diff options
Diffstat (limited to 'src/dsp/arm/convolve_10bit_neon.cc')
-rw-r--r-- | src/dsp/arm/convolve_10bit_neon.cc | 3008 |
1 files changed, 3008 insertions, 0 deletions
diff --git a/src/dsp/arm/convolve_10bit_neon.cc b/src/dsp/arm/convolve_10bit_neon.cc new file mode 100644 index 0000000..b7205df --- /dev/null +++ b/src/dsp/arm/convolve_10bit_neon.cc @@ -0,0 +1,3008 @@ +// Copyright 2021 The libgav1 Authors +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "src/dsp/convolve.h" +#include "src/utils/cpu.h" + +#if LIBGAV1_ENABLE_NEON && LIBGAV1_MAX_BITDEPTH >= 10 +#include <arm_neon.h> + +#include <algorithm> +#include <cassert> +#include <cstdint> + +#include "src/dsp/arm/common_neon.h" +#include "src/dsp/constants.h" +#include "src/dsp/dsp.h" +#include "src/utils/common.h" +#include "src/utils/compiler_attributes.h" +#include "src/utils/constants.h" + +namespace libgav1 { +namespace dsp { +namespace { + +// Include the constants and utility functions inside the anonymous namespace. +#include "src/dsp/convolve.inc" + +// Output of ConvolveTest.ShowRange below. +// Bitdepth: 10 Input range: [ 0, 1023] +// Horizontal base upscaled range: [ -28644, 94116] +// Horizontal halved upscaled range: [ -14322, 47085] +// Horizontal downscaled range: [ -7161, 23529] +// Vertical upscaled range: [-1317624, 2365176] +// Pixel output range: [ 0, 1023] +// Compound output range: [ 3988, 61532] + +template <int filter_index> +int32x4x2_t SumOnePassTaps(const uint16x8_t* const src, + const int16x4_t* const taps) { + const auto* ssrc = reinterpret_cast<const int16x8_t*>(src); + int32x4x2_t sum; + if (filter_index < 2) { + // 6 taps. + sum.val[0] = vmull_s16(vget_low_s16(ssrc[0]), taps[0]); + sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[1]), taps[1]); + sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[2]), taps[2]); + sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[3]), taps[3]); + sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[4]), taps[4]); + sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[5]), taps[5]); + + sum.val[1] = vmull_s16(vget_high_s16(ssrc[0]), taps[0]); + sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[1]), taps[1]); + sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[2]), taps[2]); + sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[3]), taps[3]); + sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[4]), taps[4]); + sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[5]), taps[5]); + } else if (filter_index == 2) { + // 8 taps. + sum.val[0] = vmull_s16(vget_low_s16(ssrc[0]), taps[0]); + sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[1]), taps[1]); + sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[2]), taps[2]); + sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[3]), taps[3]); + sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[4]), taps[4]); + sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[5]), taps[5]); + sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[6]), taps[6]); + sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[7]), taps[7]); + + sum.val[1] = vmull_s16(vget_high_s16(ssrc[0]), taps[0]); + sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[1]), taps[1]); + sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[2]), taps[2]); + sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[3]), taps[3]); + sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[4]), taps[4]); + sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[5]), taps[5]); + sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[6]), taps[6]); + sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[7]), taps[7]); + } else if (filter_index == 3) { + // 2 taps. + sum.val[0] = vmull_s16(vget_low_s16(ssrc[0]), taps[0]); + sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[1]), taps[1]); + + sum.val[1] = vmull_s16(vget_high_s16(ssrc[0]), taps[0]); + sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[1]), taps[1]); + } else { + // 4 taps. + sum.val[0] = vmull_s16(vget_low_s16(ssrc[0]), taps[0]); + sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[1]), taps[1]); + sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[2]), taps[2]); + sum.val[0] = vmlal_s16(sum.val[0], vget_low_s16(ssrc[3]), taps[3]); + + sum.val[1] = vmull_s16(vget_high_s16(ssrc[0]), taps[0]); + sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[1]), taps[1]); + sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[2]), taps[2]); + sum.val[1] = vmlal_s16(sum.val[1], vget_high_s16(ssrc[3]), taps[3]); + } + return sum; +} + +template <int filter_index> +int32x4_t SumOnePassTaps(const uint16x4_t* const src, + const int16x4_t* const taps) { + const auto* ssrc = reinterpret_cast<const int16x4_t*>(src); + int32x4_t sum; + if (filter_index < 2) { + // 6 taps. + sum = vmull_s16(ssrc[0], taps[0]); + sum = vmlal_s16(sum, ssrc[1], taps[1]); + sum = vmlal_s16(sum, ssrc[2], taps[2]); + sum = vmlal_s16(sum, ssrc[3], taps[3]); + sum = vmlal_s16(sum, ssrc[4], taps[4]); + sum = vmlal_s16(sum, ssrc[5], taps[5]); + } else if (filter_index == 2) { + // 8 taps. + sum = vmull_s16(ssrc[0], taps[0]); + sum = vmlal_s16(sum, ssrc[1], taps[1]); + sum = vmlal_s16(sum, ssrc[2], taps[2]); + sum = vmlal_s16(sum, ssrc[3], taps[3]); + sum = vmlal_s16(sum, ssrc[4], taps[4]); + sum = vmlal_s16(sum, ssrc[5], taps[5]); + sum = vmlal_s16(sum, ssrc[6], taps[6]); + sum = vmlal_s16(sum, ssrc[7], taps[7]); + } else if (filter_index == 3) { + // 2 taps. + sum = vmull_s16(ssrc[0], taps[0]); + sum = vmlal_s16(sum, ssrc[1], taps[1]); + } else { + // 4 taps. + sum = vmull_s16(ssrc[0], taps[0]); + sum = vmlal_s16(sum, ssrc[1], taps[1]); + sum = vmlal_s16(sum, ssrc[2], taps[2]); + sum = vmlal_s16(sum, ssrc[3], taps[3]); + } + return sum; +} + +template <int filter_index, bool is_compound, bool is_2d> +void FilterHorizontalWidth8AndUp(const uint16_t* LIBGAV1_RESTRICT src, + const ptrdiff_t src_stride, + void* LIBGAV1_RESTRICT const dest, + const ptrdiff_t pred_stride, const int width, + const int height, + const int16x4_t* const v_tap) { + auto* dest16 = static_cast<uint16_t*>(dest); + const uint16x4_t v_max_bitdepth = vdup_n_u16((1 << kBitdepth10) - 1); + if (is_2d) { + int x = 0; + do { + const uint16_t* s = src + x; + int y = height; + do { // Increasing loop counter x is better. + const uint16x8_t src_long = vld1q_u16(s); + const uint16x8_t src_long_hi = vld1q_u16(s + 8); + uint16x8_t v_src[8]; + int32x4x2_t v_sum; + if (filter_index < 2) { + v_src[0] = src_long; + v_src[1] = vextq_u16(src_long, src_long_hi, 1); + v_src[2] = vextq_u16(src_long, src_long_hi, 2); + v_src[3] = vextq_u16(src_long, src_long_hi, 3); + v_src[4] = vextq_u16(src_long, src_long_hi, 4); + v_src[5] = vextq_u16(src_long, src_long_hi, 5); + v_sum = SumOnePassTaps<filter_index>(v_src, v_tap + 1); + } else if (filter_index == 2) { + v_src[0] = src_long; + v_src[1] = vextq_u16(src_long, src_long_hi, 1); + v_src[2] = vextq_u16(src_long, src_long_hi, 2); + v_src[3] = vextq_u16(src_long, src_long_hi, 3); + v_src[4] = vextq_u16(src_long, src_long_hi, 4); + v_src[5] = vextq_u16(src_long, src_long_hi, 5); + v_src[6] = vextq_u16(src_long, src_long_hi, 6); + v_src[7] = vextq_u16(src_long, src_long_hi, 7); + v_sum = SumOnePassTaps<filter_index>(v_src, v_tap); + } else if (filter_index == 3) { + v_src[0] = src_long; + v_src[1] = vextq_u16(src_long, src_long_hi, 1); + v_sum = SumOnePassTaps<filter_index>(v_src, v_tap + 3); + } else { // filter_index > 3 + v_src[0] = src_long; + v_src[1] = vextq_u16(src_long, src_long_hi, 1); + v_src[2] = vextq_u16(src_long, src_long_hi, 2); + v_src[3] = vextq_u16(src_long, src_long_hi, 3); + v_sum = SumOnePassTaps<filter_index>(v_src, v_tap + 2); + } + + const int16x4_t d0 = + vqrshrn_n_s32(v_sum.val[0], kInterRoundBitsHorizontal - 1); + const int16x4_t d1 = + vqrshrn_n_s32(v_sum.val[1], kInterRoundBitsHorizontal - 1); + vst1_u16(&dest16[0], vreinterpret_u16_s16(d0)); + vst1_u16(&dest16[4], vreinterpret_u16_s16(d1)); + s += src_stride; + dest16 += 8; + } while (--y != 0); + x += 8; + } while (x < width); + return; + } + int y = height; + do { + int x = 0; + do { + const uint16x8_t src_long = vld1q_u16(src + x); + const uint16x8_t src_long_hi = vld1q_u16(src + x + 8); + uint16x8_t v_src[8]; + int32x4x2_t v_sum; + if (filter_index < 2) { + v_src[0] = src_long; + v_src[1] = vextq_u16(src_long, src_long_hi, 1); + v_src[2] = vextq_u16(src_long, src_long_hi, 2); + v_src[3] = vextq_u16(src_long, src_long_hi, 3); + v_src[4] = vextq_u16(src_long, src_long_hi, 4); + v_src[5] = vextq_u16(src_long, src_long_hi, 5); + v_sum = SumOnePassTaps<filter_index>(v_src, v_tap + 1); + } else if (filter_index == 2) { + v_src[0] = src_long; + v_src[1] = vextq_u16(src_long, src_long_hi, 1); + v_src[2] = vextq_u16(src_long, src_long_hi, 2); + v_src[3] = vextq_u16(src_long, src_long_hi, 3); + v_src[4] = vextq_u16(src_long, src_long_hi, 4); + v_src[5] = vextq_u16(src_long, src_long_hi, 5); + v_src[6] = vextq_u16(src_long, src_long_hi, 6); + v_src[7] = vextq_u16(src_long, src_long_hi, 7); + v_sum = SumOnePassTaps<filter_index>(v_src, v_tap); + } else if (filter_index == 3) { + v_src[0] = src_long; + v_src[1] = vextq_u16(src_long, src_long_hi, 1); + v_sum = SumOnePassTaps<filter_index>(v_src, v_tap + 3); + } else { // filter_index > 3 + v_src[0] = src_long; + v_src[1] = vextq_u16(src_long, src_long_hi, 1); + v_src[2] = vextq_u16(src_long, src_long_hi, 2); + v_src[3] = vextq_u16(src_long, src_long_hi, 3); + v_sum = SumOnePassTaps<filter_index>(v_src, v_tap + 2); + } + if (is_compound) { + const int16x4_t v_compound_offset = vdup_n_s16(kCompoundOffset); + const int16x4_t d0 = + vqrshrn_n_s32(v_sum.val[0], kInterRoundBitsHorizontal - 1); + const int16x4_t d1 = + vqrshrn_n_s32(v_sum.val[1], kInterRoundBitsHorizontal - 1); + vst1_u16(&dest16[x], + vreinterpret_u16_s16(vadd_s16(d0, v_compound_offset))); + vst1_u16(&dest16[x + 4], + vreinterpret_u16_s16(vadd_s16(d1, v_compound_offset))); + } else { + // Normally the Horizontal pass does the downshift in two passes: + // kInterRoundBitsHorizontal - 1 and then (kFilterBits - + // kInterRoundBitsHorizontal). Each one uses a rounding shift. + // Combining them requires adding the rounding offset from the skipped + // shift. + const int32x4_t v_first_shift_rounding_bit = + vdupq_n_s32(1 << (kInterRoundBitsHorizontal - 2)); + v_sum.val[0] = vaddq_s32(v_sum.val[0], v_first_shift_rounding_bit); + v_sum.val[1] = vaddq_s32(v_sum.val[1], v_first_shift_rounding_bit); + const uint16x4_t d0 = vmin_u16( + vqrshrun_n_s32(v_sum.val[0], kFilterBits - 1), v_max_bitdepth); + const uint16x4_t d1 = vmin_u16( + vqrshrun_n_s32(v_sum.val[1], kFilterBits - 1), v_max_bitdepth); + vst1_u16(&dest16[x], d0); + vst1_u16(&dest16[x + 4], d1); + } + x += 8; + } while (x < width); + src += src_stride; + dest16 += pred_stride; + } while (--y != 0); +} + +template <int filter_index, bool is_compound, bool is_2d> +void FilterHorizontalWidth4(const uint16_t* LIBGAV1_RESTRICT src, + const ptrdiff_t src_stride, + void* LIBGAV1_RESTRICT const dest, + const ptrdiff_t pred_stride, const int height, + const int16x4_t* const v_tap) { + auto* dest16 = static_cast<uint16_t*>(dest); + const uint16x4_t v_max_bitdepth = vdup_n_u16((1 << kBitdepth10) - 1); + int y = height; + do { + const uint16x8_t v_zero = vdupq_n_u16(0); + uint16x4_t v_src[4]; + int32x4_t v_sum; + const uint16x8_t src_long = vld1q_u16(src); + v_src[0] = vget_low_u16(src_long); + if (filter_index == 3) { + v_src[1] = vget_low_u16(vextq_u16(src_long, v_zero, 1)); + v_sum = SumOnePassTaps<filter_index>(v_src, v_tap + 3); + } else { + v_src[1] = vget_low_u16(vextq_u16(src_long, v_zero, 1)); + v_src[2] = vget_low_u16(vextq_u16(src_long, v_zero, 2)); + v_src[3] = vget_low_u16(vextq_u16(src_long, v_zero, 3)); + v_sum = SumOnePassTaps<filter_index>(v_src, v_tap + 2); + } + if (is_compound || is_2d) { + const int16x4_t d0 = vqrshrn_n_s32(v_sum, kInterRoundBitsHorizontal - 1); + if (is_compound && !is_2d) { + vst1_u16(&dest16[0], vreinterpret_u16_s16( + vadd_s16(d0, vdup_n_s16(kCompoundOffset)))); + } else { + vst1_u16(&dest16[0], vreinterpret_u16_s16(d0)); + } + } else { + const int32x4_t v_first_shift_rounding_bit = + vdupq_n_s32(1 << (kInterRoundBitsHorizontal - 2)); + v_sum = vaddq_s32(v_sum, v_first_shift_rounding_bit); + const uint16x4_t d0 = + vmin_u16(vqrshrun_n_s32(v_sum, kFilterBits - 1), v_max_bitdepth); + vst1_u16(&dest16[0], d0); + } + src += src_stride; + dest16 += pred_stride; + } while (--y != 0); +} + +template <int filter_index, bool is_2d> +void FilterHorizontalWidth2(const uint16_t* LIBGAV1_RESTRICT src, + const ptrdiff_t src_stride, + void* LIBGAV1_RESTRICT const dest, + const ptrdiff_t pred_stride, const int height, + const int16x4_t* const v_tap) { + auto* dest16 = static_cast<uint16_t*>(dest); + const uint16x4_t v_max_bitdepth = vdup_n_u16((1 << kBitdepth10) - 1); + int y = height >> 1; + do { + const int16x8_t v_zero = vdupq_n_s16(0); + const int16x8_t input0 = vreinterpretq_s16_u16(vld1q_u16(src)); + const int16x8_t input1 = vreinterpretq_s16_u16(vld1q_u16(src + src_stride)); + const int16x8x2_t input = vzipq_s16(input0, input1); + int32x4_t v_sum; + if (filter_index == 3) { + v_sum = vmull_s16(vget_low_s16(input.val[0]), v_tap[3]); + v_sum = vmlal_s16(v_sum, + vget_low_s16(vextq_s16(input.val[0], input.val[1], 2)), + v_tap[4]); + } else { + v_sum = vmull_s16(vget_low_s16(input.val[0]), v_tap[2]); + v_sum = vmlal_s16(v_sum, vget_low_s16(vextq_s16(input.val[0], v_zero, 2)), + v_tap[3]); + v_sum = vmlal_s16(v_sum, vget_low_s16(vextq_s16(input.val[0], v_zero, 4)), + v_tap[4]); + v_sum = vmlal_s16(v_sum, + vget_low_s16(vextq_s16(input.val[0], input.val[1], 6)), + v_tap[5]); + } + if (is_2d) { + const uint16x4_t d0 = vreinterpret_u16_s16( + vqrshrn_n_s32(v_sum, kInterRoundBitsHorizontal - 1)); + dest16[0] = vget_lane_u16(d0, 0); + dest16[1] = vget_lane_u16(d0, 2); + dest16 += pred_stride; + dest16[0] = vget_lane_u16(d0, 1); + dest16[1] = vget_lane_u16(d0, 3); + dest16 += pred_stride; + } else { + // Normally the Horizontal pass does the downshift in two passes: + // kInterRoundBitsHorizontal - 1 and then (kFilterBits - + // kInterRoundBitsHorizontal). Each one uses a rounding shift. + // Combining them requires adding the rounding offset from the skipped + // shift. + const int32x4_t v_first_shift_rounding_bit = + vdupq_n_s32(1 << (kInterRoundBitsHorizontal - 2)); + v_sum = vaddq_s32(v_sum, v_first_shift_rounding_bit); + const uint16x4_t d0 = + vmin_u16(vqrshrun_n_s32(v_sum, kFilterBits - 1), v_max_bitdepth); + dest16[0] = vget_lane_u16(d0, 0); + dest16[1] = vget_lane_u16(d0, 2); + dest16 += pred_stride; + dest16[0] = vget_lane_u16(d0, 1); + dest16[1] = vget_lane_u16(d0, 3); + dest16 += pred_stride; + } + src += src_stride << 1; + } while (--y != 0); + + // The 2d filters have an odd |height| because the horizontal pass + // generates context for the vertical pass. + if (is_2d) { + assert(height % 2 == 1); + const int16x8_t input = vreinterpretq_s16_u16(vld1q_u16(src)); + int32x4_t v_sum; + if (filter_index == 3) { + v_sum = vmull_s16(vget_low_s16(input), v_tap[3]); + v_sum = + vmlal_s16(v_sum, vget_low_s16(vextq_s16(input, input, 1)), v_tap[4]); + } else { + v_sum = vmull_s16(vget_low_s16(input), v_tap[2]); + v_sum = + vmlal_s16(v_sum, vget_low_s16(vextq_s16(input, input, 1)), v_tap[3]); + v_sum = + vmlal_s16(v_sum, vget_low_s16(vextq_s16(input, input, 2)), v_tap[4]); + v_sum = + vmlal_s16(v_sum, vget_low_s16(vextq_s16(input, input, 3)), v_tap[5]); + } + const uint16x4_t d0 = vreinterpret_u16_s16( + vqrshrn_n_s32(v_sum, kInterRoundBitsHorizontal - 1)); + Store2<0>(dest16, d0); + } +} + +template <int filter_index, bool is_compound, bool is_2d> +void FilterHorizontal(const uint16_t* LIBGAV1_RESTRICT const src, + const ptrdiff_t src_stride, + void* LIBGAV1_RESTRICT const dest, + const ptrdiff_t pred_stride, const int width, + const int height, const int16x4_t* const v_tap) { + assert(width < 8 || filter_index <= 3); + // Don't simplify the redundant if conditions with the template parameters, + // which helps the compiler generate compact code. + if (width >= 8 && filter_index <= 3) { + FilterHorizontalWidth8AndUp<filter_index, is_compound, is_2d>( + src, src_stride, dest, pred_stride, width, height, v_tap); + return; + } + + // Horizontal passes only needs to account for number of taps 2 and 4 when + // |width| <= 4. + assert(width <= 4); + assert(filter_index >= 3 && filter_index <= 5); + if (filter_index >= 3 && filter_index <= 5) { + if (width == 4) { + FilterHorizontalWidth4<filter_index, is_compound, is_2d>( + src, src_stride, dest, pred_stride, height, v_tap); + return; + } + assert(width == 2); + if (!is_compound) { + FilterHorizontalWidth2<filter_index, is_2d>(src, src_stride, dest, + pred_stride, height, v_tap); + } + } +} + +template <bool is_compound = false, bool is_2d = false> +LIBGAV1_ALWAYS_INLINE void DoHorizontalPass( + const uint16_t* LIBGAV1_RESTRICT const src, const ptrdiff_t src_stride, + void* LIBGAV1_RESTRICT const dst, const ptrdiff_t dst_stride, + const int width, const int height, const int filter_id, + const int filter_index) { + // Duplicate the absolute value for each tap. Negative taps are corrected + // by using the vmlsl_u8 instruction. Positive taps use vmlal_u8. + int16x4_t v_tap[kSubPixelTaps]; + assert(filter_id != 0); + + for (int k = 0; k < kSubPixelTaps; ++k) { + v_tap[k] = vdup_n_s16(kHalfSubPixelFilters[filter_index][filter_id][k]); + } + + if (filter_index == 2) { // 8 tap. + FilterHorizontal<2, is_compound, is_2d>(src, src_stride, dst, dst_stride, + width, height, v_tap); + } else if (filter_index == 1) { // 6 tap. + FilterHorizontal<1, is_compound, is_2d>(src + 1, src_stride, dst, + dst_stride, width, height, v_tap); + } else if (filter_index == 0) { // 6 tap. + FilterHorizontal<0, is_compound, is_2d>(src + 1, src_stride, dst, + dst_stride, width, height, v_tap); + } else if (filter_index == 4) { // 4 tap. + FilterHorizontal<4, is_compound, is_2d>(src + 2, src_stride, dst, + dst_stride, width, height, v_tap); + } else if (filter_index == 5) { // 4 tap. + FilterHorizontal<5, is_compound, is_2d>(src + 2, src_stride, dst, + dst_stride, width, height, v_tap); + } else { // 2 tap. + FilterHorizontal<3, is_compound, is_2d>(src + 3, src_stride, dst, + dst_stride, width, height, v_tap); + } +} + +void ConvolveHorizontal_NEON( + const void* LIBGAV1_RESTRICT const reference, + const ptrdiff_t reference_stride, const int horizontal_filter_index, + const int /*vertical_filter_index*/, const int horizontal_filter_id, + const int /*vertical_filter_id*/, const int width, const int height, + void* LIBGAV1_RESTRICT const prediction, const ptrdiff_t pred_stride) { + const int filter_index = GetFilterIndex(horizontal_filter_index, width); + // Set |src| to the outermost tap. + const auto* const src = + static_cast<const uint16_t*>(reference) - kHorizontalOffset; + auto* const dest = static_cast<uint16_t*>(prediction); + const ptrdiff_t src_stride = reference_stride >> 1; + const ptrdiff_t dst_stride = pred_stride >> 1; + + DoHorizontalPass(src, src_stride, dest, dst_stride, width, height, + horizontal_filter_id, filter_index); +} + +void ConvolveCompoundHorizontal_NEON( + const void* LIBGAV1_RESTRICT const reference, + const ptrdiff_t reference_stride, const int horizontal_filter_index, + const int /*vertical_filter_index*/, const int horizontal_filter_id, + const int /*vertical_filter_id*/, const int width, const int height, + void* LIBGAV1_RESTRICT const prediction, const ptrdiff_t /*pred_stride*/) { + const int filter_index = GetFilterIndex(horizontal_filter_index, width); + const auto* const src = + static_cast<const uint16_t*>(reference) - kHorizontalOffset; + auto* const dest = static_cast<uint16_t*>(prediction); + const ptrdiff_t src_stride = reference_stride >> 1; + + DoHorizontalPass</*is_compound=*/true>(src, src_stride, dest, width, width, + height, horizontal_filter_id, + filter_index); +} + +template <int filter_index, bool is_compound = false> +void FilterVertical(const uint16_t* LIBGAV1_RESTRICT const src, + const ptrdiff_t src_stride, + void* LIBGAV1_RESTRICT const dst, + const ptrdiff_t dst_stride, const int width, + const int height, const int16x4_t* const taps) { + const int num_taps = GetNumTapsInFilter(filter_index); + const int next_row = num_taps - 1; + const uint16x4_t v_max_bitdepth = vdup_n_u16((1 << kBitdepth10) - 1); + auto* const dst16 = static_cast<uint16_t*>(dst); + assert(width >= 8); + + int x = 0; + do { + const uint16_t* src_x = src + x; + uint16x8_t srcs[8]; + srcs[0] = vld1q_u16(src_x); + src_x += src_stride; + if (num_taps >= 4) { + srcs[1] = vld1q_u16(src_x); + src_x += src_stride; + srcs[2] = vld1q_u16(src_x); + src_x += src_stride; + if (num_taps >= 6) { + srcs[3] = vld1q_u16(src_x); + src_x += src_stride; + srcs[4] = vld1q_u16(src_x); + src_x += src_stride; + if (num_taps == 8) { + srcs[5] = vld1q_u16(src_x); + src_x += src_stride; + srcs[6] = vld1q_u16(src_x); + src_x += src_stride; + } + } + } + + // Decreasing the y loop counter produces worse code with clang. + // Don't unroll this loop since it generates too much code and the decoder + // is even slower. + int y = 0; + do { + srcs[next_row] = vld1q_u16(src_x); + src_x += src_stride; + + const int32x4x2_t v_sum = SumOnePassTaps<filter_index>(srcs, taps); + if (is_compound) { + const int16x4_t v_compound_offset = vdup_n_s16(kCompoundOffset); + const int16x4_t d0 = + vqrshrn_n_s32(v_sum.val[0], kInterRoundBitsHorizontal - 1); + const int16x4_t d1 = + vqrshrn_n_s32(v_sum.val[1], kInterRoundBitsHorizontal - 1); + vst1_u16(dst16 + x + y * dst_stride, + vreinterpret_u16_s16(vadd_s16(d0, v_compound_offset))); + vst1_u16(dst16 + x + 4 + y * dst_stride, + vreinterpret_u16_s16(vadd_s16(d1, v_compound_offset))); + } else { + const uint16x4_t d0 = vmin_u16( + vqrshrun_n_s32(v_sum.val[0], kFilterBits - 1), v_max_bitdepth); + const uint16x4_t d1 = vmin_u16( + vqrshrun_n_s32(v_sum.val[1], kFilterBits - 1), v_max_bitdepth); + vst1_u16(dst16 + x + y * dst_stride, d0); + vst1_u16(dst16 + x + 4 + y * dst_stride, d1); + } + + srcs[0] = srcs[1]; + if (num_taps >= 4) { + srcs[1] = srcs[2]; + srcs[2] = srcs[3]; + if (num_taps >= 6) { + srcs[3] = srcs[4]; + srcs[4] = srcs[5]; + if (num_taps == 8) { + srcs[5] = srcs[6]; + srcs[6] = srcs[7]; + } + } + } + } while (++y < height); + x += 8; + } while (x < width); +} + +template <int filter_index, bool is_compound = false> +void FilterVertical4xH(const uint16_t* LIBGAV1_RESTRICT src, + const ptrdiff_t src_stride, + void* LIBGAV1_RESTRICT const dst, + const ptrdiff_t dst_stride, const int height, + const int16x4_t* const taps) { + const int num_taps = GetNumTapsInFilter(filter_index); + const int next_row = num_taps - 1; + const uint16x4_t v_max_bitdepth = vdup_n_u16((1 << kBitdepth10) - 1); + auto* dst16 = static_cast<uint16_t*>(dst); + + uint16x4_t srcs[9]; + srcs[0] = vld1_u16(src); + src += src_stride; + if (num_taps >= 4) { + srcs[1] = vld1_u16(src); + src += src_stride; + srcs[2] = vld1_u16(src); + src += src_stride; + if (num_taps >= 6) { + srcs[3] = vld1_u16(src); + src += src_stride; + srcs[4] = vld1_u16(src); + src += src_stride; + if (num_taps == 8) { + srcs[5] = vld1_u16(src); + src += src_stride; + srcs[6] = vld1_u16(src); + src += src_stride; + } + } + } + + int y = height; + do { + srcs[next_row] = vld1_u16(src); + src += src_stride; + srcs[num_taps] = vld1_u16(src); + src += src_stride; + + const int32x4_t v_sum = SumOnePassTaps<filter_index>(srcs, taps); + const int32x4_t v_sum_1 = SumOnePassTaps<filter_index>(srcs + 1, taps); + if (is_compound) { + const int16x4_t d0 = vqrshrn_n_s32(v_sum, kInterRoundBitsHorizontal - 1); + const int16x4_t d1 = + vqrshrn_n_s32(v_sum_1, kInterRoundBitsHorizontal - 1); + vst1_u16(dst16, + vreinterpret_u16_s16(vadd_s16(d0, vdup_n_s16(kCompoundOffset)))); + dst16 += dst_stride; + vst1_u16(dst16, + vreinterpret_u16_s16(vadd_s16(d1, vdup_n_s16(kCompoundOffset)))); + dst16 += dst_stride; + } else { + const uint16x4_t d0 = + vmin_u16(vqrshrun_n_s32(v_sum, kFilterBits - 1), v_max_bitdepth); + const uint16x4_t d1 = + vmin_u16(vqrshrun_n_s32(v_sum_1, kFilterBits - 1), v_max_bitdepth); + vst1_u16(dst16, d0); + dst16 += dst_stride; + vst1_u16(dst16, d1); + dst16 += dst_stride; + } + + srcs[0] = srcs[2]; + if (num_taps >= 4) { + srcs[1] = srcs[3]; + srcs[2] = srcs[4]; + if (num_taps >= 6) { + srcs[3] = srcs[5]; + srcs[4] = srcs[6]; + if (num_taps == 8) { + srcs[5] = srcs[7]; + srcs[6] = srcs[8]; + } + } + } + y -= 2; + } while (y != 0); +} + +template <int filter_index> +void FilterVertical2xH(const uint16_t* LIBGAV1_RESTRICT src, + const ptrdiff_t src_stride, + void* LIBGAV1_RESTRICT const dst, + const ptrdiff_t dst_stride, const int height, + const int16x4_t* const taps) { + const int num_taps = GetNumTapsInFilter(filter_index); + const int next_row = num_taps - 1; + const uint16x4_t v_max_bitdepth = vdup_n_u16((1 << kBitdepth10) - 1); + auto* dst16 = static_cast<uint16_t*>(dst); + const uint16x4_t v_zero = vdup_n_u16(0); + + uint16x4_t srcs[9]; + srcs[0] = Load2<0>(src, v_zero); + src += src_stride; + if (num_taps >= 4) { + srcs[0] = Load2<1>(src, srcs[0]); + src += src_stride; + srcs[2] = Load2<0>(src, v_zero); + src += src_stride; + srcs[1] = vext_u16(srcs[0], srcs[2], 2); + if (num_taps >= 6) { + srcs[2] = Load2<1>(src, srcs[2]); + src += src_stride; + srcs[4] = Load2<0>(src, v_zero); + src += src_stride; + srcs[3] = vext_u16(srcs[2], srcs[4], 2); + if (num_taps == 8) { + srcs[4] = Load2<1>(src, srcs[4]); + src += src_stride; + srcs[6] = Load2<0>(src, v_zero); + src += src_stride; + srcs[5] = vext_u16(srcs[4], srcs[6], 2); + } + } + } + + int y = height; + do { + srcs[next_row - 1] = Load2<1>(src, srcs[next_row - 1]); + src += src_stride; + srcs[num_taps] = Load2<0>(src, v_zero); + src += src_stride; + srcs[next_row] = vext_u16(srcs[next_row - 1], srcs[num_taps], 2); + + const int32x4_t v_sum = SumOnePassTaps<filter_index>(srcs, taps); + const uint16x4_t d0 = + vmin_u16(vqrshrun_n_s32(v_sum, kFilterBits - 1), v_max_bitdepth); + Store2<0>(dst16, d0); + dst16 += dst_stride; + Store2<1>(dst16, d0); + dst16 += dst_stride; + + srcs[0] = srcs[2]; + if (num_taps >= 4) { + srcs[1] = srcs[3]; + srcs[2] = srcs[4]; + if (num_taps >= 6) { + srcs[3] = srcs[5]; + srcs[4] = srcs[6]; + if (num_taps == 8) { + srcs[5] = srcs[7]; + srcs[6] = srcs[8]; + } + } + } + y -= 2; + } while (y != 0); +} + +template <int num_taps, bool is_compound> +int16x8_t SimpleSum2DVerticalTaps(const int16x8_t* const src, + const int16x8_t taps) { + const int16x4_t taps_lo = vget_low_s16(taps); + const int16x4_t taps_hi = vget_high_s16(taps); + int32x4_t sum_lo, sum_hi; + if (num_taps == 8) { + sum_lo = vmull_lane_s16(vget_low_s16(src[0]), taps_lo, 0); + sum_hi = vmull_lane_s16(vget_high_s16(src[0]), taps_lo, 0); + sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[1]), taps_lo, 1); + sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[1]), taps_lo, 1); + sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[2]), taps_lo, 2); + sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[2]), taps_lo, 2); + sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[3]), taps_lo, 3); + sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[3]), taps_lo, 3); + + sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[4]), taps_hi, 0); + sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[4]), taps_hi, 0); + sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[5]), taps_hi, 1); + sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[5]), taps_hi, 1); + sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[6]), taps_hi, 2); + sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[6]), taps_hi, 2); + sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[7]), taps_hi, 3); + sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[7]), taps_hi, 3); + } else if (num_taps == 6) { + sum_lo = vmull_lane_s16(vget_low_s16(src[0]), taps_lo, 1); + sum_hi = vmull_lane_s16(vget_high_s16(src[0]), taps_lo, 1); + sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[1]), taps_lo, 2); + sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[1]), taps_lo, 2); + sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[2]), taps_lo, 3); + sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[2]), taps_lo, 3); + + sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[3]), taps_hi, 0); + sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[3]), taps_hi, 0); + sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[4]), taps_hi, 1); + sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[4]), taps_hi, 1); + sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[5]), taps_hi, 2); + sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[5]), taps_hi, 2); + } else if (num_taps == 4) { + sum_lo = vmull_lane_s16(vget_low_s16(src[0]), taps_lo, 2); + sum_hi = vmull_lane_s16(vget_high_s16(src[0]), taps_lo, 2); + sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[1]), taps_lo, 3); + sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[1]), taps_lo, 3); + + sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[2]), taps_hi, 0); + sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[2]), taps_hi, 0); + sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[3]), taps_hi, 1); + sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[3]), taps_hi, 1); + } else if (num_taps == 2) { + sum_lo = vmull_lane_s16(vget_low_s16(src[0]), taps_lo, 3); + sum_hi = vmull_lane_s16(vget_high_s16(src[0]), taps_lo, 3); + + sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[1]), taps_hi, 0); + sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[1]), taps_hi, 0); + } + + if (is_compound) { + // Output is compound, so leave signed and do not saturate. Offset will + // accurately bring the value back into positive range. + return vcombine_s16( + vrshrn_n_s32(sum_lo, kInterRoundBitsCompoundVertical - 1), + vrshrn_n_s32(sum_hi, kInterRoundBitsCompoundVertical - 1)); + } + + // Output is pixel, so saturate to clip at 0. + return vreinterpretq_s16_u16( + vcombine_u16(vqrshrun_n_s32(sum_lo, kInterRoundBitsVertical - 1), + vqrshrun_n_s32(sum_hi, kInterRoundBitsVertical - 1))); +} + +template <int num_taps, bool is_compound = false> +void Filter2DVerticalWidth8AndUp(const int16_t* LIBGAV1_RESTRICT src, + void* LIBGAV1_RESTRICT const dst, + const ptrdiff_t dst_stride, const int width, + const int height, const int16x8_t taps) { + assert(width >= 8); + constexpr int next_row = num_taps - 1; + const uint16x8_t v_max_bitdepth = vdupq_n_u16((1 << kBitdepth10) - 1); + auto* const dst16 = static_cast<uint16_t*>(dst); + + int x = 0; + do { + int16x8_t srcs[9]; + srcs[0] = vld1q_s16(src); + src += 8; + if (num_taps >= 4) { + srcs[1] = vld1q_s16(src); + src += 8; + srcs[2] = vld1q_s16(src); + src += 8; + if (num_taps >= 6) { + srcs[3] = vld1q_s16(src); + src += 8; + srcs[4] = vld1q_s16(src); + src += 8; + if (num_taps == 8) { + srcs[5] = vld1q_s16(src); + src += 8; + srcs[6] = vld1q_s16(src); + src += 8; + } + } + } + + uint16_t* d16 = dst16 + x; + int y = height; + do { + srcs[next_row] = vld1q_s16(src); + src += 8; + srcs[next_row + 1] = vld1q_s16(src); + src += 8; + const int16x8_t sum0 = + SimpleSum2DVerticalTaps<num_taps, is_compound>(srcs + 0, taps); + const int16x8_t sum1 = + SimpleSum2DVerticalTaps<num_taps, is_compound>(srcs + 1, taps); + if (is_compound) { + const int16x8_t v_compound_offset = vdupq_n_s16(kCompoundOffset); + vst1q_u16(d16, + vreinterpretq_u16_s16(vaddq_s16(sum0, v_compound_offset))); + d16 += dst_stride; + vst1q_u16(d16, + vreinterpretq_u16_s16(vaddq_s16(sum1, v_compound_offset))); + d16 += dst_stride; + } else { + vst1q_u16(d16, vminq_u16(vreinterpretq_u16_s16(sum0), v_max_bitdepth)); + d16 += dst_stride; + vst1q_u16(d16, vminq_u16(vreinterpretq_u16_s16(sum1), v_max_bitdepth)); + d16 += dst_stride; + } + srcs[0] = srcs[2]; + if (num_taps >= 4) { + srcs[1] = srcs[3]; + srcs[2] = srcs[4]; + if (num_taps >= 6) { + srcs[3] = srcs[5]; + srcs[4] = srcs[6]; + if (num_taps == 8) { + srcs[5] = srcs[7]; + srcs[6] = srcs[8]; + } + } + } + y -= 2; + } while (y != 0); + x += 8; + } while (x < width); +} + +// Take advantage of |src_stride| == |width| to process two rows at a time. +template <int num_taps, bool is_compound = false> +void Filter2DVerticalWidth4(const int16_t* LIBGAV1_RESTRICT src, + void* LIBGAV1_RESTRICT const dst, + const ptrdiff_t dst_stride, const int height, + const int16x8_t taps) { + const uint16x8_t v_max_bitdepth = vdupq_n_u16((1 << kBitdepth10) - 1); + auto* dst16 = static_cast<uint16_t*>(dst); + + int16x8_t srcs[9]; + srcs[0] = vld1q_s16(src); + src += 8; + if (num_taps >= 4) { + srcs[2] = vld1q_s16(src); + src += 8; + srcs[1] = vcombine_s16(vget_high_s16(srcs[0]), vget_low_s16(srcs[2])); + if (num_taps >= 6) { + srcs[4] = vld1q_s16(src); + src += 8; + srcs[3] = vcombine_s16(vget_high_s16(srcs[2]), vget_low_s16(srcs[4])); + if (num_taps == 8) { + srcs[6] = vld1q_s16(src); + src += 8; + srcs[5] = vcombine_s16(vget_high_s16(srcs[4]), vget_low_s16(srcs[6])); + } + } + } + + int y = height; + do { + srcs[num_taps] = vld1q_s16(src); + src += 8; + srcs[num_taps - 1] = vcombine_s16(vget_high_s16(srcs[num_taps - 2]), + vget_low_s16(srcs[num_taps])); + + const int16x8_t sum = + SimpleSum2DVerticalTaps<num_taps, is_compound>(srcs, taps); + if (is_compound) { + const int16x8_t v_compound_offset = vdupq_n_s16(kCompoundOffset); + vst1q_u16(dst16, + vreinterpretq_u16_s16(vaddq_s16(sum, v_compound_offset))); + dst16 += 4 << 1; + } else { + const uint16x8_t d0 = + vminq_u16(vreinterpretq_u16_s16(sum), v_max_bitdepth); + vst1_u16(dst16, vget_low_u16(d0)); + dst16 += dst_stride; + vst1_u16(dst16, vget_high_u16(d0)); + dst16 += dst_stride; + } + + srcs[0] = srcs[2]; + if (num_taps >= 4) { + srcs[1] = srcs[3]; + srcs[2] = srcs[4]; + if (num_taps >= 6) { + srcs[3] = srcs[5]; + srcs[4] = srcs[6]; + if (num_taps == 8) { + srcs[5] = srcs[7]; + srcs[6] = srcs[8]; + } + } + } + y -= 2; + } while (y != 0); +} + +// Take advantage of |src_stride| == |width| to process four rows at a time. +template <int num_taps> +void Filter2DVerticalWidth2(const int16_t* LIBGAV1_RESTRICT src, + void* LIBGAV1_RESTRICT const dst, + const ptrdiff_t dst_stride, const int height, + const int16x8_t taps) { + constexpr int next_row = (num_taps < 6) ? 4 : 8; + const uint16x8_t v_max_bitdepth = vdupq_n_u16((1 << kBitdepth10) - 1); + auto* dst16 = static_cast<uint16_t*>(dst); + + int16x8_t srcs[9]; + srcs[0] = vld1q_s16(src); + src += 8; + if (num_taps >= 6) { + srcs[4] = vld1q_s16(src); + src += 8; + srcs[1] = vextq_s16(srcs[0], srcs[4], 2); + if (num_taps == 8) { + srcs[2] = vcombine_s16(vget_high_s16(srcs[0]), vget_low_s16(srcs[4])); + srcs[3] = vextq_s16(srcs[0], srcs[4], 6); + } + } + + int y = height; + do { + srcs[next_row] = vld1q_s16(src); + src += 8; + if (num_taps == 2) { + srcs[1] = vextq_s16(srcs[0], srcs[4], 2); + } else if (num_taps == 4) { + srcs[1] = vextq_s16(srcs[0], srcs[4], 2); + srcs[2] = vcombine_s16(vget_high_s16(srcs[0]), vget_low_s16(srcs[4])); + srcs[3] = vextq_s16(srcs[0], srcs[4], 6); + } else if (num_taps == 6) { + srcs[2] = vcombine_s16(vget_high_s16(srcs[0]), vget_low_s16(srcs[4])); + srcs[3] = vextq_s16(srcs[0], srcs[4], 6); + srcs[5] = vextq_s16(srcs[4], srcs[8], 2); + } else if (num_taps == 8) { + srcs[5] = vextq_s16(srcs[4], srcs[8], 2); + srcs[6] = vcombine_s16(vget_high_s16(srcs[4]), vget_low_s16(srcs[8])); + srcs[7] = vextq_s16(srcs[4], srcs[8], 6); + } + const int16x8_t sum = + SimpleSum2DVerticalTaps<num_taps, /*is_compound=*/false>(srcs, taps); + const uint16x8_t d0 = vminq_u16(vreinterpretq_u16_s16(sum), v_max_bitdepth); + Store2<0>(dst16, d0); + dst16 += dst_stride; + Store2<1>(dst16, d0); + // When |height| <= 4 the taps are restricted to 2 and 4 tap variants. + // Therefore we don't need to check this condition when |height| > 4. + if (num_taps <= 4 && height == 2) return; + dst16 += dst_stride; + Store2<2>(dst16, d0); + dst16 += dst_stride; + Store2<3>(dst16, d0); + dst16 += dst_stride; + + srcs[0] = srcs[4]; + if (num_taps == 6) { + srcs[1] = srcs[5]; + srcs[4] = srcs[8]; + } else if (num_taps == 8) { + srcs[1] = srcs[5]; + srcs[2] = srcs[6]; + srcs[3] = srcs[7]; + srcs[4] = srcs[8]; + } + + y -= 4; + } while (y != 0); +} + +template <int vertical_taps> +void Filter2DVertical(const int16_t* LIBGAV1_RESTRICT const intermediate_result, + const int width, const int height, const int16x8_t taps, + void* LIBGAV1_RESTRICT const prediction, + const ptrdiff_t pred_stride) { + auto* const dest = static_cast<uint16_t*>(prediction); + if (width >= 8) { + Filter2DVerticalWidth8AndUp<vertical_taps>( + intermediate_result, dest, pred_stride, width, height, taps); + } else if (width == 4) { + Filter2DVerticalWidth4<vertical_taps>(intermediate_result, dest, + pred_stride, height, taps); + } else { + assert(width == 2); + Filter2DVerticalWidth2<vertical_taps>(intermediate_result, dest, + pred_stride, height, taps); + } +} + +void Convolve2D_NEON(const void* LIBGAV1_RESTRICT const reference, + const ptrdiff_t reference_stride, + const int horizontal_filter_index, + const int vertical_filter_index, + const int horizontal_filter_id, + const int vertical_filter_id, const int width, + const int height, void* LIBGAV1_RESTRICT const prediction, + const ptrdiff_t pred_stride) { + const int horiz_filter_index = GetFilterIndex(horizontal_filter_index, width); + const int vert_filter_index = GetFilterIndex(vertical_filter_index, height); + const int vertical_taps = GetNumTapsInFilter(vert_filter_index); + // The output of the horizontal filter is guaranteed to fit in 16 bits. + int16_t intermediate_result[kMaxSuperBlockSizeInPixels * + (kMaxSuperBlockSizeInPixels + kSubPixelTaps - 1)]; +#if LIBGAV1_MSAN + // Quiet msan warnings. Set with random non-zero value to aid in debugging. + memset(intermediate_result, 0x43, sizeof(intermediate_result)); +#endif + const int intermediate_height = height + vertical_taps - 1; + const ptrdiff_t src_stride = reference_stride >> 1; + const auto* const src = static_cast<const uint16_t*>(reference) - + (vertical_taps / 2 - 1) * src_stride - + kHorizontalOffset; + const ptrdiff_t dest_stride = pred_stride >> 1; + + DoHorizontalPass</*is_compound=*/false, /*is_2d=*/true>( + src, src_stride, intermediate_result, width, width, intermediate_height, + horizontal_filter_id, horiz_filter_index); + + assert(vertical_filter_id != 0); + const int16x8_t taps = vmovl_s8( + vld1_s8(kHalfSubPixelFilters[vert_filter_index][vertical_filter_id])); + if (vertical_taps == 8) { + Filter2DVertical<8>(intermediate_result, width, height, taps, prediction, + dest_stride); + } else if (vertical_taps == 6) { + Filter2DVertical<6>(intermediate_result, width, height, taps, prediction, + dest_stride); + } else if (vertical_taps == 4) { + Filter2DVertical<4>(intermediate_result, width, height, taps, prediction, + dest_stride); + } else { // |vertical_taps| == 2 + Filter2DVertical<2>(intermediate_result, width, height, taps, prediction, + dest_stride); + } +} + +template <int vertical_taps> +void Compound2DVertical( + const int16_t* LIBGAV1_RESTRICT const intermediate_result, const int width, + const int height, const int16x8_t taps, + void* LIBGAV1_RESTRICT const prediction) { + auto* const dest = static_cast<uint16_t*>(prediction); + if (width == 4) { + Filter2DVerticalWidth4<vertical_taps, /*is_compound=*/true>( + intermediate_result, dest, width, height, taps); + } else { + Filter2DVerticalWidth8AndUp<vertical_taps, /*is_compound=*/true>( + intermediate_result, dest, width, width, height, taps); + } +} + +void ConvolveCompound2D_NEON( + const void* LIBGAV1_RESTRICT const reference, + const ptrdiff_t reference_stride, const int horizontal_filter_index, + const int vertical_filter_index, const int horizontal_filter_id, + const int vertical_filter_id, const int width, const int height, + void* LIBGAV1_RESTRICT const prediction, const ptrdiff_t /*pred_stride*/) { + // The output of the horizontal filter, i.e. the intermediate_result, is + // guaranteed to fit in int16_t. + int16_t + intermediate_result[(kMaxSuperBlockSizeInPixels * + (kMaxSuperBlockSizeInPixels + kSubPixelTaps - 1))]; + + // Horizontal filter. + // Filter types used for width <= 4 are different from those for width > 4. + // When width > 4, the valid filter index range is always [0, 3]. + // When width <= 4, the valid filter index range is always [4, 5]. + // Similarly for height. + const int horiz_filter_index = GetFilterIndex(horizontal_filter_index, width); + const int vert_filter_index = GetFilterIndex(vertical_filter_index, height); + const int vertical_taps = GetNumTapsInFilter(vert_filter_index); + const int intermediate_height = height + vertical_taps - 1; + const ptrdiff_t src_stride = reference_stride >> 1; + const auto* const src = static_cast<const uint16_t*>(reference) - + (vertical_taps / 2 - 1) * src_stride - + kHorizontalOffset; + + DoHorizontalPass</*is_2d=*/true, /*is_compound=*/true>( + src, src_stride, intermediate_result, width, width, intermediate_height, + horizontal_filter_id, horiz_filter_index); + + // Vertical filter. + assert(vertical_filter_id != 0); + const int16x8_t taps = vmovl_s8( + vld1_s8(kHalfSubPixelFilters[vert_filter_index][vertical_filter_id])); + if (vertical_taps == 8) { + Compound2DVertical<8>(intermediate_result, width, height, taps, prediction); + } else if (vertical_taps == 6) { + Compound2DVertical<6>(intermediate_result, width, height, taps, prediction); + } else if (vertical_taps == 4) { + Compound2DVertical<4>(intermediate_result, width, height, taps, prediction); + } else { // |vertical_taps| == 2 + Compound2DVertical<2>(intermediate_result, width, height, taps, prediction); + } +} + +void ConvolveVertical_NEON( + const void* LIBGAV1_RESTRICT const reference, + const ptrdiff_t reference_stride, const int /*horizontal_filter_index*/, + const int vertical_filter_index, const int /*horizontal_filter_id*/, + const int vertical_filter_id, const int width, const int height, + void* LIBGAV1_RESTRICT const prediction, const ptrdiff_t pred_stride) { + const int filter_index = GetFilterIndex(vertical_filter_index, height); + const int vertical_taps = GetNumTapsInFilter(filter_index); + const ptrdiff_t src_stride = reference_stride >> 1; + const auto* src = static_cast<const uint16_t*>(reference) - + (vertical_taps / 2 - 1) * src_stride; + auto* const dest = static_cast<uint16_t*>(prediction); + const ptrdiff_t dest_stride = pred_stride >> 1; + assert(vertical_filter_id != 0); + + int16x4_t taps[8]; + for (int k = 0; k < kSubPixelTaps; ++k) { + taps[k] = + vdup_n_s16(kHalfSubPixelFilters[filter_index][vertical_filter_id][k]); + } + + if (filter_index == 0) { // 6 tap. + if (width == 2) { + FilterVertical2xH<0>(src, src_stride, dest, dest_stride, height, + taps + 1); + } else if (width == 4) { + FilterVertical4xH<0>(src, src_stride, dest, dest_stride, height, + taps + 1); + } else { + FilterVertical<0>(src, src_stride, dest, dest_stride, width, height, + taps + 1); + } + } else if ((static_cast<int>(filter_index == 1) & + (static_cast<int>(vertical_filter_id == 1) | + static_cast<int>(vertical_filter_id == 7) | + static_cast<int>(vertical_filter_id == 8) | + static_cast<int>(vertical_filter_id == 9) | + static_cast<int>(vertical_filter_id == 15))) != 0) { // 6 tap. + if (width == 2) { + FilterVertical2xH<1>(src, src_stride, dest, dest_stride, height, + taps + 1); + } else if (width == 4) { + FilterVertical4xH<1>(src, src_stride, dest, dest_stride, height, + taps + 1); + } else { + FilterVertical<1>(src, src_stride, dest, dest_stride, width, height, + taps + 1); + } + } else if (filter_index == 2) { // 8 tap. + if (width == 2) { + FilterVertical2xH<2>(src, src_stride, dest, dest_stride, height, taps); + } else if (width == 4) { + FilterVertical4xH<2>(src, src_stride, dest, dest_stride, height, taps); + } else { + FilterVertical<2>(src, src_stride, dest, dest_stride, width, height, + taps); + } + } else if (filter_index == 3) { // 2 tap. + if (width == 2) { + FilterVertical2xH<3>(src, src_stride, dest, dest_stride, height, + taps + 3); + } else if (width == 4) { + FilterVertical4xH<3>(src, src_stride, dest, dest_stride, height, + taps + 3); + } else { + FilterVertical<3>(src, src_stride, dest, dest_stride, width, height, + taps + 3); + } + } else { + // 4 tap. When |filter_index| == 1 the |vertical_filter_id| values listed + // below map to 4 tap filters. + assert(filter_index == 5 || filter_index == 4 || + (filter_index == 1 && + (vertical_filter_id == 0 || vertical_filter_id == 2 || + vertical_filter_id == 3 || vertical_filter_id == 4 || + vertical_filter_id == 5 || vertical_filter_id == 6 || + vertical_filter_id == 10 || vertical_filter_id == 11 || + vertical_filter_id == 12 || vertical_filter_id == 13 || + vertical_filter_id == 14))); + // According to GetNumTapsInFilter() this has 6 taps but here we are + // treating it as though it has 4. + if (filter_index == 1) src += src_stride; + if (width == 2) { + FilterVertical2xH<5>(src, src_stride, dest, dest_stride, height, + taps + 2); + } else if (width == 4) { + FilterVertical4xH<5>(src, src_stride, dest, dest_stride, height, + taps + 2); + } else { + FilterVertical<5>(src, src_stride, dest, dest_stride, width, height, + taps + 2); + } + } +} + +void ConvolveCompoundVertical_NEON( + const void* LIBGAV1_RESTRICT const reference, + const ptrdiff_t reference_stride, const int /*horizontal_filter_index*/, + const int vertical_filter_index, const int /*horizontal_filter_id*/, + const int vertical_filter_id, const int width, const int height, + void* LIBGAV1_RESTRICT const prediction, const ptrdiff_t /*pred_stride*/) { + const int filter_index = GetFilterIndex(vertical_filter_index, height); + const int vertical_taps = GetNumTapsInFilter(filter_index); + const ptrdiff_t src_stride = reference_stride >> 1; + const auto* src = static_cast<const uint16_t*>(reference) - + (vertical_taps / 2 - 1) * src_stride; + auto* const dest = static_cast<uint16_t*>(prediction); + assert(vertical_filter_id != 0); + + int16x4_t taps[8]; + for (int k = 0; k < kSubPixelTaps; ++k) { + taps[k] = + vdup_n_s16(kHalfSubPixelFilters[filter_index][vertical_filter_id][k]); + } + + if (filter_index == 0) { // 6 tap. + if (width == 4) { + FilterVertical4xH<0, /*is_compound=*/true>(src, src_stride, dest, 4, + height, taps + 1); + } else { + FilterVertical<0, /*is_compound=*/true>(src, src_stride, dest, width, + width, height, taps + 1); + } + } else if ((static_cast<int>(filter_index == 1) & + (static_cast<int>(vertical_filter_id == 1) | + static_cast<int>(vertical_filter_id == 7) | + static_cast<int>(vertical_filter_id == 8) | + static_cast<int>(vertical_filter_id == 9) | + static_cast<int>(vertical_filter_id == 15))) != 0) { // 6 tap. + if (width == 4) { + FilterVertical4xH<1, /*is_compound=*/true>(src, src_stride, dest, 4, + height, taps + 1); + } else { + FilterVertical<1, /*is_compound=*/true>(src, src_stride, dest, width, + width, height, taps + 1); + } + } else if (filter_index == 2) { // 8 tap. + if (width == 4) { + FilterVertical4xH<2, /*is_compound=*/true>(src, src_stride, dest, 4, + height, taps); + } else { + FilterVertical<2, /*is_compound=*/true>(src, src_stride, dest, width, + width, height, taps); + } + } else if (filter_index == 3) { // 2 tap. + if (width == 4) { + FilterVertical4xH<3, /*is_compound=*/true>(src, src_stride, dest, 4, + height, taps + 3); + } else { + FilterVertical<3, /*is_compound=*/true>(src, src_stride, dest, width, + width, height, taps + 3); + } + } else { + // 4 tap. When |filter_index| == 1 the |filter_id| values listed below map + // to 4 tap filters. + assert(filter_index == 5 || filter_index == 4 || + (filter_index == 1 && + (vertical_filter_id == 2 || vertical_filter_id == 3 || + vertical_filter_id == 4 || vertical_filter_id == 5 || + vertical_filter_id == 6 || vertical_filter_id == 10 || + vertical_filter_id == 11 || vertical_filter_id == 12 || + vertical_filter_id == 13 || vertical_filter_id == 14))); + // According to GetNumTapsInFilter() this has 6 taps but here we are + // treating it as though it has 4. + if (filter_index == 1) src += src_stride; + if (width == 4) { + FilterVertical4xH<5, /*is_compound=*/true>(src, src_stride, dest, 4, + height, taps + 2); + } else { + FilterVertical<5, /*is_compound=*/true>(src, src_stride, dest, width, + width, height, taps + 2); + } + } +} + +void ConvolveCompoundCopy_NEON( + const void* const reference, const ptrdiff_t reference_stride, + const int /*horizontal_filter_index*/, const int /*vertical_filter_index*/, + const int /*horizontal_filter_id*/, const int /*vertical_filter_id*/, + const int width, const int height, void* const prediction, + const ptrdiff_t /*pred_stride*/) { + const auto* src = static_cast<const uint16_t*>(reference); + const ptrdiff_t src_stride = reference_stride >> 1; + auto* dest = static_cast<uint16_t*>(prediction); + constexpr int final_shift = + kInterRoundBitsVertical - kInterRoundBitsCompoundVertical; + const uint16x8_t offset = + vdupq_n_u16((1 << kBitdepth10) + (1 << (kBitdepth10 - 1))); + + if (width >= 16) { + int y = height; + do { + int x = 0; + int w = width; + do { + const uint16x8_t v_src_lo = vld1q_u16(&src[x]); + const uint16x8_t v_src_hi = vld1q_u16(&src[x + 8]); + const uint16x8_t v_sum_lo = vaddq_u16(v_src_lo, offset); + const uint16x8_t v_sum_hi = vaddq_u16(v_src_hi, offset); + const uint16x8_t v_dest_lo = vshlq_n_u16(v_sum_lo, final_shift); + const uint16x8_t v_dest_hi = vshlq_n_u16(v_sum_hi, final_shift); + vst1q_u16(&dest[x], v_dest_lo); + vst1q_u16(&dest[x + 8], v_dest_hi); + x += 16; + w -= 16; + } while (w != 0); + src += src_stride; + dest += width; + } while (--y != 0); + } else if (width == 8) { + int y = height; + do { + const uint16x8_t v_src_lo = vld1q_u16(&src[0]); + const uint16x8_t v_src_hi = vld1q_u16(&src[src_stride]); + const uint16x8_t v_sum_lo = vaddq_u16(v_src_lo, offset); + const uint16x8_t v_sum_hi = vaddq_u16(v_src_hi, offset); + const uint16x8_t v_dest_lo = vshlq_n_u16(v_sum_lo, final_shift); + const uint16x8_t v_dest_hi = vshlq_n_u16(v_sum_hi, final_shift); + vst1q_u16(&dest[0], v_dest_lo); + vst1q_u16(&dest[8], v_dest_hi); + src += src_stride << 1; + dest += 16; + y -= 2; + } while (y != 0); + } else { // width == 4 + int y = height; + do { + const uint16x4_t v_src_lo = vld1_u16(&src[0]); + const uint16x4_t v_src_hi = vld1_u16(&src[src_stride]); + const uint16x4_t v_sum_lo = vadd_u16(v_src_lo, vget_low_u16(offset)); + const uint16x4_t v_sum_hi = vadd_u16(v_src_hi, vget_low_u16(offset)); + const uint16x4_t v_dest_lo = vshl_n_u16(v_sum_lo, final_shift); + const uint16x4_t v_dest_hi = vshl_n_u16(v_sum_hi, final_shift); + vst1_u16(&dest[0], v_dest_lo); + vst1_u16(&dest[4], v_dest_hi); + src += src_stride << 1; + dest += 8; + y -= 2; + } while (y != 0); + } +} + +inline void HalfAddHorizontal(const uint16_t* LIBGAV1_RESTRICT const src, + uint16_t* LIBGAV1_RESTRICT const dst) { + const uint16x8_t left = vld1q_u16(src); + const uint16x8_t right = vld1q_u16(src + 1); + vst1q_u16(dst, vrhaddq_u16(left, right)); +} + +inline void HalfAddHorizontal16(const uint16_t* LIBGAV1_RESTRICT const src, + uint16_t* LIBGAV1_RESTRICT const dst) { + HalfAddHorizontal(src, dst); + HalfAddHorizontal(src + 8, dst + 8); +} + +template <int width> +inline void IntraBlockCopyHorizontal(const uint16_t* LIBGAV1_RESTRICT src, + const ptrdiff_t src_stride, + const int height, + uint16_t* LIBGAV1_RESTRICT dst, + const ptrdiff_t dst_stride) { + const ptrdiff_t src_remainder_stride = src_stride - (width - 16); + const ptrdiff_t dst_remainder_stride = dst_stride - (width - 16); + + int y = height; + do { + HalfAddHorizontal16(src, dst); + if (width >= 32) { + src += 16; + dst += 16; + HalfAddHorizontal16(src, dst); + if (width >= 64) { + src += 16; + dst += 16; + HalfAddHorizontal16(src, dst); + src += 16; + dst += 16; + HalfAddHorizontal16(src, dst); + if (width == 128) { + src += 16; + dst += 16; + HalfAddHorizontal16(src, dst); + src += 16; + dst += 16; + HalfAddHorizontal16(src, dst); + src += 16; + dst += 16; + HalfAddHorizontal16(src, dst); + src += 16; + dst += 16; + HalfAddHorizontal16(src, dst); + } + } + } + src += src_remainder_stride; + dst += dst_remainder_stride; + } while (--y != 0); +} + +void ConvolveIntraBlockCopyHorizontal_NEON( + const void* LIBGAV1_RESTRICT const reference, + const ptrdiff_t reference_stride, const int /*horizontal_filter_index*/, + const int /*vertical_filter_index*/, const int /*subpixel_x*/, + const int /*subpixel_y*/, const int width, const int height, + void* LIBGAV1_RESTRICT const prediction, const ptrdiff_t pred_stride) { + assert(width >= 4 && width <= kMaxSuperBlockSizeInPixels); + assert(height >= 4 && height <= kMaxSuperBlockSizeInPixels); + const auto* src = static_cast<const uint16_t*>(reference); + auto* dest = static_cast<uint16_t*>(prediction); + const ptrdiff_t src_stride = reference_stride >> 1; + const ptrdiff_t dst_stride = pred_stride >> 1; + + if (width == 128) { + IntraBlockCopyHorizontal<128>(src, src_stride, height, dest, dst_stride); + } else if (width == 64) { + IntraBlockCopyHorizontal<64>(src, src_stride, height, dest, dst_stride); + } else if (width == 32) { + IntraBlockCopyHorizontal<32>(src, src_stride, height, dest, dst_stride); + } else if (width == 16) { + IntraBlockCopyHorizontal<16>(src, src_stride, height, dest, dst_stride); + } else if (width == 8) { + int y = height; + do { + HalfAddHorizontal(src, dest); + src += src_stride; + dest += dst_stride; + } while (--y != 0); + } else { // width == 4 + int y = height; + do { + uint16x4x2_t left; + uint16x4x2_t right; + left.val[0] = vld1_u16(src); + right.val[0] = vld1_u16(src + 1); + src += src_stride; + left.val[1] = vld1_u16(src); + right.val[1] = vld1_u16(src + 1); + src += src_stride; + + vst1_u16(dest, vrhadd_u16(left.val[0], right.val[0])); + dest += dst_stride; + vst1_u16(dest, vrhadd_u16(left.val[1], right.val[1])); + dest += dst_stride; + y -= 2; + } while (y != 0); + } +} + +template <int width> +inline void IntraBlockCopyVertical(const uint16_t* LIBGAV1_RESTRICT src, + const ptrdiff_t src_stride, const int height, + uint16_t* LIBGAV1_RESTRICT dst, + const ptrdiff_t dst_stride) { + const ptrdiff_t src_remainder_stride = src_stride - (width - 8); + const ptrdiff_t dst_remainder_stride = dst_stride - (width - 8); + uint16x8_t row[8], below[8]; + + row[0] = vld1q_u16(src); + if (width >= 16) { + src += 8; + row[1] = vld1q_u16(src); + if (width >= 32) { + src += 8; + row[2] = vld1q_u16(src); + src += 8; + row[3] = vld1q_u16(src); + if (width == 64) { + src += 8; + row[4] = vld1q_u16(src); + src += 8; + row[5] = vld1q_u16(src); + src += 8; + row[6] = vld1q_u16(src); + src += 8; + row[7] = vld1q_u16(src); + } + } + } + src += src_remainder_stride; + + int y = height; + do { + below[0] = vld1q_u16(src); + if (width >= 16) { + src += 8; + below[1] = vld1q_u16(src); + if (width >= 32) { + src += 8; + below[2] = vld1q_u16(src); + src += 8; + below[3] = vld1q_u16(src); + if (width == 64) { + src += 8; + below[4] = vld1q_u16(src); + src += 8; + below[5] = vld1q_u16(src); + src += 8; + below[6] = vld1q_u16(src); + src += 8; + below[7] = vld1q_u16(src); + } + } + } + src += src_remainder_stride; + + vst1q_u16(dst, vrhaddq_u16(row[0], below[0])); + row[0] = below[0]; + if (width >= 16) { + dst += 8; + vst1q_u16(dst, vrhaddq_u16(row[1], below[1])); + row[1] = below[1]; + if (width >= 32) { + dst += 8; + vst1q_u16(dst, vrhaddq_u16(row[2], below[2])); + row[2] = below[2]; + dst += 8; + vst1q_u16(dst, vrhaddq_u16(row[3], below[3])); + row[3] = below[3]; + if (width >= 64) { + dst += 8; + vst1q_u16(dst, vrhaddq_u16(row[4], below[4])); + row[4] = below[4]; + dst += 8; + vst1q_u16(dst, vrhaddq_u16(row[5], below[5])); + row[5] = below[5]; + dst += 8; + vst1q_u16(dst, vrhaddq_u16(row[6], below[6])); + row[6] = below[6]; + dst += 8; + vst1q_u16(dst, vrhaddq_u16(row[7], below[7])); + row[7] = below[7]; + } + } + } + dst += dst_remainder_stride; + } while (--y != 0); +} + +void ConvolveIntraBlockCopyVertical_NEON( + const void* LIBGAV1_RESTRICT const reference, + const ptrdiff_t reference_stride, const int /*horizontal_filter_index*/, + const int /*vertical_filter_index*/, const int /*horizontal_filter_id*/, + const int /*vertical_filter_id*/, const int width, const int height, + void* LIBGAV1_RESTRICT const prediction, const ptrdiff_t pred_stride) { + assert(width >= 4 && width <= kMaxSuperBlockSizeInPixels); + assert(height >= 4 && height <= kMaxSuperBlockSizeInPixels); + const auto* src = static_cast<const uint16_t*>(reference); + auto* dest = static_cast<uint16_t*>(prediction); + const ptrdiff_t src_stride = reference_stride >> 1; + const ptrdiff_t dst_stride = pred_stride >> 1; + + if (width == 128) { + // Due to register pressure, process two 64xH. + for (int i = 0; i < 2; ++i) { + IntraBlockCopyVertical<64>(src, src_stride, height, dest, dst_stride); + src += 64; + dest += 64; + } + } else if (width == 64) { + IntraBlockCopyVertical<64>(src, src_stride, height, dest, dst_stride); + } else if (width == 32) { + IntraBlockCopyVertical<32>(src, src_stride, height, dest, dst_stride); + } else if (width == 16) { + IntraBlockCopyVertical<16>(src, src_stride, height, dest, dst_stride); + } else if (width == 8) { + IntraBlockCopyVertical<8>(src, src_stride, height, dest, dst_stride); + } else { // width == 4 + uint16x4_t row = vld1_u16(src); + src += src_stride; + int y = height; + do { + const uint16x4_t below = vld1_u16(src); + src += src_stride; + vst1_u16(dest, vrhadd_u16(row, below)); + dest += dst_stride; + row = below; + } while (--y != 0); + } +} + +template <int width> +inline void IntraBlockCopy2D(const uint16_t* LIBGAV1_RESTRICT src, + const ptrdiff_t src_stride, const int height, + uint16_t* LIBGAV1_RESTRICT dst, + const ptrdiff_t dst_stride) { + const ptrdiff_t src_remainder_stride = src_stride - (width - 8); + const ptrdiff_t dst_remainder_stride = dst_stride - (width - 8); + uint16x8_t row[16]; + row[0] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + if (width >= 16) { + src += 8; + row[1] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + if (width >= 32) { + src += 8; + row[2] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + src += 8; + row[3] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + if (width >= 64) { + src += 8; + row[4] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + src += 8; + row[5] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + src += 8; + row[6] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + src += 8; + row[7] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + if (width == 128) { + src += 8; + row[8] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + src += 8; + row[9] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + src += 8; + row[10] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + src += 8; + row[11] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + src += 8; + row[12] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + src += 8; + row[13] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + src += 8; + row[14] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + src += 8; + row[15] = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + } + } + } + } + src += src_remainder_stride; + + int y = height; + do { + const uint16x8_t below_0 = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[0], below_0), 2)); + row[0] = below_0; + if (width >= 16) { + src += 8; + dst += 8; + + const uint16x8_t below_1 = vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[1], below_1), 2)); + row[1] = below_1; + if (width >= 32) { + src += 8; + dst += 8; + + const uint16x8_t below_2 = + vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[2], below_2), 2)); + row[2] = below_2; + src += 8; + dst += 8; + + const uint16x8_t below_3 = + vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[3], below_3), 2)); + row[3] = below_3; + if (width >= 64) { + src += 8; + dst += 8; + + const uint16x8_t below_4 = + vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[4], below_4), 2)); + row[4] = below_4; + src += 8; + dst += 8; + + const uint16x8_t below_5 = + vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[5], below_5), 2)); + row[5] = below_5; + src += 8; + dst += 8; + + const uint16x8_t below_6 = + vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[6], below_6), 2)); + row[6] = below_6; + src += 8; + dst += 8; + + const uint16x8_t below_7 = + vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[7], below_7), 2)); + row[7] = below_7; + if (width == 128) { + src += 8; + dst += 8; + + const uint16x8_t below_8 = + vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[8], below_8), 2)); + row[8] = below_8; + src += 8; + dst += 8; + + const uint16x8_t below_9 = + vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[9], below_9), 2)); + row[9] = below_9; + src += 8; + dst += 8; + + const uint16x8_t below_10 = + vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[10], below_10), 2)); + row[10] = below_10; + src += 8; + dst += 8; + + const uint16x8_t below_11 = + vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[11], below_11), 2)); + row[11] = below_11; + src += 8; + dst += 8; + + const uint16x8_t below_12 = + vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[12], below_12), 2)); + row[12] = below_12; + src += 8; + dst += 8; + + const uint16x8_t below_13 = + vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[13], below_13), 2)); + row[13] = below_13; + src += 8; + dst += 8; + + const uint16x8_t below_14 = + vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[14], below_14), 2)); + row[14] = below_14; + src += 8; + dst += 8; + + const uint16x8_t below_15 = + vaddq_u16(vld1q_u16(src), vld1q_u16(src + 1)); + vst1q_u16(dst, vrshrq_n_u16(vaddq_u16(row[15], below_15), 2)); + row[15] = below_15; + } + } + } + } + src += src_remainder_stride; + dst += dst_remainder_stride; + } while (--y != 0); +} + +void ConvolveIntraBlockCopy2D_NEON( + const void* LIBGAV1_RESTRICT const reference, + const ptrdiff_t reference_stride, const int /*horizontal_filter_index*/, + const int /*vertical_filter_index*/, const int /*horizontal_filter_id*/, + const int /*vertical_filter_id*/, const int width, const int height, + void* LIBGAV1_RESTRICT const prediction, const ptrdiff_t pred_stride) { + assert(width >= 4 && width <= kMaxSuperBlockSizeInPixels); + assert(height >= 4 && height <= kMaxSuperBlockSizeInPixels); + const auto* src = static_cast<const uint16_t*>(reference); + auto* dest = static_cast<uint16_t*>(prediction); + const ptrdiff_t src_stride = reference_stride >> 1; + const ptrdiff_t dst_stride = pred_stride >> 1; + + // Note: allow vertical access to height + 1. Because this function is only + // for u/v plane of intra block copy, such access is guaranteed to be within + // the prediction block. + + if (width == 128) { + IntraBlockCopy2D<128>(src, src_stride, height, dest, dst_stride); + } else if (width == 64) { + IntraBlockCopy2D<64>(src, src_stride, height, dest, dst_stride); + } else if (width == 32) { + IntraBlockCopy2D<32>(src, src_stride, height, dest, dst_stride); + } else if (width == 16) { + IntraBlockCopy2D<16>(src, src_stride, height, dest, dst_stride); + } else if (width == 8) { + IntraBlockCopy2D<8>(src, src_stride, height, dest, dst_stride); + } else { // width == 4 + uint16x4_t row0 = vadd_u16(vld1_u16(src), vld1_u16(src + 1)); + src += src_stride; + + int y = height; + do { + const uint16x4_t row1 = vadd_u16(vld1_u16(src), vld1_u16(src + 1)); + src += src_stride; + const uint16x4_t row2 = vadd_u16(vld1_u16(src), vld1_u16(src + 1)); + src += src_stride; + const uint16x4_t result_01 = vrshr_n_u16(vadd_u16(row0, row1), 2); + const uint16x4_t result_12 = vrshr_n_u16(vadd_u16(row1, row2), 2); + vst1_u16(dest, result_01); + dest += dst_stride; + vst1_u16(dest, result_12); + dest += dst_stride; + row0 = row2; + y -= 2; + } while (y != 0); + } +} + +// ----------------------------------------------------------------------------- +// Scaled Convolve + +// There are many opportunities for overreading in scaled convolve, because the +// range of starting points for filter windows is anywhere from 0 to 16 for 8 +// destination pixels, and the window sizes range from 2 to 8. To accommodate +// this range concisely, we use |grade_x| to mean the most steps in src that can +// be traversed in a single |step_x| increment, i.e. 1 or 2. When grade_x is 2, +// we are guaranteed to exceed 8 whole steps in src for every 8 |step_x| +// increments. The first load covers the initial elements of src_x, while the +// final load covers the taps. +template <int grade_x> +inline uint8x16x3_t LoadSrcVals(const uint16_t* const src_x) { + uint8x16x3_t ret; + // When fractional step size is less than or equal to 1, the rightmost + // starting value for a filter may be at position 7. For an 8-tap filter, the + // rightmost value for the final tap may be at position 14. Therefore we load + // 2 vectors of eight 16-bit values. + ret.val[0] = vreinterpretq_u8_u16(vld1q_u16(src_x)); + ret.val[1] = vreinterpretq_u8_u16(vld1q_u16(src_x + 8)); +#if LIBGAV1_MSAN + // Initialize to quiet msan warnings when grade_x <= 1. + ret.val[2] = vdupq_n_u8(0); +#endif + if (grade_x > 1) { + // When fractional step size is greater than 1 (up to 2), the rightmost + // starting value for a filter may be at position 15. For an 8-tap filter, + // the rightmost value for the final tap may be at position 22. Therefore we + // load 3 vectors of eight 16-bit values. + ret.val[2] = vreinterpretq_u8_u16(vld1q_u16(src_x + 16)); + } + return ret; +} + +// Assemble 4 values corresponding to one tap position across multiple filters. +// This is a simple case because maximum offset is 8 and only smaller filters +// work on 4xH. +inline uint16x4_t PermuteSrcVals(const uint8x16x3_t src_bytes, + const uint8x8_t indices) { + const uint8x16x2_t src_bytes2 = {src_bytes.val[0], src_bytes.val[1]}; + return vreinterpret_u16_u8(VQTbl2U8(src_bytes2, indices)); +} + +// Assemble 8 values corresponding to one tap position across multiple filters. +// This requires a lot of workaround on A32 architectures, so it may be worth +// using an overall different algorithm for that architecture. +template <int grade_x> +inline uint16x8_t PermuteSrcVals(const uint8x16x3_t src_bytes, + const uint8x16_t indices) { + if (grade_x == 1) { + const uint8x16x2_t src_bytes2 = {src_bytes.val[0], src_bytes.val[1]}; + return vreinterpretq_u16_u8(VQTbl2QU8(src_bytes2, indices)); + } + return vreinterpretq_u16_u8(VQTbl3QU8(src_bytes, indices)); +} + +// Pre-transpose the 2 tap filters in |kAbsHalfSubPixelFilters|[3] +// Although the taps need to be converted to 16-bit values, they must be +// arranged by table lookup, which is more expensive for larger types than +// lengthening in-loop. |tap_index| refers to the index within a kernel applied +// to a single value. +inline int8x16_t GetPositive2TapFilter(const int tap_index) { + assert(tap_index < 2); + alignas( + 16) static constexpr int8_t kAbsHalfSubPixel2TapFilterColumns[2][16] = { + {64, 60, 56, 52, 48, 44, 40, 36, 32, 28, 24, 20, 16, 12, 8, 4}, + {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60}}; + + return vld1q_s8(kAbsHalfSubPixel2TapFilterColumns[tap_index]); +} + +template <int grade_x> +inline void ConvolveKernelHorizontal2Tap( + const uint16_t* LIBGAV1_RESTRICT const src, const ptrdiff_t src_stride, + const int width, const int subpixel_x, const int step_x, + const int intermediate_height, int16_t* LIBGAV1_RESTRICT intermediate) { + // Account for the 0-taps that precede the 2 nonzero taps in the spec. + const int kernel_offset = 3; + const int ref_x = subpixel_x >> kScaleSubPixelBits; + const int step_x8 = step_x << 3; + const int8x16_t filter_taps0 = GetPositive2TapFilter(0); + const int8x16_t filter_taps1 = GetPositive2TapFilter(1); + const uint16x8_t index_steps = vmulq_n_u16( + vmovl_u8(vcreate_u8(0x0706050403020100)), static_cast<uint16_t>(step_x)); + const uint8x8_t filter_index_mask = vdup_n_u8(kSubPixelMask); + + int p = subpixel_x; + if (width <= 4) { + const uint16_t* src_y = src; + // Only add steps to the 10-bit truncated p to avoid overflow. + const uint16x8_t p_fraction = vdupq_n_u16(p & 1023); + const uint16x8_t subpel_index_offsets = vaddq_u16(index_steps, p_fraction); + const uint8x8_t filter_indices = + vand_u8(vshrn_n_u16(subpel_index_offsets, 6), filter_index_mask); + // Each lane of lane of taps[k] corresponds to one output value along the + // row, containing kSubPixelFilters[filter_index][filter_id][k], where + // filter_id depends on x. + const int16x4_t taps[2] = { + vget_low_s16(vmovl_s8(VQTbl1S8(filter_taps0, filter_indices))), + vget_low_s16(vmovl_s8(VQTbl1S8(filter_taps1, filter_indices)))}; + // Lower byte of Nth value is at position 2*N. + // Narrowing shift is not available here because the maximum shift + // parameter is 8. + const uint8x8_t src_indices0 = vshl_n_u8( + vmovn_u16(vshrq_n_u16(subpel_index_offsets, kScaleSubPixelBits)), 1); + // Upper byte of Nth value is at position 2*N+1. + const uint8x8_t src_indices1 = vadd_u8(src_indices0, vdup_n_u8(1)); + // Only 4 values needed. + const uint8x8_t src_indices = InterleaveLow8(src_indices0, src_indices1); + const uint8x8_t src_lookup[2] = {src_indices, + vadd_u8(src_indices, vdup_n_u8(2))}; + + int y = intermediate_height; + do { + const uint16_t* src_x = + src_y + (p >> kScaleSubPixelBits) - ref_x + kernel_offset; + // Load a pool of samples to select from using stepped indices. + const uint8x16x3_t src_bytes = LoadSrcVals<1>(src_x); + // Each lane corresponds to a different filter kernel. + const uint16x4_t src[2] = {PermuteSrcVals(src_bytes, src_lookup[0]), + PermuteSrcVals(src_bytes, src_lookup[1])}; + + vst1_s16(intermediate, + vrshrn_n_s32(SumOnePassTaps</*filter_index=*/3>(src, taps), + kInterRoundBitsHorizontal - 1)); + src_y = AddByteStride(src_y, src_stride); + intermediate += kIntermediateStride; + } while (--y != 0); + return; + } + + // |width| >= 8 + int16_t* intermediate_x = intermediate; + int x = 0; + do { + const uint16_t* src_x = + src + (p >> kScaleSubPixelBits) - ref_x + kernel_offset; + // Only add steps to the 10-bit truncated p to avoid overflow. + const uint16x8_t p_fraction = vdupq_n_u16(p & 1023); + const uint16x8_t subpel_index_offsets = vaddq_u16(index_steps, p_fraction); + const uint8x8_t filter_indices = + vand_u8(vshrn_n_u16(subpel_index_offsets, kFilterIndexShift), + filter_index_mask); + // Each lane of lane of taps[k] corresponds to one output value along the + // row, containing kSubPixelFilters[filter_index][filter_id][k], where + // filter_id depends on x. + const int16x8_t taps[2] = { + vmovl_s8(VQTbl1S8(filter_taps0, filter_indices)), + vmovl_s8(VQTbl1S8(filter_taps1, filter_indices))}; + const int16x4_t taps_low[2] = {vget_low_s16(taps[0]), + vget_low_s16(taps[1])}; + const int16x4_t taps_high[2] = {vget_high_s16(taps[0]), + vget_high_s16(taps[1])}; + // Lower byte of Nth value is at position 2*N. + const uint8x8_t src_indices0 = vshl_n_u8( + vmovn_u16(vshrq_n_u16(subpel_index_offsets, kScaleSubPixelBits)), 1); + // Upper byte of Nth value is at position 2*N+1. + const uint8x8_t src_indices1 = vadd_u8(src_indices0, vdup_n_u8(1)); + const uint8x8x2_t src_indices_zip = vzip_u8(src_indices0, src_indices1); + const uint8x16_t src_indices = + vcombine_u8(src_indices_zip.val[0], src_indices_zip.val[1]); + const uint8x16_t src_lookup[2] = {src_indices, + vaddq_u8(src_indices, vdupq_n_u8(2))}; + + int y = intermediate_height; + do { + // Load a pool of samples to select from using stepped indices. + const uint8x16x3_t src_bytes = LoadSrcVals<grade_x>(src_x); + // Each lane corresponds to a different filter kernel. + const uint16x8_t src[2] = { + PermuteSrcVals<grade_x>(src_bytes, src_lookup[0]), + PermuteSrcVals<grade_x>(src_bytes, src_lookup[1])}; + const uint16x4_t src_low[2] = {vget_low_u16(src[0]), + vget_low_u16(src[1])}; + const uint16x4_t src_high[2] = {vget_high_u16(src[0]), + vget_high_u16(src[1])}; + + vst1_s16(intermediate_x, vrshrn_n_s32(SumOnePassTaps</*filter_index=*/3>( + src_low, taps_low), + kInterRoundBitsHorizontal - 1)); + vst1_s16( + intermediate_x + 4, + vrshrn_n_s32(SumOnePassTaps</*filter_index=*/3>(src_high, taps_high), + kInterRoundBitsHorizontal - 1)); + // Avoid right shifting the stride. + src_x = AddByteStride(src_x, src_stride); + intermediate_x += kIntermediateStride; + } while (--y != 0); + x += 8; + p += step_x8; + } while (x < width); +} + +// Pre-transpose the 4 tap filters in |kAbsHalfSubPixelFilters|[5]. +inline int8x16_t GetPositive4TapFilter(const int tap_index) { + assert(tap_index < 4); + alignas( + 16) static constexpr int8_t kSubPixel4TapPositiveFilterColumns[4][16] = { + {0, 15, 13, 11, 10, 9, 8, 7, 6, 6, 5, 4, 3, 2, 2, 1}, + {64, 31, 31, 31, 30, 29, 28, 27, 26, 24, 23, 22, 21, 20, 18, 17}, + {0, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 31, 31}, + {0, 1, 2, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 13, 15}}; + + return vld1q_s8(kSubPixel4TapPositiveFilterColumns[tap_index]); +} + +// This filter is only possible when width <= 4. +inline void ConvolveKernelHorizontalPositive4Tap( + const uint16_t* LIBGAV1_RESTRICT const src, const ptrdiff_t src_stride, + const int subpixel_x, const int step_x, const int intermediate_height, + int16_t* LIBGAV1_RESTRICT intermediate) { + // Account for the 0-taps that precede the 2 nonzero taps in the spec. + const int kernel_offset = 2; + const int ref_x = subpixel_x >> kScaleSubPixelBits; + const int8x16_t filter_taps0 = GetPositive4TapFilter(0); + const int8x16_t filter_taps1 = GetPositive4TapFilter(1); + const int8x16_t filter_taps2 = GetPositive4TapFilter(2); + const int8x16_t filter_taps3 = GetPositive4TapFilter(3); + const uint16x8_t index_steps = vmulq_n_u16( + vmovl_u8(vcreate_u8(0x0706050403020100)), static_cast<uint16_t>(step_x)); + const uint8x8_t filter_index_mask = vdup_n_u8(kSubPixelMask); + + int p = subpixel_x; + // Only add steps to the 10-bit truncated p to avoid overflow. + const uint16x8_t p_fraction = vdupq_n_u16(p & 1023); + const uint16x8_t subpel_index_offsets = vaddq_u16(index_steps, p_fraction); + const uint8x8_t filter_indices = + vand_u8(vshrn_n_u16(subpel_index_offsets, 6), filter_index_mask); + // Each lane of lane of taps[k] corresponds to one output value along the row, + // containing kSubPixelFilters[filter_index][filter_id][k], where filter_id + // depends on x. + const int16x4_t taps[4] = { + vget_low_s16(vmovl_s8(VQTbl1S8(filter_taps0, filter_indices))), + vget_low_s16(vmovl_s8(VQTbl1S8(filter_taps1, filter_indices))), + vget_low_s16(vmovl_s8(VQTbl1S8(filter_taps2, filter_indices))), + vget_low_s16(vmovl_s8(VQTbl1S8(filter_taps3, filter_indices)))}; + // Lower byte of Nth value is at position 2*N. + // Narrowing shift is not available here because the maximum shift + // parameter is 8. + const uint8x8_t src_indices0 = vshl_n_u8( + vmovn_u16(vshrq_n_u16(subpel_index_offsets, kScaleSubPixelBits)), 1); + // Upper byte of Nth value is at position 2*N+1. + const uint8x8_t src_indices1 = vadd_u8(src_indices0, vdup_n_u8(1)); + // Only 4 values needed. + const uint8x8_t src_indices_base = InterleaveLow8(src_indices0, src_indices1); + + uint8x8_t src_lookup[4]; + const uint8x8_t two = vdup_n_u8(2); + src_lookup[0] = src_indices_base; + for (int i = 1; i < 4; ++i) { + src_lookup[i] = vadd_u8(src_lookup[i - 1], two); + } + + const uint16_t* src_y = + src + (p >> kScaleSubPixelBits) - ref_x + kernel_offset; + int y = intermediate_height; + do { + // Load a pool of samples to select from using stepped indices. + const uint8x16x3_t src_bytes = LoadSrcVals<1>(src_y); + // Each lane corresponds to a different filter kernel. + const uint16x4_t src[4] = {PermuteSrcVals(src_bytes, src_lookup[0]), + PermuteSrcVals(src_bytes, src_lookup[1]), + PermuteSrcVals(src_bytes, src_lookup[2]), + PermuteSrcVals(src_bytes, src_lookup[3])}; + + vst1_s16(intermediate, + vrshrn_n_s32(SumOnePassTaps</*filter_index=*/5>(src, taps), + kInterRoundBitsHorizontal - 1)); + src_y = AddByteStride(src_y, src_stride); + intermediate += kIntermediateStride; + } while (--y != 0); +} + +// Pre-transpose the 4 tap filters in |kAbsHalfSubPixelFilters|[4]. +inline int8x16_t GetSigned4TapFilter(const int tap_index) { + assert(tap_index < 4); + alignas(16) static constexpr int8_t + kAbsHalfSubPixel4TapSignedFilterColumns[4][16] = { + {-0, -2, -4, -5, -6, -6, -7, -6, -6, -5, -5, -5, -4, -3, -2, -1}, + {64, 63, 61, 58, 55, 51, 47, 42, 38, 33, 29, 24, 19, 14, 9, 4}, + {0, 4, 9, 14, 19, 24, 29, 33, 38, 42, 47, 51, 55, 58, 61, 63}, + {-0, -1, -2, -3, -4, -5, -5, -5, -6, -6, -7, -6, -6, -5, -4, -2}}; + + return vld1q_s8(kAbsHalfSubPixel4TapSignedFilterColumns[tap_index]); +} + +// This filter is only possible when width <= 4. +inline void ConvolveKernelHorizontalSigned4Tap( + const uint16_t* LIBGAV1_RESTRICT const src, const ptrdiff_t src_stride, + const int subpixel_x, const int step_x, const int intermediate_height, + int16_t* LIBGAV1_RESTRICT intermediate) { + const int kernel_offset = 2; + const int ref_x = subpixel_x >> kScaleSubPixelBits; + const uint8x8_t filter_index_mask = vdup_n_u8(kSubPixelMask); + const int8x16_t filter_taps0 = GetSigned4TapFilter(0); + const int8x16_t filter_taps1 = GetSigned4TapFilter(1); + const int8x16_t filter_taps2 = GetSigned4TapFilter(2); + const int8x16_t filter_taps3 = GetSigned4TapFilter(3); + const uint16x8_t index_steps = vmulq_n_u16( + vmovl_u8(vcreate_u8(0x0706050403020100)), static_cast<uint16_t>(step_x)); + + const int p = subpixel_x; + // Only add steps to the 10-bit truncated p to avoid overflow. + const uint16x8_t p_fraction = vdupq_n_u16(p & 1023); + const uint16x8_t subpel_index_offsets = vaddq_u16(index_steps, p_fraction); + const uint8x8_t filter_indices = + vand_u8(vshrn_n_u16(subpel_index_offsets, 6), filter_index_mask); + // Each lane of lane of taps[k] corresponds to one output value along the row, + // containing kSubPixelFilters[filter_index][filter_id][k], where filter_id + // depends on x. + const int16x4_t taps[4] = { + vget_low_s16(vmovl_s8(VQTbl1S8(filter_taps0, filter_indices))), + vget_low_s16(vmovl_s8(VQTbl1S8(filter_taps1, filter_indices))), + vget_low_s16(vmovl_s8(VQTbl1S8(filter_taps2, filter_indices))), + vget_low_s16(vmovl_s8(VQTbl1S8(filter_taps3, filter_indices)))}; + // Lower byte of Nth value is at position 2*N. + // Narrowing shift is not available here because the maximum shift + // parameter is 8. + const uint8x8_t src_indices0 = vshl_n_u8( + vmovn_u16(vshrq_n_u16(subpel_index_offsets, kScaleSubPixelBits)), 1); + // Upper byte of Nth value is at position 2*N+1. + const uint8x8_t src_indices1 = vadd_u8(src_indices0, vdup_n_u8(1)); + // Only 4 values needed. + const uint8x8_t src_indices_base = InterleaveLow8(src_indices0, src_indices1); + + uint8x8_t src_lookup[4]; + const uint8x8_t two = vdup_n_u8(2); + src_lookup[0] = src_indices_base; + for (int i = 1; i < 4; ++i) { + src_lookup[i] = vadd_u8(src_lookup[i - 1], two); + } + + const uint16_t* src_y = + src + (p >> kScaleSubPixelBits) - ref_x + kernel_offset; + int y = intermediate_height; + do { + // Load a pool of samples to select from using stepped indices. + const uint8x16x3_t src_bytes = LoadSrcVals<1>(src_y); + // Each lane corresponds to a different filter kernel. + const uint16x4_t src[4] = {PermuteSrcVals(src_bytes, src_lookup[0]), + PermuteSrcVals(src_bytes, src_lookup[1]), + PermuteSrcVals(src_bytes, src_lookup[2]), + PermuteSrcVals(src_bytes, src_lookup[3])}; + + vst1_s16(intermediate, + vrshrn_n_s32(SumOnePassTaps</*filter_index=*/4>(src, taps), + kInterRoundBitsHorizontal - 1)); + src_y = AddByteStride(src_y, src_stride); + intermediate += kIntermediateStride; + } while (--y != 0); +} + +// Pre-transpose the 6 tap filters in |kAbsHalfSubPixelFilters|[0]. +inline int8x16_t GetSigned6TapFilter(const int tap_index) { + assert(tap_index < 6); + alignas(16) static constexpr int8_t + kAbsHalfSubPixel6TapSignedFilterColumns[6][16] = { + {0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0}, + {-0, -3, -5, -6, -7, -7, -8, -7, -7, -6, -6, -6, -5, -4, -2, -1}, + {64, 63, 61, 58, 55, 51, 47, 42, 38, 33, 29, 24, 19, 14, 9, 4}, + {0, 4, 9, 14, 19, 24, 29, 33, 38, 42, 47, 51, 55, 58, 61, 63}, + {-0, -1, -2, -4, -5, -6, -6, -6, -7, -7, -8, -7, -7, -6, -5, -3}, + {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}}; + + return vld1q_s8(kAbsHalfSubPixel6TapSignedFilterColumns[tap_index]); +} + +// This filter is only possible when width >= 8. +template <int grade_x> +inline void ConvolveKernelHorizontalSigned6Tap( + const uint16_t* LIBGAV1_RESTRICT const src, const ptrdiff_t src_stride, + const int width, const int subpixel_x, const int step_x, + const int intermediate_height, + int16_t* LIBGAV1_RESTRICT const intermediate) { + const int kernel_offset = 1; + const uint8x8_t filter_index_mask = vdup_n_u8(kSubPixelMask); + const int ref_x = subpixel_x >> kScaleSubPixelBits; + const int step_x8 = step_x << 3; + int8x16_t filter_taps[6]; + for (int i = 0; i < 6; ++i) { + filter_taps[i] = GetSigned6TapFilter(i); + } + const uint16x8_t index_steps = vmulq_n_u16( + vmovl_u8(vcreate_u8(0x0706050403020100)), static_cast<uint16_t>(step_x)); + + int16_t* intermediate_x = intermediate; + int x = 0; + int p = subpixel_x; + do { + const uint16_t* src_x = + src + (p >> kScaleSubPixelBits) - ref_x + kernel_offset; + // Only add steps to the 10-bit truncated p to avoid overflow. + const uint16x8_t p_fraction = vdupq_n_u16(p & 1023); + const uint16x8_t subpel_index_offsets = vaddq_u16(index_steps, p_fraction); + const uint8x8_t filter_indices = + vand_u8(vshrn_n_u16(subpel_index_offsets, kFilterIndexShift), + filter_index_mask); + + // Each lane of lane of taps_(low|high)[k] corresponds to one output value + // along the row, containing kSubPixelFilters[filter_index][filter_id][k], + // where filter_id depends on x. + int16x4_t taps_low[6]; + int16x4_t taps_high[6]; + for (int i = 0; i < 6; ++i) { + const int16x8_t taps_i = + vmovl_s8(VQTbl1S8(filter_taps[i], filter_indices)); + taps_low[i] = vget_low_s16(taps_i); + taps_high[i] = vget_high_s16(taps_i); + } + + // Lower byte of Nth value is at position 2*N. + const uint8x8_t src_indices0 = vshl_n_u8( + vmovn_u16(vshrq_n_u16(subpel_index_offsets, kScaleSubPixelBits)), 1); + // Upper byte of Nth value is at position 2*N+1. + const uint8x8_t src_indices1 = vadd_u8(src_indices0, vdup_n_u8(1)); + const uint8x8x2_t src_indices_zip = vzip_u8(src_indices0, src_indices1); + const uint8x16_t src_indices_base = + vcombine_u8(src_indices_zip.val[0], src_indices_zip.val[1]); + + uint8x16_t src_lookup[6]; + const uint8x16_t two = vdupq_n_u8(2); + src_lookup[0] = src_indices_base; + for (int i = 1; i < 6; ++i) { + src_lookup[i] = vaddq_u8(src_lookup[i - 1], two); + } + + int y = intermediate_height; + do { + // Load a pool of samples to select from using stepped indices. + const uint8x16x3_t src_bytes = LoadSrcVals<grade_x>(src_x); + + uint16x4_t src_low[6]; + uint16x4_t src_high[6]; + for (int i = 0; i < 6; ++i) { + const uint16x8_t src_i = + PermuteSrcVals<grade_x>(src_bytes, src_lookup[i]); + src_low[i] = vget_low_u16(src_i); + src_high[i] = vget_high_u16(src_i); + } + + vst1_s16(intermediate_x, vrshrn_n_s32(SumOnePassTaps</*filter_index=*/0>( + src_low, taps_low), + kInterRoundBitsHorizontal - 1)); + vst1_s16( + intermediate_x + 4, + vrshrn_n_s32(SumOnePassTaps</*filter_index=*/0>(src_high, taps_high), + kInterRoundBitsHorizontal - 1)); + // Avoid right shifting the stride. + src_x = AddByteStride(src_x, src_stride); + intermediate_x += kIntermediateStride; + } while (--y != 0); + x += 8; + p += step_x8; + } while (x < width); +} + +// Pre-transpose the 6 tap filters in |kAbsHalfSubPixelFilters|[1]. This filter +// has mixed positive and negative outer taps depending on the filter id. +inline int8x16_t GetMixed6TapFilter(const int tap_index) { + assert(tap_index < 6); + alignas(16) static constexpr int8_t + kAbsHalfSubPixel6TapMixedFilterColumns[6][16] = { + {0, 1, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0}, + {0, 14, 13, 11, 10, 9, 8, 8, 7, 6, 5, 4, 3, 2, 2, 1}, + {64, 31, 31, 31, 30, 29, 28, 27, 26, 24, 23, 22, 21, 20, 18, 17}, + {0, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 31, 31}, + {0, 1, 2, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 11, 13, 14}, + {0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 1}}; + + return vld1q_s8(kAbsHalfSubPixel6TapMixedFilterColumns[tap_index]); +} + +// This filter is only possible when width >= 8. +template <int grade_x> +inline void ConvolveKernelHorizontalMixed6Tap( + const uint16_t* LIBGAV1_RESTRICT const src, const ptrdiff_t src_stride, + const int width, const int subpixel_x, const int step_x, + const int intermediate_height, + int16_t* LIBGAV1_RESTRICT const intermediate) { + const int kernel_offset = 1; + const uint8x8_t filter_index_mask = vdup_n_u8(kSubPixelMask); + const int ref_x = subpixel_x >> kScaleSubPixelBits; + const int step_x8 = step_x << 3; + int8x16_t filter_taps[6]; + for (int i = 0; i < 6; ++i) { + filter_taps[i] = GetMixed6TapFilter(i); + } + const uint16x8_t index_steps = vmulq_n_u16( + vmovl_u8(vcreate_u8(0x0706050403020100)), static_cast<uint16_t>(step_x)); + + int16_t* intermediate_x = intermediate; + int x = 0; + int p = subpixel_x; + do { + const uint16_t* src_x = + src + (p >> kScaleSubPixelBits) - ref_x + kernel_offset; + // Only add steps to the 10-bit truncated p to avoid overflow. + const uint16x8_t p_fraction = vdupq_n_u16(p & 1023); + const uint16x8_t subpel_index_offsets = vaddq_u16(index_steps, p_fraction); + + const uint8x8_t filter_indices = + vand_u8(vshrn_n_u16(subpel_index_offsets, kFilterIndexShift), + filter_index_mask); + // Each lane of lane of taps_(low|high)[k] corresponds to one output value + // along the row, containing kSubPixelFilters[filter_index][filter_id][k], + // where filter_id depends on x. + int16x4_t taps_low[6]; + int16x4_t taps_high[6]; + for (int i = 0; i < 6; ++i) { + const int16x8_t taps = vmovl_s8(VQTbl1S8(filter_taps[i], filter_indices)); + taps_low[i] = vget_low_s16(taps); + taps_high[i] = vget_high_s16(taps); + } + + // Lower byte of Nth value is at position 2*N. + const uint8x8_t src_indices0 = vshl_n_u8( + vmovn_u16(vshrq_n_u16(subpel_index_offsets, kScaleSubPixelBits)), 1); + // Upper byte of Nth value is at position 2*N+1. + const uint8x8_t src_indices1 = vadd_u8(src_indices0, vdup_n_u8(1)); + const uint8x8x2_t src_indices_zip = vzip_u8(src_indices0, src_indices1); + const uint8x16_t src_indices_base = + vcombine_u8(src_indices_zip.val[0], src_indices_zip.val[1]); + + uint8x16_t src_lookup[6]; + const uint8x16_t two = vdupq_n_u8(2); + src_lookup[0] = src_indices_base; + for (int i = 1; i < 6; ++i) { + src_lookup[i] = vaddq_u8(src_lookup[i - 1], two); + } + + int y = intermediate_height; + do { + // Load a pool of samples to select from using stepped indices. + const uint8x16x3_t src_bytes = LoadSrcVals<grade_x>(src_x); + + uint16x4_t src_low[6]; + uint16x4_t src_high[6]; + for (int i = 0; i < 6; ++i) { + const uint16x8_t src_i = + PermuteSrcVals<grade_x>(src_bytes, src_lookup[i]); + src_low[i] = vget_low_u16(src_i); + src_high[i] = vget_high_u16(src_i); + } + + vst1_s16(intermediate_x, vrshrn_n_s32(SumOnePassTaps</*filter_index=*/0>( + src_low, taps_low), + kInterRoundBitsHorizontal - 1)); + vst1_s16( + intermediate_x + 4, + vrshrn_n_s32(SumOnePassTaps</*filter_index=*/0>(src_high, taps_high), + kInterRoundBitsHorizontal - 1)); + // Avoid right shifting the stride. + src_x = AddByteStride(src_x, src_stride); + intermediate_x += kIntermediateStride; + } while (--y != 0); + x += 8; + p += step_x8; + } while (x < width); +} + +// Pre-transpose the 8 tap filters in |kAbsHalfSubPixelFilters|[2]. +inline int8x16_t GetSigned8TapFilter(const int tap_index) { + assert(tap_index < 8); + alignas(16) static constexpr int8_t + kAbsHalfSubPixel8TapSignedFilterColumns[8][16] = { + {-0, -1, -1, -1, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -0}, + {0, 1, 3, 4, 5, 5, 5, 5, 6, 5, 4, 4, 3, 3, 2, 1}, + {-0, -3, -6, -9, -11, -11, -12, -12, -12, -11, -10, -9, -7, -5, -3, + -1}, + {64, 63, 62, 60, 58, 54, 50, 45, 40, 35, 30, 24, 19, 13, 8, 4}, + {0, 4, 8, 13, 19, 24, 30, 35, 40, 45, 50, 54, 58, 60, 62, 63}, + {-0, -1, -3, -5, -7, -9, -10, -11, -12, -12, -12, -11, -11, -9, -6, + -3}, + {0, 1, 2, 3, 3, 4, 4, 5, 6, 5, 5, 5, 5, 4, 3, 1}, + {-0, -0, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -1, -1, -1}}; + + return vld1q_s8(kAbsHalfSubPixel8TapSignedFilterColumns[tap_index]); +} + +// This filter is only possible when width >= 8. +template <int grade_x> +inline void ConvolveKernelHorizontalSigned8Tap( + const uint16_t* LIBGAV1_RESTRICT const src, const ptrdiff_t src_stride, + const int width, const int subpixel_x, const int step_x, + const int intermediate_height, + int16_t* LIBGAV1_RESTRICT const intermediate) { + const uint8x8_t filter_index_mask = vdup_n_u8(kSubPixelMask); + const int ref_x = subpixel_x >> kScaleSubPixelBits; + const int step_x8 = step_x << 3; + int8x16_t filter_taps[8]; + for (int i = 0; i < 8; ++i) { + filter_taps[i] = GetSigned8TapFilter(i); + } + const uint16x8_t index_steps = vmulq_n_u16( + vmovl_u8(vcreate_u8(0x0706050403020100)), static_cast<uint16_t>(step_x)); + int16_t* intermediate_x = intermediate; + int x = 0; + int p = subpixel_x; + do { + const uint16_t* src_x = src + (p >> kScaleSubPixelBits) - ref_x; + // Only add steps to the 10-bit truncated p to avoid overflow. + const uint16x8_t p_fraction = vdupq_n_u16(p & 1023); + const uint16x8_t subpel_index_offsets = vaddq_u16(index_steps, p_fraction); + + const uint8x8_t filter_indices = + vand_u8(vshrn_n_u16(subpel_index_offsets, kFilterIndexShift), + filter_index_mask); + + // Lower byte of Nth value is at position 2*N. + const uint8x8_t src_indices0 = vshl_n_u8( + vmovn_u16(vshrq_n_u16(subpel_index_offsets, kScaleSubPixelBits)), 1); + // Upper byte of Nth value is at position 2*N+1. + const uint8x8_t src_indices1 = vadd_u8(src_indices0, vdup_n_u8(1)); + const uint8x8x2_t src_indices_zip = vzip_u8(src_indices0, src_indices1); + const uint8x16_t src_indices_base = + vcombine_u8(src_indices_zip.val[0], src_indices_zip.val[1]); + + uint8x16_t src_lookup[8]; + const uint8x16_t two = vdupq_n_u8(2); + src_lookup[0] = src_indices_base; + for (int i = 1; i < 8; ++i) { + src_lookup[i] = vaddq_u8(src_lookup[i - 1], two); + } + // Each lane of lane of taps_(low|high)[k] corresponds to one output value + // along the row, containing kSubPixelFilters[filter_index][filter_id][k], + // where filter_id depends on x. + int16x4_t taps_low[8]; + int16x4_t taps_high[8]; + for (int i = 0; i < 8; ++i) { + const int16x8_t taps = vmovl_s8(VQTbl1S8(filter_taps[i], filter_indices)); + taps_low[i] = vget_low_s16(taps); + taps_high[i] = vget_high_s16(taps); + } + + int y = intermediate_height; + do { + // Load a pool of samples to select from using stepped indices. + const uint8x16x3_t src_bytes = LoadSrcVals<grade_x>(src_x); + + uint16x4_t src_low[8]; + uint16x4_t src_high[8]; + for (int i = 0; i < 8; ++i) { + const uint16x8_t src_i = + PermuteSrcVals<grade_x>(src_bytes, src_lookup[i]); + src_low[i] = vget_low_u16(src_i); + src_high[i] = vget_high_u16(src_i); + } + + vst1_s16(intermediate_x, vrshrn_n_s32(SumOnePassTaps</*filter_index=*/2>( + src_low, taps_low), + kInterRoundBitsHorizontal - 1)); + vst1_s16( + intermediate_x + 4, + vrshrn_n_s32(SumOnePassTaps</*filter_index=*/2>(src_high, taps_high), + kInterRoundBitsHorizontal - 1)); + // Avoid right shifting the stride. + src_x = AddByteStride(src_x, src_stride); + intermediate_x += kIntermediateStride; + } while (--y != 0); + x += 8; + p += step_x8; + } while (x < width); +} + +// Process 16 bit inputs and output 32 bits. +template <int num_taps, bool is_compound> +inline int16x4_t Sum2DVerticalTaps4(const int16x4_t* const src, + const int16x8_t taps) { + const int16x4_t taps_lo = vget_low_s16(taps); + const int16x4_t taps_hi = vget_high_s16(taps); + int32x4_t sum; + if (num_taps == 8) { + sum = vmull_lane_s16(src[0], taps_lo, 0); + sum = vmlal_lane_s16(sum, src[1], taps_lo, 1); + sum = vmlal_lane_s16(sum, src[2], taps_lo, 2); + sum = vmlal_lane_s16(sum, src[3], taps_lo, 3); + sum = vmlal_lane_s16(sum, src[4], taps_hi, 0); + sum = vmlal_lane_s16(sum, src[5], taps_hi, 1); + sum = vmlal_lane_s16(sum, src[6], taps_hi, 2); + sum = vmlal_lane_s16(sum, src[7], taps_hi, 3); + } else if (num_taps == 6) { + sum = vmull_lane_s16(src[0], taps_lo, 1); + sum = vmlal_lane_s16(sum, src[1], taps_lo, 2); + sum = vmlal_lane_s16(sum, src[2], taps_lo, 3); + sum = vmlal_lane_s16(sum, src[3], taps_hi, 0); + sum = vmlal_lane_s16(sum, src[4], taps_hi, 1); + sum = vmlal_lane_s16(sum, src[5], taps_hi, 2); + } else if (num_taps == 4) { + sum = vmull_lane_s16(src[0], taps_lo, 2); + sum = vmlal_lane_s16(sum, src[1], taps_lo, 3); + sum = vmlal_lane_s16(sum, src[2], taps_hi, 0); + sum = vmlal_lane_s16(sum, src[3], taps_hi, 1); + } else if (num_taps == 2) { + sum = vmull_lane_s16(src[0], taps_lo, 3); + sum = vmlal_lane_s16(sum, src[1], taps_hi, 0); + } + + if (is_compound) { + return vrshrn_n_s32(sum, kInterRoundBitsCompoundVertical - 1); + } + + return vreinterpret_s16_u16(vqrshrun_n_s32(sum, kInterRoundBitsVertical - 1)); +} + +template <int num_taps, int grade_y, int width, bool is_compound> +void ConvolveVerticalScale2Or4xH(const int16_t* LIBGAV1_RESTRICT const src, + const int subpixel_y, const int filter_index, + const int step_y, const int height, + void* LIBGAV1_RESTRICT const dest, + const ptrdiff_t dest_stride) { + static_assert(width == 2 || width == 4, ""); + // We increment stride with the 8-bit pointer and then reinterpret to avoid + // shifting |dest_stride|. + auto* dest_y = static_cast<uint16_t*>(dest); + // In compound mode, |dest_stride| is based on the size of uint16_t, rather + // than bytes. + auto* compound_dest_y = static_cast<uint16_t*>(dest); + // This stride always corresponds to int16_t. + constexpr ptrdiff_t src_stride = kIntermediateStride; + const int16_t* src_y = src; + int16x4_t s[num_taps + grade_y]; + + int p = subpixel_y & 1023; + int prev_p = p; + int y = height; + do { + for (int i = 0; i < num_taps; ++i) { + s[i] = vld1_s16(src_y + i * src_stride); + } + int filter_id = (p >> 6) & kSubPixelMask; + int16x8_t filter = + vmovl_s8(vld1_s8(kHalfSubPixelFilters[filter_index][filter_id])); + int16x4_t sums = Sum2DVerticalTaps4<num_taps, is_compound>(s, filter); + if (is_compound) { + assert(width != 2); + // This offset potentially overflows into the sign bit, but should yield + // the correct unsigned value. + const uint16x4_t result = + vreinterpret_u16_s16(vadd_s16(sums, vdup_n_s16(kCompoundOffset))); + vst1_u16(compound_dest_y, result); + compound_dest_y += dest_stride; + } else { + const uint16x4_t result = vmin_u16(vreinterpret_u16_s16(sums), + vdup_n_u16((1 << kBitdepth10) - 1)); + if (width == 2) { + Store2<0>(dest_y, result); + } else { + vst1_u16(dest_y, result); + } + dest_y = AddByteStride(dest_y, dest_stride); + } + p += step_y; + const int p_diff = + (p >> kScaleSubPixelBits) - (prev_p >> kScaleSubPixelBits); + prev_p = p; + // Here we load extra source in case it is needed. If |p_diff| == 0, these + // values will be unused, but it's faster to load than to branch. + s[num_taps] = vld1_s16(src_y + num_taps * src_stride); + if (grade_y > 1) { + s[num_taps + 1] = vld1_s16(src_y + (num_taps + 1) * src_stride); + } + + filter_id = (p >> 6) & kSubPixelMask; + filter = vmovl_s8(vld1_s8(kHalfSubPixelFilters[filter_index][filter_id])); + sums = Sum2DVerticalTaps4<num_taps, is_compound>(&s[p_diff], filter); + if (is_compound) { + assert(width != 2); + const uint16x4_t result = + vreinterpret_u16_s16(vadd_s16(sums, vdup_n_s16(kCompoundOffset))); + vst1_u16(compound_dest_y, result); + compound_dest_y += dest_stride; + } else { + const uint16x4_t result = vmin_u16(vreinterpret_u16_s16(sums), + vdup_n_u16((1 << kBitdepth10) - 1)); + if (width == 2) { + Store2<0>(dest_y, result); + } else { + vst1_u16(dest_y, result); + } + dest_y = AddByteStride(dest_y, dest_stride); + } + p += step_y; + src_y = src + (p >> kScaleSubPixelBits) * src_stride; + prev_p = p; + y -= 2; + } while (y != 0); +} + +template <int num_taps, int grade_y, bool is_compound> +void ConvolveVerticalScale(const int16_t* LIBGAV1_RESTRICT const source, + const int intermediate_height, const int width, + const int subpixel_y, const int filter_index, + const int step_y, const int height, + void* LIBGAV1_RESTRICT const dest, + const ptrdiff_t dest_stride) { + // This stride always corresponds to int16_t. + constexpr ptrdiff_t src_stride = kIntermediateStride; + + int16x8_t s[num_taps + 2]; + + const int16_t* src = source; + int x = 0; + do { + const int16_t* src_y = src; + int p = subpixel_y & 1023; + int prev_p = p; + // We increment stride with the 8-bit pointer and then reinterpret to avoid + // shifting |dest_stride|. + auto* dest_y = static_cast<uint16_t*>(dest) + x; + // In compound mode, |dest_stride| is based on the size of uint16_t, rather + // than bytes. + auto* compound_dest_y = static_cast<uint16_t*>(dest) + x; + int y = height; + do { + for (int i = 0; i < num_taps; ++i) { + s[i] = vld1q_s16(src_y + i * src_stride); + } + int filter_id = (p >> 6) & kSubPixelMask; + int16x8_t filter = + vmovl_s8(vld1_s8(kHalfSubPixelFilters[filter_index][filter_id])); + int16x8_t sums = + SimpleSum2DVerticalTaps<num_taps, is_compound>(s, filter); + if (is_compound) { + // This offset potentially overflows int16_t, but should yield the + // correct unsigned value. + const uint16x8_t result = vreinterpretq_u16_s16( + vaddq_s16(sums, vdupq_n_s16(kCompoundOffset))); + vst1q_u16(compound_dest_y, result); + compound_dest_y += dest_stride; + } else { + const uint16x8_t result = vminq_u16( + vreinterpretq_u16_s16(sums), vdupq_n_u16((1 << kBitdepth10) - 1)); + vst1q_u16(dest_y, result); + dest_y = AddByteStride(dest_y, dest_stride); + } + p += step_y; + const int p_diff = + (p >> kScaleSubPixelBits) - (prev_p >> kScaleSubPixelBits); + prev_p = p; + // Here we load extra source in case it is needed. If |p_diff| == 0, these + // values will be unused, but it's faster to load than to branch. + s[num_taps] = vld1q_s16(src_y + num_taps * src_stride); + if (grade_y > 1) { + s[num_taps + 1] = vld1q_s16(src_y + (num_taps + 1) * src_stride); + } + + filter_id = (p >> 6) & kSubPixelMask; + filter = vmovl_s8(vld1_s8(kHalfSubPixelFilters[filter_index][filter_id])); + sums = SimpleSum2DVerticalTaps<num_taps, is_compound>(&s[p_diff], filter); + if (is_compound) { + assert(width != 2); + const uint16x8_t result = vreinterpretq_u16_s16( + vaddq_s16(sums, vdupq_n_s16(kCompoundOffset))); + vst1q_u16(compound_dest_y, result); + compound_dest_y += dest_stride; + } else { + const uint16x8_t result = vminq_u16( + vreinterpretq_u16_s16(sums), vdupq_n_u16((1 << kBitdepth10) - 1)); + vst1q_u16(dest_y, result); + dest_y = AddByteStride(dest_y, dest_stride); + } + p += step_y; + src_y = src + (p >> kScaleSubPixelBits) * src_stride; + prev_p = p; + + y -= 2; + } while (y != 0); + src += kIntermediateStride * intermediate_height; + x += 8; + } while (x < width); +} + +template <bool is_compound> +void ConvolveScale2D_NEON(const void* LIBGAV1_RESTRICT const reference, + const ptrdiff_t reference_stride, + const int horizontal_filter_index, + const int vertical_filter_index, const int subpixel_x, + const int subpixel_y, const int step_x, + const int step_y, const int width, const int height, + void* LIBGAV1_RESTRICT const prediction, + const ptrdiff_t pred_stride) { + const int horiz_filter_index = GetFilterIndex(horizontal_filter_index, width); + const int vert_filter_index = GetFilterIndex(vertical_filter_index, height); + assert(step_x <= 2048); + assert(step_y <= 2048); + const int num_vert_taps = GetNumTapsInFilter(vert_filter_index); + const int intermediate_height = + (((height - 1) * step_y + (1 << kScaleSubPixelBits) - 1) >> + kScaleSubPixelBits) + + num_vert_taps; + int16_t intermediate_result[kIntermediateAllocWidth * + (2 * kIntermediateAllocWidth + 8)]; +#if LIBGAV1_MSAN + // Quiet msan warnings. Set with random non-zero value to aid in debugging. + memset(intermediate_result, 0x54, sizeof(intermediate_result)); +#endif + // Horizontal filter. + // Filter types used for width <= 4 are different from those for width > 4. + // When width > 4, the valid filter index range is always [0, 3]. + // When width <= 4, the valid filter index range is always [3, 5]. + // The same applies to height and vertical filter index. + int filter_index = GetFilterIndex(horizontal_filter_index, width); + int16_t* intermediate = intermediate_result; + const ptrdiff_t src_stride = reference_stride; + const auto* src = static_cast<const uint16_t*>(reference); + const int vert_kernel_offset = (8 - num_vert_taps) / 2; + src = AddByteStride(src, vert_kernel_offset * src_stride); + + // Derive the maximum value of |step_x| at which all source values fit in one + // 16-byte (8-value) load. Final index is src_x + |num_taps| - 1 < 16 + // step_x*7 is the final base subpel index for the shuffle mask for filter + // inputs in each iteration on large blocks. When step_x is large, we need a + // larger structure and use a larger table lookup in order to gather all + // filter inputs. + const int num_horiz_taps = GetNumTapsInFilter(horiz_filter_index); + // |num_taps| - 1 is the shuffle index of the final filter input. + const int kernel_start_ceiling = 16 - num_horiz_taps; + // This truncated quotient |grade_x_threshold| selects |step_x| such that: + // (step_x * 7) >> kScaleSubPixelBits < single load limit + const int grade_x_threshold = + (kernel_start_ceiling << kScaleSubPixelBits) / 7; + + switch (filter_index) { + case 0: + if (step_x > grade_x_threshold) { + ConvolveKernelHorizontalSigned6Tap<2>( + src, src_stride, width, subpixel_x, step_x, intermediate_height, + intermediate); + } else { + ConvolveKernelHorizontalSigned6Tap<1>( + src, src_stride, width, subpixel_x, step_x, intermediate_height, + intermediate); + } + break; + case 1: + if (step_x > grade_x_threshold) { + ConvolveKernelHorizontalMixed6Tap<2>(src, src_stride, width, subpixel_x, + step_x, intermediate_height, + intermediate); + + } else { + ConvolveKernelHorizontalMixed6Tap<1>(src, src_stride, width, subpixel_x, + step_x, intermediate_height, + intermediate); + } + break; + case 2: + if (step_x > grade_x_threshold) { + ConvolveKernelHorizontalSigned8Tap<2>( + src, src_stride, width, subpixel_x, step_x, intermediate_height, + intermediate); + } else { + ConvolveKernelHorizontalSigned8Tap<1>( + src, src_stride, width, subpixel_x, step_x, intermediate_height, + intermediate); + } + break; + case 3: + if (step_x > grade_x_threshold) { + ConvolveKernelHorizontal2Tap<2>(src, src_stride, width, subpixel_x, + step_x, intermediate_height, + intermediate); + } else { + ConvolveKernelHorizontal2Tap<1>(src, src_stride, width, subpixel_x, + step_x, intermediate_height, + intermediate); + } + break; + case 4: + assert(width <= 4); + ConvolveKernelHorizontalSigned4Tap(src, src_stride, subpixel_x, step_x, + intermediate_height, intermediate); + break; + default: + assert(filter_index == 5); + ConvolveKernelHorizontalPositive4Tap(src, src_stride, subpixel_x, step_x, + intermediate_height, intermediate); + } + + // Vertical filter. + filter_index = GetFilterIndex(vertical_filter_index, height); + intermediate = intermediate_result; + switch (filter_index) { + case 0: + case 1: + if (step_y <= 1024) { + if (!is_compound && width == 2) { + ConvolveVerticalScale2Or4xH<6, 1, 2, is_compound>( + intermediate, subpixel_y, filter_index, step_y, height, + prediction, pred_stride); + } else if (width == 4) { + ConvolveVerticalScale2Or4xH<6, 1, 4, is_compound>( + intermediate, subpixel_y, filter_index, step_y, height, + prediction, pred_stride); + } else { + ConvolveVerticalScale<6, 1, is_compound>( + intermediate, intermediate_height, width, subpixel_y, + filter_index, step_y, height, prediction, pred_stride); + } + } else { + if (!is_compound && width == 2) { + ConvolveVerticalScale2Or4xH<6, 2, 2, is_compound>( + intermediate, subpixel_y, filter_index, step_y, height, + prediction, pred_stride); + } else if (width == 4) { + ConvolveVerticalScale2Or4xH<6, 2, 4, is_compound>( + intermediate, subpixel_y, filter_index, step_y, height, + prediction, pred_stride); + } else { + ConvolveVerticalScale<6, 2, is_compound>( + intermediate, intermediate_height, width, subpixel_y, + filter_index, step_y, height, prediction, pred_stride); + } + } + break; + case 2: + if (step_y <= 1024) { + if (!is_compound && width == 2) { + ConvolveVerticalScale2Or4xH<8, 1, 2, is_compound>( + intermediate, subpixel_y, filter_index, step_y, height, + prediction, pred_stride); + } else if (width == 4) { + ConvolveVerticalScale2Or4xH<8, 1, 4, is_compound>( + intermediate, subpixel_y, filter_index, step_y, height, + prediction, pred_stride); + } else { + ConvolveVerticalScale<8, 1, is_compound>( + intermediate, intermediate_height, width, subpixel_y, + filter_index, step_y, height, prediction, pred_stride); + } + } else { + if (!is_compound && width == 2) { + ConvolveVerticalScale2Or4xH<8, 2, 2, is_compound>( + intermediate, subpixel_y, filter_index, step_y, height, + prediction, pred_stride); + } else if (width == 4) { + ConvolveVerticalScale2Or4xH<8, 2, 4, is_compound>( + intermediate, subpixel_y, filter_index, step_y, height, + prediction, pred_stride); + } else { + ConvolveVerticalScale<8, 2, is_compound>( + intermediate, intermediate_height, width, subpixel_y, + filter_index, step_y, height, prediction, pred_stride); + } + } + break; + case 3: + if (step_y <= 1024) { + if (!is_compound && width == 2) { + ConvolveVerticalScale2Or4xH<2, 1, 2, is_compound>( + intermediate, subpixel_y, filter_index, step_y, height, + prediction, pred_stride); + } else if (width == 4) { + ConvolveVerticalScale2Or4xH<2, 1, 4, is_compound>( + intermediate, subpixel_y, filter_index, step_y, height, + prediction, pred_stride); + } else { + ConvolveVerticalScale<2, 1, is_compound>( + intermediate, intermediate_height, width, subpixel_y, + filter_index, step_y, height, prediction, pred_stride); + } + } else { + if (!is_compound && width == 2) { + ConvolveVerticalScale2Or4xH<2, 2, 2, is_compound>( + intermediate, subpixel_y, filter_index, step_y, height, + prediction, pred_stride); + } else if (width == 4) { + ConvolveVerticalScale2Or4xH<2, 2, 4, is_compound>( + intermediate, subpixel_y, filter_index, step_y, height, + prediction, pred_stride); + } else { + ConvolveVerticalScale<2, 2, is_compound>( + intermediate, intermediate_height, width, subpixel_y, + filter_index, step_y, height, prediction, pred_stride); + } + } + break; + default: + assert(filter_index == 4 || filter_index == 5); + assert(height <= 4); + if (step_y <= 1024) { + if (!is_compound && width == 2) { + ConvolveVerticalScale2Or4xH<4, 1, 2, is_compound>( + intermediate, subpixel_y, filter_index, step_y, height, + prediction, pred_stride); + } else if (width == 4) { + ConvolveVerticalScale2Or4xH<4, 1, 4, is_compound>( + intermediate, subpixel_y, filter_index, step_y, height, + prediction, pred_stride); + } else { + ConvolveVerticalScale<4, 1, is_compound>( + intermediate, intermediate_height, width, subpixel_y, + filter_index, step_y, height, prediction, pred_stride); + } + } else { + if (!is_compound && width == 2) { + ConvolveVerticalScale2Or4xH<4, 2, 2, is_compound>( + intermediate, subpixel_y, filter_index, step_y, height, + prediction, pred_stride); + } else if (width == 4) { + ConvolveVerticalScale2Or4xH<4, 2, 4, is_compound>( + intermediate, subpixel_y, filter_index, step_y, height, + prediction, pred_stride); + } else { + ConvolveVerticalScale<4, 2, is_compound>( + intermediate, intermediate_height, width, subpixel_y, + filter_index, step_y, height, prediction, pred_stride); + } + } + } +} + +void Init10bpp() { + Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth10); + assert(dsp != nullptr); + dsp->convolve[0][0][0][1] = ConvolveHorizontal_NEON; + dsp->convolve[0][0][1][0] = ConvolveVertical_NEON; + dsp->convolve[0][0][1][1] = Convolve2D_NEON; + + dsp->convolve[0][1][0][0] = ConvolveCompoundCopy_NEON; + dsp->convolve[0][1][0][1] = ConvolveCompoundHorizontal_NEON; + dsp->convolve[0][1][1][0] = ConvolveCompoundVertical_NEON; + dsp->convolve[0][1][1][1] = ConvolveCompound2D_NEON; + + dsp->convolve[1][0][0][1] = ConvolveIntraBlockCopyHorizontal_NEON; + dsp->convolve[1][0][1][0] = ConvolveIntraBlockCopyVertical_NEON; + dsp->convolve[1][0][1][1] = ConvolveIntraBlockCopy2D_NEON; + + dsp->convolve_scale[0] = ConvolveScale2D_NEON<false>; + dsp->convolve_scale[1] = ConvolveScale2D_NEON<true>; +} + +} // namespace + +void ConvolveInit10bpp_NEON() { Init10bpp(); } + +} // namespace dsp +} // namespace libgav1 + +#else // !(LIBGAV1_ENABLE_NEON && LIBGAV1_MAX_BITDEPTH >= 10) + +namespace libgav1 { +namespace dsp { + +void ConvolveInit10bpp_NEON() {} + +} // namespace dsp +} // namespace libgav1 +#endif // LIBGAV1_ENABLE_NEON && LIBGAV1_MAX_BITDEPTH >= 10 |