omitted from the demangling, such as
  // impl-path and the contents of generic-args, we will increment
  // silence_depth_ on the way in and decrement silence_depth_ on the way out.
  int silence_depth_ = 0;

  // Input: encoding_ points to a Rust mangled symbol, and encoding_[pos_] is
  // the next input character to be scanned.
  int pos_ = 0;
  const char* encoding_ = nullptr;

  // Output: *out_ is where the next output character should be written, and
  // out_end_ points past the last byte of available space.
  char* out_ = nullptr;
  char* out_end_ = nullptr;
};

}  // namespace

bool DemangleRustSymbolEncoding(const char* mangled, char* out,
                                std::size_t out_size) {
  return RustSymbolParser(mangled, out, out + out_size).Parse();
}

}  // namespace debugging_internal
ABSL_NAMESPACE_END
}  // namespace absl