1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
/* Server side implementation for rtc-cmos
Copyright (C) 2024 Free Software Foundation, Inc.
This file is part of the GNU Hurd.
The GNU Hurd is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2, or (at
your option) any later version.
The GNU Hurd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA. */
/* This implementation is largely based on sys-utils/hwclock-cmos.c from
util-linux. */
/* A struct tm has int fields (it is defined in POSIX)
tm_sec 0-59, 60 or 61 only for leap seconds
tm_min 0-59
tm_hour 0-23
tm_mday 1-31
tm_mon 0-11
tm_year number of years since 1900
tm_wday 0-6, 0=Sunday
tm_yday 0-365
tm_isdst >0: yes, 0: no, <0: unknown */
#include "rtc_pioctl_S.h"
#include <hurd/rtc.h>
#include <hurd/hurd_types.h>
#include <sys/io.h>
#include <stdbool.h>
/* Conversions to and from RTC internal format. */
#define BCD_TO_BIN(val) ((val)=((val)&15) + (((val)>>4)&15)*10 + \
((val)>>8)*100)
#define BIN_TO_BCD(val) ((val)=(((val)/100)<<8) + \
((((val)/10)%10)<<4) + (val)%10)
/* POSIX uses 1900 as epoch for a struct tm, and 1970 for a time_t. */
#define TM_EPOCH 1900
#define CLOCK_CTL_ADDR 0x70
#define CLOCK_DATA_ADDR 0x71
#define is_leap(year) \
((year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0))
static const int mon_yday[2][13] =
{
/* Normal years. */
{ 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
/* Leap years. */
{ 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
};
static inline unsigned char
cmos_read (unsigned char reg)
{
outb_p (reg, CLOCK_CTL_ADDR);
return inb_p (CLOCK_DATA_ADDR);
}
static inline void
cmos_write (unsigned char reg, unsigned char val)
{
outb_p (reg, CLOCK_CTL_ADDR);
outb_p (val, CLOCK_DATA_ADDR);
}
static inline int
cmos_clock_busy (void)
{
/* Poll bit 7 (UIP) of Control Register A. */
return (cmos_read (10) & 0x80);
}
/* Calculate day of year based on month, day of month, and year. The value
it returns is in binary format. */
static int
calculate_yday (const struct rtc_time *tm)
{
return mon_yday[is_leap (tm->tm_year)][tm->tm_mon] + tm->tm_mday - 1;
}
/* 3 RTC_UIE_ON -- Enable update-ended interrupt. */
kern_return_t
rtc_S_pioctl_rtc_uie_on (struct trivfs_protid *cred)
{
return EOPNOTSUPP;
}
/* 4 RTC_UIE_OFF -- Disable update-ended interrupt. */
kern_return_t
rtc_S_pioctl_rtc_uie_off (struct trivfs_protid *cred)
{
return EOPNOTSUPP;
}
/* 9 RTC_RD_TIME -- Read RTC time. */
kern_return_t
rtc_S_pioctl_rtc_rd_time (struct trivfs_protid *cred, struct rtc_time *tm)
{
unsigned char status = 0;
unsigned char pmbit = 0;
int time_passed_in_milliseconds = 0;
bool read_rtc_successfully = false;
if (!cred)
return EOPNOTSUPP;
if (!(cred->po->openmodes & O_READ))
return EBADF;
/* When we wait for 100 ms (it takes too long), we exit with error. */
while (time_passed_in_milliseconds < 100)
{
if (!cmos_clock_busy ())
{
tm->tm_sec = cmos_read (0);
tm->tm_min = cmos_read (2);
tm->tm_hour = cmos_read (4);
tm->tm_wday = cmos_read (6);
tm->tm_mday = cmos_read (7);
tm->tm_mon = cmos_read (8);
tm->tm_year = cmos_read (9);
status = cmos_read (11);
/* Unless the clock changed while we were reading, consider this
a good clock read. */
if (tm->tm_sec == cmos_read (0))
{
read_rtc_successfully = true;
break;
}
}
usleep (1000);
time_passed_in_milliseconds++;
}
if (!read_rtc_successfully)
return EBUSY;
/* If the data we just read is in BCD format, convert it to binary
format. */
if (!(status & 0x04))
{
BCD_TO_BIN (tm->tm_sec);
BCD_TO_BIN (tm->tm_min);
pmbit = (tm->tm_hour & 0x80);
tm->tm_hour &= 0x7f;
BCD_TO_BIN (tm->tm_hour);
BCD_TO_BIN (tm->tm_wday);
BCD_TO_BIN (tm->tm_mday);
BCD_TO_BIN (tm->tm_mon);
BCD_TO_BIN (tm->tm_year);
}
/* We don't use the century byte of the Hardware Clock since we
don't know its address (usually 50 or 55). Here, we follow the
advice of the X/Open Base Working Group: "if century is not
specified, then values in the range [69-99] refer to years in the
twentieth century (1969 to 1999 inclusive), and values in the
range [00-68] refer to years in the twenty-first century (2000 to
2068 inclusive)". */
tm->tm_wday -= 1;
tm->tm_mon -= 1;
if (tm->tm_year < 69)
tm->tm_year += 100;
/* Calculate day of year. */
tm->tm_yday = calculate_yday (tm);
if (pmbit)
{
tm->tm_hour += 12;
if (tm->tm_hour == 24)
tm->tm_hour = 0;
}
/* We don't know whether it's daylight. */
tm->tm_isdst = -1;
return KERN_SUCCESS;
}
/* 10 RTC_SET_TIME -- Set RTC time. */
kern_return_t
rtc_S_pioctl_rtc_set_time (struct trivfs_protid *cred, struct rtc_time tm)
{
unsigned char save_control, save_freq_select, pmbit = 0;
if (!cred)
return EOPNOTSUPP;
if (!(cred->po->openmodes & O_WRITE))
return EBADF;
/* CMOS byte 10 (clock status register A) has 3 bitfields:
bit 7: 1 if data invalid, update in progress (read-only bit)
(this is raised 224 us before the actual update starts)
6-4 select base frequency
010: 32768 Hz time base (default)
111: reset
all other combinations are manufacturer-dependent
(e.g.: DS1287: 010 = start oscillator, anything else = stop)
3-0 rate selection bits for interrupt
0000 none (may stop RTC)
0001, 0010 give same frequency as 1000, 1001
0011 122 microseconds (minimum, 8192 Hz)
.... each increase by 1 halves the frequency, doubles the period
1111 500 milliseconds (maximum, 2 Hz)
0110 976.562 microseconds (default 1024 Hz). */
/* Tell the clock it's being set. */
save_control = cmos_read (11);
cmos_write (11, (save_control | 0x80));
/* Stop and reset prescaler. */
save_freq_select = cmos_read (10);
cmos_write (10, (save_freq_select | 0x70));
tm.tm_year %= 100;
tm.tm_mon += 1;
tm.tm_wday += 1;
/* 12hr mode; the default is 24hr mode. */
if (!(save_control & 0x02))
{
if (tm.tm_hour == 0)
tm.tm_hour = 24;
if (tm.tm_hour > 12)
{
tm.tm_hour -= 12;
pmbit = 0x80;
}
}
/* BCD mode - the default. */
if (!(save_control & 0x04))
{
BIN_TO_BCD (tm.tm_sec);
BIN_TO_BCD (tm.tm_min);
BIN_TO_BCD (tm.tm_hour);
BIN_TO_BCD (tm.tm_wday);
BIN_TO_BCD (tm.tm_mday);
BIN_TO_BCD (tm.tm_mon);
BIN_TO_BCD (tm.tm_year);
}
cmos_write (0, tm.tm_sec);
cmos_write (2, tm.tm_min);
cmos_write (4, tm.tm_hour | pmbit);
cmos_write (6, tm.tm_wday);
cmos_write (7, tm.tm_mday);
cmos_write (8, tm.tm_mon);
cmos_write (9, tm.tm_year);
/* The kernel sources, linux/arch/i386/kernel/time.c, have the
following comment:
The following flags have to be released exactly in this order,
otherwise the DS12887 (popular MC146818A clone with integrated
battery and quartz) will not reset the oscillator and will not
update precisely 500 ms later. You won't find this mentioned in
the Dallas Semiconductor data sheets, but who believes data
sheets anyway ... -- Markus Kuhn. */
cmos_write (11, save_control);
cmos_write (10, save_freq_select);
return KERN_SUCCESS;
}
|