aboutsummaryrefslogtreecommitdiff
path: root/src/dsp/arm/convolve_neon.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/dsp/arm/convolve_neon.cc')
-rw-r--r--src/dsp/arm/convolve_neon.cc3105
1 files changed, 3105 insertions, 0 deletions
diff --git a/src/dsp/arm/convolve_neon.cc b/src/dsp/arm/convolve_neon.cc
new file mode 100644
index 0000000..fd9b912
--- /dev/null
+++ b/src/dsp/arm/convolve_neon.cc
@@ -0,0 +1,3105 @@
+// Copyright 2019 The libgav1 Authors
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "src/dsp/convolve.h"
+#include "src/utils/cpu.h"
+
+#if LIBGAV1_ENABLE_NEON
+
+#include <arm_neon.h>
+
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+
+#include "src/dsp/arm/common_neon.h"
+#include "src/dsp/constants.h"
+#include "src/dsp/dsp.h"
+#include "src/utils/common.h"
+#include "src/utils/compiler_attributes.h"
+
+namespace libgav1 {
+namespace dsp {
+namespace low_bitdepth {
+namespace {
+
+// Include the constants and utility functions inside the anonymous namespace.
+#include "src/dsp/convolve.inc"
+
+// Multiply every entry in |src[]| by the corresponding entry in |taps[]| and
+// sum. The filters in |taps[]| are pre-shifted by 1. This prevents the final
+// sum from outranging int16_t.
+template <int filter_index, bool negative_outside_taps = false>
+int16x8_t SumOnePassTaps(const uint8x8_t* const src,
+ const uint8x8_t* const taps) {
+ uint16x8_t sum;
+ if (filter_index == 0) {
+ // 6 taps. + - + + - +
+ sum = vmull_u8(src[0], taps[0]);
+ // Unsigned overflow will result in a valid int16_t value.
+ sum = vmlsl_u8(sum, src[1], taps[1]);
+ sum = vmlal_u8(sum, src[2], taps[2]);
+ sum = vmlal_u8(sum, src[3], taps[3]);
+ sum = vmlsl_u8(sum, src[4], taps[4]);
+ sum = vmlal_u8(sum, src[5], taps[5]);
+ } else if (filter_index == 1 && negative_outside_taps) {
+ // 6 taps. - + + + + -
+ // Set a base we can subtract from.
+ sum = vmull_u8(src[1], taps[1]);
+ sum = vmlsl_u8(sum, src[0], taps[0]);
+ sum = vmlal_u8(sum, src[2], taps[2]);
+ sum = vmlal_u8(sum, src[3], taps[3]);
+ sum = vmlal_u8(sum, src[4], taps[4]);
+ sum = vmlsl_u8(sum, src[5], taps[5]);
+ } else if (filter_index == 1) {
+ // 6 taps. All are positive.
+ sum = vmull_u8(src[0], taps[0]);
+ sum = vmlal_u8(sum, src[1], taps[1]);
+ sum = vmlal_u8(sum, src[2], taps[2]);
+ sum = vmlal_u8(sum, src[3], taps[3]);
+ sum = vmlal_u8(sum, src[4], taps[4]);
+ sum = vmlal_u8(sum, src[5], taps[5]);
+ } else if (filter_index == 2) {
+ // 8 taps. - + - + + - + -
+ sum = vmull_u8(src[1], taps[1]);
+ sum = vmlsl_u8(sum, src[0], taps[0]);
+ sum = vmlsl_u8(sum, src[2], taps[2]);
+ sum = vmlal_u8(sum, src[3], taps[3]);
+ sum = vmlal_u8(sum, src[4], taps[4]);
+ sum = vmlsl_u8(sum, src[5], taps[5]);
+ sum = vmlal_u8(sum, src[6], taps[6]);
+ sum = vmlsl_u8(sum, src[7], taps[7]);
+ } else if (filter_index == 3) {
+ // 2 taps. All are positive.
+ sum = vmull_u8(src[0], taps[0]);
+ sum = vmlal_u8(sum, src[1], taps[1]);
+ } else if (filter_index == 4) {
+ // 4 taps. - + + -
+ sum = vmull_u8(src[1], taps[1]);
+ sum = vmlsl_u8(sum, src[0], taps[0]);
+ sum = vmlal_u8(sum, src[2], taps[2]);
+ sum = vmlsl_u8(sum, src[3], taps[3]);
+ } else if (filter_index == 5) {
+ // 4 taps. All are positive.
+ sum = vmull_u8(src[0], taps[0]);
+ sum = vmlal_u8(sum, src[1], taps[1]);
+ sum = vmlal_u8(sum, src[2], taps[2]);
+ sum = vmlal_u8(sum, src[3], taps[3]);
+ }
+ return vreinterpretq_s16_u16(sum);
+}
+
+template <int filter_index, bool negative_outside_taps>
+int16x8_t SumHorizontalTaps(const uint8_t* const src,
+ const uint8x8_t* const v_tap) {
+ uint8x8_t v_src[8];
+ const uint8x16_t src_long = vld1q_u8(src);
+ int16x8_t sum;
+
+ if (filter_index < 2) {
+ v_src[0] = vget_low_u8(vextq_u8(src_long, src_long, 1));
+ v_src[1] = vget_low_u8(vextq_u8(src_long, src_long, 2));
+ v_src[2] = vget_low_u8(vextq_u8(src_long, src_long, 3));
+ v_src[3] = vget_low_u8(vextq_u8(src_long, src_long, 4));
+ v_src[4] = vget_low_u8(vextq_u8(src_long, src_long, 5));
+ v_src[5] = vget_low_u8(vextq_u8(src_long, src_long, 6));
+ sum = SumOnePassTaps<filter_index, negative_outside_taps>(v_src, v_tap + 1);
+ } else if (filter_index == 2) {
+ v_src[0] = vget_low_u8(src_long);
+ v_src[1] = vget_low_u8(vextq_u8(src_long, src_long, 1));
+ v_src[2] = vget_low_u8(vextq_u8(src_long, src_long, 2));
+ v_src[3] = vget_low_u8(vextq_u8(src_long, src_long, 3));
+ v_src[4] = vget_low_u8(vextq_u8(src_long, src_long, 4));
+ v_src[5] = vget_low_u8(vextq_u8(src_long, src_long, 5));
+ v_src[6] = vget_low_u8(vextq_u8(src_long, src_long, 6));
+ v_src[7] = vget_low_u8(vextq_u8(src_long, src_long, 7));
+ sum = SumOnePassTaps<filter_index, negative_outside_taps>(v_src, v_tap);
+ } else if (filter_index == 3) {
+ v_src[0] = vget_low_u8(vextq_u8(src_long, src_long, 3));
+ v_src[1] = vget_low_u8(vextq_u8(src_long, src_long, 4));
+ sum = SumOnePassTaps<filter_index, negative_outside_taps>(v_src, v_tap + 3);
+ } else if (filter_index > 3) {
+ v_src[0] = vget_low_u8(vextq_u8(src_long, src_long, 2));
+ v_src[1] = vget_low_u8(vextq_u8(src_long, src_long, 3));
+ v_src[2] = vget_low_u8(vextq_u8(src_long, src_long, 4));
+ v_src[3] = vget_low_u8(vextq_u8(src_long, src_long, 5));
+ sum = SumOnePassTaps<filter_index, negative_outside_taps>(v_src, v_tap + 2);
+ }
+ return sum;
+}
+
+template <int filter_index, bool negative_outside_taps>
+uint8x8_t SimpleHorizontalTaps(const uint8_t* const src,
+ const uint8x8_t* const v_tap) {
+ int16x8_t sum =
+ SumHorizontalTaps<filter_index, negative_outside_taps>(src, v_tap);
+
+ // Normally the Horizontal pass does the downshift in two passes:
+ // kInterRoundBitsHorizontal - 1 and then (kFilterBits -
+ // kInterRoundBitsHorizontal). Each one uses a rounding shift. Combining them
+ // requires adding the rounding offset from the skipped shift.
+ constexpr int first_shift_rounding_bit = 1 << (kInterRoundBitsHorizontal - 2);
+
+ sum = vaddq_s16(sum, vdupq_n_s16(first_shift_rounding_bit));
+ return vqrshrun_n_s16(sum, kFilterBits - 1);
+}
+
+template <int filter_index, bool negative_outside_taps>
+uint16x8_t HorizontalTaps8To16(const uint8_t* const src,
+ const uint8x8_t* const v_tap) {
+ const int16x8_t sum =
+ SumHorizontalTaps<filter_index, negative_outside_taps>(src, v_tap);
+
+ return vreinterpretq_u16_s16(
+ vrshrq_n_s16(sum, kInterRoundBitsHorizontal - 1));
+}
+
+template <int filter_index>
+int16x8_t SumHorizontalTaps2x2(const uint8_t* src, const ptrdiff_t src_stride,
+ const uint8x8_t* const v_tap) {
+ uint16x8_t sum;
+ const uint8x8_t input0 = vld1_u8(src);
+ src += src_stride;
+ const uint8x8_t input1 = vld1_u8(src);
+ uint8x8x2_t input = vzip_u8(input0, input1);
+
+ if (filter_index == 3) {
+ // tap signs : + +
+ sum = vmull_u8(vext_u8(input.val[0], input.val[1], 6), v_tap[3]);
+ sum = vmlal_u8(sum, input.val[1], v_tap[4]);
+ } else if (filter_index == 4) {
+ // tap signs : - + + -
+ sum = vmull_u8(vext_u8(input.val[0], input.val[1], 6), v_tap[3]);
+ sum = vmlsl_u8(sum, RightShift<4 * 8>(input.val[0]), v_tap[2]);
+ sum = vmlal_u8(sum, input.val[1], v_tap[4]);
+ sum = vmlsl_u8(sum, RightShift<2 * 8>(input.val[1]), v_tap[5]);
+ } else {
+ // tap signs : + + + +
+ sum = vmull_u8(RightShift<4 * 8>(input.val[0]), v_tap[2]);
+ sum = vmlal_u8(sum, vext_u8(input.val[0], input.val[1], 6), v_tap[3]);
+ sum = vmlal_u8(sum, input.val[1], v_tap[4]);
+ sum = vmlal_u8(sum, RightShift<2 * 8>(input.val[1]), v_tap[5]);
+ }
+
+ return vreinterpretq_s16_u16(sum);
+}
+
+template <int filter_index>
+uint8x8_t SimpleHorizontalTaps2x2(const uint8_t* src,
+ const ptrdiff_t src_stride,
+ const uint8x8_t* const v_tap) {
+ int16x8_t sum = SumHorizontalTaps2x2<filter_index>(src, src_stride, v_tap);
+
+ // Normally the Horizontal pass does the downshift in two passes:
+ // kInterRoundBitsHorizontal - 1 and then (kFilterBits -
+ // kInterRoundBitsHorizontal). Each one uses a rounding shift. Combining them
+ // requires adding the rounding offset from the skipped shift.
+ constexpr int first_shift_rounding_bit = 1 << (kInterRoundBitsHorizontal - 2);
+
+ sum = vaddq_s16(sum, vdupq_n_s16(first_shift_rounding_bit));
+ return vqrshrun_n_s16(sum, kFilterBits - 1);
+}
+
+template <int filter_index>
+uint16x8_t HorizontalTaps8To16_2x2(const uint8_t* src,
+ const ptrdiff_t src_stride,
+ const uint8x8_t* const v_tap) {
+ const int16x8_t sum =
+ SumHorizontalTaps2x2<filter_index>(src, src_stride, v_tap);
+
+ return vreinterpretq_u16_s16(
+ vrshrq_n_s16(sum, kInterRoundBitsHorizontal - 1));
+}
+
+template <int num_taps, int step, int filter_index,
+ bool negative_outside_taps = true, bool is_2d = false,
+ bool is_compound = false>
+void FilterHorizontal(const uint8_t* src, const ptrdiff_t src_stride,
+ void* const dest, const ptrdiff_t pred_stride,
+ const int width, const int height,
+ const uint8x8_t* const v_tap) {
+ auto* dest8 = static_cast<uint8_t*>(dest);
+ auto* dest16 = static_cast<uint16_t*>(dest);
+
+ // 4 tap filters are never used when width > 4.
+ if (num_taps != 4 && width > 4) {
+ int y = 0;
+ do {
+ int x = 0;
+ do {
+ if (is_2d || is_compound) {
+ const uint16x8_t v_sum =
+ HorizontalTaps8To16<filter_index, negative_outside_taps>(&src[x],
+ v_tap);
+ vst1q_u16(&dest16[x], v_sum);
+ } else {
+ const uint8x8_t result =
+ SimpleHorizontalTaps<filter_index, negative_outside_taps>(&src[x],
+ v_tap);
+ vst1_u8(&dest8[x], result);
+ }
+ x += step;
+ } while (x < width);
+ src += src_stride;
+ dest8 += pred_stride;
+ dest16 += pred_stride;
+ } while (++y < height);
+ return;
+ }
+
+ // Horizontal passes only needs to account for |num_taps| 2 and 4 when
+ // |width| <= 4.
+ assert(width <= 4);
+ assert(num_taps <= 4);
+ if (num_taps <= 4) {
+ if (width == 4) {
+ int y = 0;
+ do {
+ if (is_2d || is_compound) {
+ const uint16x8_t v_sum =
+ HorizontalTaps8To16<filter_index, negative_outside_taps>(src,
+ v_tap);
+ vst1_u16(dest16, vget_low_u16(v_sum));
+ } else {
+ const uint8x8_t result =
+ SimpleHorizontalTaps<filter_index, negative_outside_taps>(src,
+ v_tap);
+ StoreLo4(&dest8[0], result);
+ }
+ src += src_stride;
+ dest8 += pred_stride;
+ dest16 += pred_stride;
+ } while (++y < height);
+ return;
+ }
+
+ if (!is_compound) {
+ int y = 0;
+ do {
+ if (is_2d) {
+ const uint16x8_t sum =
+ HorizontalTaps8To16_2x2<filter_index>(src, src_stride, v_tap);
+ dest16[0] = vgetq_lane_u16(sum, 0);
+ dest16[1] = vgetq_lane_u16(sum, 2);
+ dest16 += pred_stride;
+ dest16[0] = vgetq_lane_u16(sum, 1);
+ dest16[1] = vgetq_lane_u16(sum, 3);
+ dest16 += pred_stride;
+ } else {
+ const uint8x8_t sum =
+ SimpleHorizontalTaps2x2<filter_index>(src, src_stride, v_tap);
+
+ dest8[0] = vget_lane_u8(sum, 0);
+ dest8[1] = vget_lane_u8(sum, 2);
+ dest8 += pred_stride;
+
+ dest8[0] = vget_lane_u8(sum, 1);
+ dest8[1] = vget_lane_u8(sum, 3);
+ dest8 += pred_stride;
+ }
+
+ src += src_stride << 1;
+ y += 2;
+ } while (y < height - 1);
+
+ // The 2d filters have an odd |height| because the horizontal pass
+ // generates context for the vertical pass.
+ if (is_2d) {
+ assert(height % 2 == 1);
+ uint16x8_t sum;
+ const uint8x8_t input = vld1_u8(src);
+ if (filter_index == 3) { // |num_taps| == 2
+ sum = vmull_u8(RightShift<3 * 8>(input), v_tap[3]);
+ sum = vmlal_u8(sum, RightShift<4 * 8>(input), v_tap[4]);
+ } else if (filter_index == 4) {
+ sum = vmull_u8(RightShift<3 * 8>(input), v_tap[3]);
+ sum = vmlsl_u8(sum, RightShift<2 * 8>(input), v_tap[2]);
+ sum = vmlal_u8(sum, RightShift<4 * 8>(input), v_tap[4]);
+ sum = vmlsl_u8(sum, RightShift<5 * 8>(input), v_tap[5]);
+ } else {
+ assert(filter_index == 5);
+ sum = vmull_u8(RightShift<2 * 8>(input), v_tap[2]);
+ sum = vmlal_u8(sum, RightShift<3 * 8>(input), v_tap[3]);
+ sum = vmlal_u8(sum, RightShift<4 * 8>(input), v_tap[4]);
+ sum = vmlal_u8(sum, RightShift<5 * 8>(input), v_tap[5]);
+ }
+ // |sum| contains an int16_t value.
+ sum = vreinterpretq_u16_s16(vrshrq_n_s16(
+ vreinterpretq_s16_u16(sum), kInterRoundBitsHorizontal - 1));
+ Store2<0>(dest16, sum);
+ }
+ }
+ }
+}
+
+// Process 16 bit inputs and output 32 bits.
+template <int num_taps, bool is_compound>
+inline int16x4_t Sum2DVerticalTaps4(const int16x4_t* const src,
+ const int16x8_t taps) {
+ const int16x4_t taps_lo = vget_low_s16(taps);
+ const int16x4_t taps_hi = vget_high_s16(taps);
+ int32x4_t sum;
+ if (num_taps == 8) {
+ sum = vmull_lane_s16(src[0], taps_lo, 0);
+ sum = vmlal_lane_s16(sum, src[1], taps_lo, 1);
+ sum = vmlal_lane_s16(sum, src[2], taps_lo, 2);
+ sum = vmlal_lane_s16(sum, src[3], taps_lo, 3);
+ sum = vmlal_lane_s16(sum, src[4], taps_hi, 0);
+ sum = vmlal_lane_s16(sum, src[5], taps_hi, 1);
+ sum = vmlal_lane_s16(sum, src[6], taps_hi, 2);
+ sum = vmlal_lane_s16(sum, src[7], taps_hi, 3);
+ } else if (num_taps == 6) {
+ sum = vmull_lane_s16(src[0], taps_lo, 1);
+ sum = vmlal_lane_s16(sum, src[1], taps_lo, 2);
+ sum = vmlal_lane_s16(sum, src[2], taps_lo, 3);
+ sum = vmlal_lane_s16(sum, src[3], taps_hi, 0);
+ sum = vmlal_lane_s16(sum, src[4], taps_hi, 1);
+ sum = vmlal_lane_s16(sum, src[5], taps_hi, 2);
+ } else if (num_taps == 4) {
+ sum = vmull_lane_s16(src[0], taps_lo, 2);
+ sum = vmlal_lane_s16(sum, src[1], taps_lo, 3);
+ sum = vmlal_lane_s16(sum, src[2], taps_hi, 0);
+ sum = vmlal_lane_s16(sum, src[3], taps_hi, 1);
+ } else if (num_taps == 2) {
+ sum = vmull_lane_s16(src[0], taps_lo, 3);
+ sum = vmlal_lane_s16(sum, src[1], taps_hi, 0);
+ }
+
+ if (is_compound) {
+ return vqrshrn_n_s32(sum, kInterRoundBitsCompoundVertical - 1);
+ }
+
+ return vqrshrn_n_s32(sum, kInterRoundBitsVertical - 1);
+}
+
+template <int num_taps, bool is_compound>
+int16x8_t SimpleSum2DVerticalTaps(const int16x8_t* const src,
+ const int16x8_t taps) {
+ const int16x4_t taps_lo = vget_low_s16(taps);
+ const int16x4_t taps_hi = vget_high_s16(taps);
+ int32x4_t sum_lo, sum_hi;
+ if (num_taps == 8) {
+ sum_lo = vmull_lane_s16(vget_low_s16(src[0]), taps_lo, 0);
+ sum_hi = vmull_lane_s16(vget_high_s16(src[0]), taps_lo, 0);
+ sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[1]), taps_lo, 1);
+ sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[1]), taps_lo, 1);
+ sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[2]), taps_lo, 2);
+ sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[2]), taps_lo, 2);
+ sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[3]), taps_lo, 3);
+ sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[3]), taps_lo, 3);
+
+ sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[4]), taps_hi, 0);
+ sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[4]), taps_hi, 0);
+ sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[5]), taps_hi, 1);
+ sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[5]), taps_hi, 1);
+ sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[6]), taps_hi, 2);
+ sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[6]), taps_hi, 2);
+ sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[7]), taps_hi, 3);
+ sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[7]), taps_hi, 3);
+ } else if (num_taps == 6) {
+ sum_lo = vmull_lane_s16(vget_low_s16(src[0]), taps_lo, 1);
+ sum_hi = vmull_lane_s16(vget_high_s16(src[0]), taps_lo, 1);
+ sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[1]), taps_lo, 2);
+ sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[1]), taps_lo, 2);
+ sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[2]), taps_lo, 3);
+ sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[2]), taps_lo, 3);
+
+ sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[3]), taps_hi, 0);
+ sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[3]), taps_hi, 0);
+ sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[4]), taps_hi, 1);
+ sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[4]), taps_hi, 1);
+ sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[5]), taps_hi, 2);
+ sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[5]), taps_hi, 2);
+ } else if (num_taps == 4) {
+ sum_lo = vmull_lane_s16(vget_low_s16(src[0]), taps_lo, 2);
+ sum_hi = vmull_lane_s16(vget_high_s16(src[0]), taps_lo, 2);
+ sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[1]), taps_lo, 3);
+ sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[1]), taps_lo, 3);
+
+ sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[2]), taps_hi, 0);
+ sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[2]), taps_hi, 0);
+ sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[3]), taps_hi, 1);
+ sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[3]), taps_hi, 1);
+ } else if (num_taps == 2) {
+ sum_lo = vmull_lane_s16(vget_low_s16(src[0]), taps_lo, 3);
+ sum_hi = vmull_lane_s16(vget_high_s16(src[0]), taps_lo, 3);
+
+ sum_lo = vmlal_lane_s16(sum_lo, vget_low_s16(src[1]), taps_hi, 0);
+ sum_hi = vmlal_lane_s16(sum_hi, vget_high_s16(src[1]), taps_hi, 0);
+ }
+
+ if (is_compound) {
+ return vcombine_s16(
+ vqrshrn_n_s32(sum_lo, kInterRoundBitsCompoundVertical - 1),
+ vqrshrn_n_s32(sum_hi, kInterRoundBitsCompoundVertical - 1));
+ }
+
+ return vcombine_s16(vqrshrn_n_s32(sum_lo, kInterRoundBitsVertical - 1),
+ vqrshrn_n_s32(sum_hi, kInterRoundBitsVertical - 1));
+}
+
+template <int num_taps, bool is_compound = false>
+void Filter2DVertical(const uint16_t* src, void* const dst,
+ const ptrdiff_t dst_stride, const int width,
+ const int height, const int16x8_t taps) {
+ assert(width >= 8);
+ constexpr int next_row = num_taps - 1;
+ // The Horizontal pass uses |width| as |stride| for the intermediate buffer.
+ const ptrdiff_t src_stride = width;
+
+ auto* dst8 = static_cast<uint8_t*>(dst);
+ auto* dst16 = static_cast<uint16_t*>(dst);
+
+ int x = 0;
+ do {
+ int16x8_t srcs[8];
+ const uint16_t* src_x = src + x;
+ srcs[0] = vreinterpretq_s16_u16(vld1q_u16(src_x));
+ src_x += src_stride;
+ if (num_taps >= 4) {
+ srcs[1] = vreinterpretq_s16_u16(vld1q_u16(src_x));
+ src_x += src_stride;
+ srcs[2] = vreinterpretq_s16_u16(vld1q_u16(src_x));
+ src_x += src_stride;
+ if (num_taps >= 6) {
+ srcs[3] = vreinterpretq_s16_u16(vld1q_u16(src_x));
+ src_x += src_stride;
+ srcs[4] = vreinterpretq_s16_u16(vld1q_u16(src_x));
+ src_x += src_stride;
+ if (num_taps == 8) {
+ srcs[5] = vreinterpretq_s16_u16(vld1q_u16(src_x));
+ src_x += src_stride;
+ srcs[6] = vreinterpretq_s16_u16(vld1q_u16(src_x));
+ src_x += src_stride;
+ }
+ }
+ }
+
+ int y = 0;
+ do {
+ srcs[next_row] = vreinterpretq_s16_u16(vld1q_u16(src_x));
+ src_x += src_stride;
+
+ const int16x8_t sum =
+ SimpleSum2DVerticalTaps<num_taps, is_compound>(srcs, taps);
+ if (is_compound) {
+ vst1q_u16(dst16 + x + y * dst_stride, vreinterpretq_u16_s16(sum));
+ } else {
+ vst1_u8(dst8 + x + y * dst_stride, vqmovun_s16(sum));
+ }
+
+ srcs[0] = srcs[1];
+ if (num_taps >= 4) {
+ srcs[1] = srcs[2];
+ srcs[2] = srcs[3];
+ if (num_taps >= 6) {
+ srcs[3] = srcs[4];
+ srcs[4] = srcs[5];
+ if (num_taps == 8) {
+ srcs[5] = srcs[6];
+ srcs[6] = srcs[7];
+ }
+ }
+ }
+ } while (++y < height);
+ x += 8;
+ } while (x < width);
+}
+
+// Take advantage of |src_stride| == |width| to process two rows at a time.
+template <int num_taps, bool is_compound = false>
+void Filter2DVertical4xH(const uint16_t* src, void* const dst,
+ const ptrdiff_t dst_stride, const int height,
+ const int16x8_t taps) {
+ auto* dst8 = static_cast<uint8_t*>(dst);
+ auto* dst16 = static_cast<uint16_t*>(dst);
+
+ int16x8_t srcs[9];
+ srcs[0] = vreinterpretq_s16_u16(vld1q_u16(src));
+ src += 8;
+ if (num_taps >= 4) {
+ srcs[2] = vreinterpretq_s16_u16(vld1q_u16(src));
+ src += 8;
+ srcs[1] = vcombine_s16(vget_high_s16(srcs[0]), vget_low_s16(srcs[2]));
+ if (num_taps >= 6) {
+ srcs[4] = vreinterpretq_s16_u16(vld1q_u16(src));
+ src += 8;
+ srcs[3] = vcombine_s16(vget_high_s16(srcs[2]), vget_low_s16(srcs[4]));
+ if (num_taps == 8) {
+ srcs[6] = vreinterpretq_s16_u16(vld1q_u16(src));
+ src += 8;
+ srcs[5] = vcombine_s16(vget_high_s16(srcs[4]), vget_low_s16(srcs[6]));
+ }
+ }
+ }
+
+ int y = 0;
+ do {
+ srcs[num_taps] = vreinterpretq_s16_u16(vld1q_u16(src));
+ src += 8;
+ srcs[num_taps - 1] = vcombine_s16(vget_high_s16(srcs[num_taps - 2]),
+ vget_low_s16(srcs[num_taps]));
+
+ const int16x8_t sum =
+ SimpleSum2DVerticalTaps<num_taps, is_compound>(srcs, taps);
+ if (is_compound) {
+ const uint16x8_t results = vreinterpretq_u16_s16(sum);
+ vst1q_u16(dst16, results);
+ dst16 += 4 << 1;
+ } else {
+ const uint8x8_t results = vqmovun_s16(sum);
+
+ StoreLo4(dst8, results);
+ dst8 += dst_stride;
+ StoreHi4(dst8, results);
+ dst8 += dst_stride;
+ }
+
+ srcs[0] = srcs[2];
+ if (num_taps >= 4) {
+ srcs[1] = srcs[3];
+ srcs[2] = srcs[4];
+ if (num_taps >= 6) {
+ srcs[3] = srcs[5];
+ srcs[4] = srcs[6];
+ if (num_taps == 8) {
+ srcs[5] = srcs[7];
+ srcs[6] = srcs[8];
+ }
+ }
+ }
+ y += 2;
+ } while (y < height);
+}
+
+// Take advantage of |src_stride| == |width| to process four rows at a time.
+template <int num_taps>
+void Filter2DVertical2xH(const uint16_t* src, void* const dst,
+ const ptrdiff_t dst_stride, const int height,
+ const int16x8_t taps) {
+ constexpr int next_row = (num_taps < 6) ? 4 : 8;
+
+ auto* dst8 = static_cast<uint8_t*>(dst);
+
+ int16x8_t srcs[9];
+ srcs[0] = vreinterpretq_s16_u16(vld1q_u16(src));
+ src += 8;
+ if (num_taps >= 6) {
+ srcs[4] = vreinterpretq_s16_u16(vld1q_u16(src));
+ src += 8;
+ srcs[1] = vextq_s16(srcs[0], srcs[4], 2);
+ if (num_taps == 8) {
+ srcs[2] = vcombine_s16(vget_high_s16(srcs[0]), vget_low_s16(srcs[4]));
+ srcs[3] = vextq_s16(srcs[0], srcs[4], 6);
+ }
+ }
+
+ int y = 0;
+ do {
+ srcs[next_row] = vreinterpretq_s16_u16(vld1q_u16(src));
+ src += 8;
+ if (num_taps == 2) {
+ srcs[1] = vextq_s16(srcs[0], srcs[4], 2);
+ } else if (num_taps == 4) {
+ srcs[1] = vextq_s16(srcs[0], srcs[4], 2);
+ srcs[2] = vcombine_s16(vget_high_s16(srcs[0]), vget_low_s16(srcs[4]));
+ srcs[3] = vextq_s16(srcs[0], srcs[4], 6);
+ } else if (num_taps == 6) {
+ srcs[2] = vcombine_s16(vget_high_s16(srcs[0]), vget_low_s16(srcs[4]));
+ srcs[3] = vextq_s16(srcs[0], srcs[4], 6);
+ srcs[5] = vextq_s16(srcs[4], srcs[8], 2);
+ } else if (num_taps == 8) {
+ srcs[5] = vextq_s16(srcs[4], srcs[8], 2);
+ srcs[6] = vcombine_s16(vget_high_s16(srcs[4]), vget_low_s16(srcs[8]));
+ srcs[7] = vextq_s16(srcs[4], srcs[8], 6);
+ }
+
+ const int16x8_t sum =
+ SimpleSum2DVerticalTaps<num_taps, /*is_compound=*/false>(srcs, taps);
+ const uint8x8_t results = vqmovun_s16(sum);
+
+ Store2<0>(dst8, results);
+ dst8 += dst_stride;
+ Store2<1>(dst8, results);
+ // When |height| <= 4 the taps are restricted to 2 and 4 tap variants.
+ // Therefore we don't need to check this condition when |height| > 4.
+ if (num_taps <= 4 && height == 2) return;
+ dst8 += dst_stride;
+ Store2<2>(dst8, results);
+ dst8 += dst_stride;
+ Store2<3>(dst8, results);
+ dst8 += dst_stride;
+
+ srcs[0] = srcs[4];
+ if (num_taps == 6) {
+ srcs[1] = srcs[5];
+ srcs[4] = srcs[8];
+ } else if (num_taps == 8) {
+ srcs[1] = srcs[5];
+ srcs[2] = srcs[6];
+ srcs[3] = srcs[7];
+ srcs[4] = srcs[8];
+ }
+
+ y += 4;
+ } while (y < height);
+}
+
+template <bool is_2d = false, bool is_compound = false>
+LIBGAV1_ALWAYS_INLINE void DoHorizontalPass(
+ const uint8_t* const src, const ptrdiff_t src_stride, void* const dst,
+ const ptrdiff_t dst_stride, const int width, const int height,
+ const int filter_id, const int filter_index) {
+ // Duplicate the absolute value for each tap. Negative taps are corrected
+ // by using the vmlsl_u8 instruction. Positive taps use vmlal_u8.
+ uint8x8_t v_tap[kSubPixelTaps];
+ assert(filter_id != 0);
+
+ for (int k = 0; k < kSubPixelTaps; ++k) {
+ v_tap[k] = vdup_n_u8(kAbsHalfSubPixelFilters[filter_index][filter_id][k]);
+ }
+
+ if (filter_index == 2) { // 8 tap.
+ FilterHorizontal<8, 8, 2, true, is_2d, is_compound>(
+ src, src_stride, dst, dst_stride, width, height, v_tap);
+ } else if (filter_index == 1) { // 6 tap.
+ // Check if outside taps are positive.
+ if ((filter_id == 1) | (filter_id == 15)) {
+ FilterHorizontal<6, 8, 1, false, is_2d, is_compound>(
+ src, src_stride, dst, dst_stride, width, height, v_tap);
+ } else {
+ FilterHorizontal<6, 8, 1, true, is_2d, is_compound>(
+ src, src_stride, dst, dst_stride, width, height, v_tap);
+ }
+ } else if (filter_index == 0) { // 6 tap.
+ FilterHorizontal<6, 8, 0, true, is_2d, is_compound>(
+ src, src_stride, dst, dst_stride, width, height, v_tap);
+ } else if (filter_index == 4) { // 4 tap.
+ FilterHorizontal<4, 8, 4, true, is_2d, is_compound>(
+ src, src_stride, dst, dst_stride, width, height, v_tap);
+ } else if (filter_index == 5) { // 4 tap.
+ FilterHorizontal<4, 8, 5, true, is_2d, is_compound>(
+ src, src_stride, dst, dst_stride, width, height, v_tap);
+ } else { // 2 tap.
+ FilterHorizontal<2, 8, 3, true, is_2d, is_compound>(
+ src, src_stride, dst, dst_stride, width, height, v_tap);
+ }
+}
+
+void Convolve2D_NEON(const void* const reference,
+ const ptrdiff_t reference_stride,
+ const int horizontal_filter_index,
+ const int vertical_filter_index,
+ const int horizontal_filter_id,
+ const int vertical_filter_id, const int width,
+ const int height, void* prediction,
+ const ptrdiff_t pred_stride) {
+ const int horiz_filter_index = GetFilterIndex(horizontal_filter_index, width);
+ const int vert_filter_index = GetFilterIndex(vertical_filter_index, height);
+ const int vertical_taps = GetNumTapsInFilter(vert_filter_index);
+
+ // The output of the horizontal filter is guaranteed to fit in 16 bits.
+ uint16_t
+ intermediate_result[kMaxSuperBlockSizeInPixels *
+ (kMaxSuperBlockSizeInPixels + kSubPixelTaps - 1)];
+ const int intermediate_height = height + vertical_taps - 1;
+
+ const ptrdiff_t src_stride = reference_stride;
+ const auto* src = static_cast<const uint8_t*>(reference) -
+ (vertical_taps / 2 - 1) * src_stride - kHorizontalOffset;
+
+ DoHorizontalPass</*is_2d=*/true>(src, src_stride, intermediate_result, width,
+ width, intermediate_height,
+ horizontal_filter_id, horiz_filter_index);
+
+ // Vertical filter.
+ auto* dest = static_cast<uint8_t*>(prediction);
+ const ptrdiff_t dest_stride = pred_stride;
+ assert(vertical_filter_id != 0);
+
+ const int16x8_t taps = vmovl_s8(
+ vld1_s8(kHalfSubPixelFilters[vert_filter_index][vertical_filter_id]));
+
+ if (vertical_taps == 8) {
+ if (width == 2) {
+ Filter2DVertical2xH<8>(intermediate_result, dest, dest_stride, height,
+ taps);
+ } else if (width == 4) {
+ Filter2DVertical4xH<8>(intermediate_result, dest, dest_stride, height,
+ taps);
+ } else {
+ Filter2DVertical<8>(intermediate_result, dest, dest_stride, width, height,
+ taps);
+ }
+ } else if (vertical_taps == 6) {
+ if (width == 2) {
+ Filter2DVertical2xH<6>(intermediate_result, dest, dest_stride, height,
+ taps);
+ } else if (width == 4) {
+ Filter2DVertical4xH<6>(intermediate_result, dest, dest_stride, height,
+ taps);
+ } else {
+ Filter2DVertical<6>(intermediate_result, dest, dest_stride, width, height,
+ taps);
+ }
+ } else if (vertical_taps == 4) {
+ if (width == 2) {
+ Filter2DVertical2xH<4>(intermediate_result, dest, dest_stride, height,
+ taps);
+ } else if (width == 4) {
+ Filter2DVertical4xH<4>(intermediate_result, dest, dest_stride, height,
+ taps);
+ } else {
+ Filter2DVertical<4>(intermediate_result, dest, dest_stride, width, height,
+ taps);
+ }
+ } else { // |vertical_taps| == 2
+ if (width == 2) {
+ Filter2DVertical2xH<2>(intermediate_result, dest, dest_stride, height,
+ taps);
+ } else if (width == 4) {
+ Filter2DVertical4xH<2>(intermediate_result, dest, dest_stride, height,
+ taps);
+ } else {
+ Filter2DVertical<2>(intermediate_result, dest, dest_stride, width, height,
+ taps);
+ }
+ }
+}
+
+// There are many opportunities for overreading in scaled convolve, because the
+// range of starting points for filter windows is anywhere from 0 to 16 for 8
+// destination pixels, and the window sizes range from 2 to 8. To accommodate
+// this range concisely, we use |grade_x| to mean the most steps in src that can
+// be traversed in a single |step_x| increment, i.e. 1 or 2. When grade_x is 2,
+// we are guaranteed to exceed 8 whole steps in src for every 8 |step_x|
+// increments. The first load covers the initial elements of src_x, while the
+// final load covers the taps.
+template <int grade_x>
+inline uint8x8x3_t LoadSrcVals(const uint8_t* src_x) {
+ uint8x8x3_t ret;
+ const uint8x16_t src_val = vld1q_u8(src_x);
+ ret.val[0] = vget_low_u8(src_val);
+ ret.val[1] = vget_high_u8(src_val);
+ if (grade_x > 1) {
+ ret.val[2] = vld1_u8(src_x + 16);
+ }
+ return ret;
+}
+
+// Pre-transpose the 2 tap filters in |kAbsHalfSubPixelFilters|[3]
+inline uint8x16_t GetPositive2TapFilter(const int tap_index) {
+ assert(tap_index < 2);
+ alignas(
+ 16) static constexpr uint8_t kAbsHalfSubPixel2TapFilterColumns[2][16] = {
+ {64, 60, 56, 52, 48, 44, 40, 36, 32, 28, 24, 20, 16, 12, 8, 4},
+ {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60}};
+
+ return vld1q_u8(kAbsHalfSubPixel2TapFilterColumns[tap_index]);
+}
+
+template <int grade_x>
+inline void ConvolveKernelHorizontal2Tap(const uint8_t* src,
+ const ptrdiff_t src_stride,
+ const int width, const int subpixel_x,
+ const int step_x,
+ const int intermediate_height,
+ int16_t* intermediate) {
+ // Account for the 0-taps that precede the 2 nonzero taps.
+ const int kernel_offset = 3;
+ const int ref_x = subpixel_x >> kScaleSubPixelBits;
+ const int step_x8 = step_x << 3;
+ const uint8x16_t filter_taps0 = GetPositive2TapFilter(0);
+ const uint8x16_t filter_taps1 = GetPositive2TapFilter(1);
+ const uint16x8_t index_steps = vmulq_n_u16(
+ vmovl_u8(vcreate_u8(0x0706050403020100)), static_cast<uint16_t>(step_x));
+ const uint8x8_t filter_index_mask = vdup_n_u8(kSubPixelMask);
+
+ int p = subpixel_x;
+ if (width <= 4) {
+ const uint8_t* src_x =
+ &src[(p >> kScaleSubPixelBits) - ref_x + kernel_offset];
+ // Only add steps to the 10-bit truncated p to avoid overflow.
+ const uint16x8_t p_fraction = vdupq_n_u16(p & 1023);
+ const uint16x8_t subpel_index_offsets = vaddq_u16(index_steps, p_fraction);
+ const uint8x8_t filter_indices =
+ vand_u8(vshrn_n_u16(subpel_index_offsets, 6), filter_index_mask);
+ // This is a special case. The 2-tap filter has no negative taps, so we
+ // can use unsigned values.
+ // For each x, a lane of tapsK has
+ // kSubPixelFilters[filter_index][filter_id][k], where filter_id depends
+ // on x.
+ const uint8x8_t taps[2] = {VQTbl1U8(filter_taps0, filter_indices),
+ VQTbl1U8(filter_taps1, filter_indices)};
+ int y = 0;
+ do {
+ // Load a pool of samples to select from using stepped indices.
+ const uint8x16_t src_vals = vld1q_u8(src_x);
+ const uint8x8_t src_indices =
+ vmovn_u16(vshrq_n_u16(subpel_index_offsets, kScaleSubPixelBits));
+
+ // For each x, a lane of srcK contains src_x[k].
+ const uint8x8_t src[2] = {
+ VQTbl1U8(src_vals, src_indices),
+ VQTbl1U8(src_vals, vadd_u8(src_indices, vdup_n_u8(1)))};
+
+ vst1q_s16(intermediate,
+ vrshrq_n_s16(SumOnePassTaps</*filter_index=*/3>(src, taps),
+ kInterRoundBitsHorizontal - 1));
+ src_x += src_stride;
+ intermediate += kIntermediateStride;
+ } while (++y < intermediate_height);
+ return;
+ }
+
+ // |width| >= 8
+ int x = 0;
+ do {
+ const uint8_t* src_x =
+ &src[(p >> kScaleSubPixelBits) - ref_x + kernel_offset];
+ int16_t* intermediate_x = intermediate + x;
+ // Only add steps to the 10-bit truncated p to avoid overflow.
+ const uint16x8_t p_fraction = vdupq_n_u16(p & 1023);
+ const uint16x8_t subpel_index_offsets = vaddq_u16(index_steps, p_fraction);
+ const uint8x8_t filter_indices =
+ vand_u8(vshrn_n_u16(subpel_index_offsets, kFilterIndexShift),
+ filter_index_mask);
+ // This is a special case. The 2-tap filter has no negative taps, so we
+ // can use unsigned values.
+ // For each x, a lane of tapsK has
+ // kSubPixelFilters[filter_index][filter_id][k], where filter_id depends
+ // on x.
+ const uint8x8_t taps[2] = {VQTbl1U8(filter_taps0, filter_indices),
+ VQTbl1U8(filter_taps1, filter_indices)};
+ int y = 0;
+ do {
+ // Load a pool of samples to select from using stepped indices.
+ const uint8x8x3_t src_vals = LoadSrcVals<grade_x>(src_x);
+ const uint8x8_t src_indices =
+ vmovn_u16(vshrq_n_u16(subpel_index_offsets, kScaleSubPixelBits));
+
+ // For each x, a lane of srcK contains src_x[k].
+ const uint8x8_t src[2] = {
+ vtbl3_u8(src_vals, src_indices),
+ vtbl3_u8(src_vals, vadd_u8(src_indices, vdup_n_u8(1)))};
+
+ vst1q_s16(intermediate_x,
+ vrshrq_n_s16(SumOnePassTaps</*filter_index=*/3>(src, taps),
+ kInterRoundBitsHorizontal - 1));
+ src_x += src_stride;
+ intermediate_x += kIntermediateStride;
+ } while (++y < intermediate_height);
+ x += 8;
+ p += step_x8;
+ } while (x < width);
+}
+
+// Pre-transpose the 4 tap filters in |kAbsHalfSubPixelFilters|[5].
+inline uint8x16_t GetPositive4TapFilter(const int tap_index) {
+ assert(tap_index < 4);
+ alignas(
+ 16) static constexpr uint8_t kSubPixel4TapPositiveFilterColumns[4][16] = {
+ {0, 15, 13, 11, 10, 9, 8, 7, 6, 6, 5, 4, 3, 2, 2, 1},
+ {64, 31, 31, 31, 30, 29, 28, 27, 26, 24, 23, 22, 21, 20, 18, 17},
+ {0, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 31, 31},
+ {0, 1, 2, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 13, 15}};
+
+ return vld1q_u8(kSubPixel4TapPositiveFilterColumns[tap_index]);
+}
+
+// This filter is only possible when width <= 4.
+void ConvolveKernelHorizontalPositive4Tap(
+ const uint8_t* src, const ptrdiff_t src_stride, const int subpixel_x,
+ const int step_x, const int intermediate_height, int16_t* intermediate) {
+ const int kernel_offset = 2;
+ const int ref_x = subpixel_x >> kScaleSubPixelBits;
+ const uint8x8_t filter_index_mask = vdup_n_u8(kSubPixelMask);
+ const uint8x16_t filter_taps0 = GetPositive4TapFilter(0);
+ const uint8x16_t filter_taps1 = GetPositive4TapFilter(1);
+ const uint8x16_t filter_taps2 = GetPositive4TapFilter(2);
+ const uint8x16_t filter_taps3 = GetPositive4TapFilter(3);
+ const uint16x8_t index_steps = vmulq_n_u16(
+ vmovl_u8(vcreate_u8(0x0706050403020100)), static_cast<uint16_t>(step_x));
+ const int p = subpixel_x;
+ // First filter is special, just a 128 tap on the center.
+ const uint8_t* src_x =
+ &src[(p >> kScaleSubPixelBits) - ref_x + kernel_offset];
+ // Only add steps to the 10-bit truncated p to avoid overflow.
+ const uint16x8_t p_fraction = vdupq_n_u16(p & 1023);
+ const uint16x8_t subpel_index_offsets = vaddq_u16(index_steps, p_fraction);
+ const uint8x8_t filter_indices = vand_u8(
+ vshrn_n_u16(subpel_index_offsets, kFilterIndexShift), filter_index_mask);
+ // Note that filter_id depends on x.
+ // For each x, tapsK has kSubPixelFilters[filter_index][filter_id][k].
+ const uint8x8_t taps[4] = {VQTbl1U8(filter_taps0, filter_indices),
+ VQTbl1U8(filter_taps1, filter_indices),
+ VQTbl1U8(filter_taps2, filter_indices),
+ VQTbl1U8(filter_taps3, filter_indices)};
+
+ const uint8x8_t src_indices =
+ vmovn_u16(vshrq_n_u16(subpel_index_offsets, kScaleSubPixelBits));
+ int y = 0;
+ do {
+ // Load a pool of samples to select from using stepped index vectors.
+ const uint8x16_t src_vals = vld1q_u8(src_x);
+
+ // For each x, srcK contains src_x[k] where k=1.
+ // Whereas taps come from different arrays, src pixels are drawn from the
+ // same contiguous line.
+ const uint8x8_t src[4] = {
+ VQTbl1U8(src_vals, src_indices),
+ VQTbl1U8(src_vals, vadd_u8(src_indices, vdup_n_u8(1))),
+ VQTbl1U8(src_vals, vadd_u8(src_indices, vdup_n_u8(2))),
+ VQTbl1U8(src_vals, vadd_u8(src_indices, vdup_n_u8(3)))};
+
+ vst1q_s16(intermediate,
+ vrshrq_n_s16(SumOnePassTaps</*filter_index=*/5>(src, taps),
+ kInterRoundBitsHorizontal - 1));
+
+ src_x += src_stride;
+ intermediate += kIntermediateStride;
+ } while (++y < intermediate_height);
+}
+
+// Pre-transpose the 4 tap filters in |kAbsHalfSubPixelFilters|[4].
+inline uint8x16_t GetSigned4TapFilter(const int tap_index) {
+ assert(tap_index < 4);
+ alignas(16) static constexpr uint8_t
+ kAbsHalfSubPixel4TapSignedFilterColumns[4][16] = {
+ {0, 2, 4, 5, 6, 6, 7, 6, 6, 5, 5, 5, 4, 3, 2, 1},
+ {64, 63, 61, 58, 55, 51, 47, 42, 38, 33, 29, 24, 19, 14, 9, 4},
+ {0, 4, 9, 14, 19, 24, 29, 33, 38, 42, 47, 51, 55, 58, 61, 63},
+ {0, 1, 2, 3, 4, 5, 5, 5, 6, 6, 7, 6, 6, 5, 4, 2}};
+
+ return vld1q_u8(kAbsHalfSubPixel4TapSignedFilterColumns[tap_index]);
+}
+
+// This filter is only possible when width <= 4.
+inline void ConvolveKernelHorizontalSigned4Tap(
+ const uint8_t* src, const ptrdiff_t src_stride, const int subpixel_x,
+ const int step_x, const int intermediate_height, int16_t* intermediate) {
+ const int kernel_offset = 2;
+ const int ref_x = subpixel_x >> kScaleSubPixelBits;
+ const uint8x8_t filter_index_mask = vdup_n_u8(kSubPixelMask);
+ const uint8x16_t filter_taps0 = GetSigned4TapFilter(0);
+ const uint8x16_t filter_taps1 = GetSigned4TapFilter(1);
+ const uint8x16_t filter_taps2 = GetSigned4TapFilter(2);
+ const uint8x16_t filter_taps3 = GetSigned4TapFilter(3);
+ const uint16x4_t index_steps = vmul_n_u16(vcreate_u16(0x0003000200010000),
+ static_cast<uint16_t>(step_x));
+
+ const int p = subpixel_x;
+ const uint8_t* src_x =
+ &src[(p >> kScaleSubPixelBits) - ref_x + kernel_offset];
+ // Only add steps to the 10-bit truncated p to avoid overflow.
+ const uint16x4_t p_fraction = vdup_n_u16(p & 1023);
+ const uint16x4_t subpel_index_offsets = vadd_u16(index_steps, p_fraction);
+ const uint8x8_t filter_index_offsets = vshrn_n_u16(
+ vcombine_u16(subpel_index_offsets, vdup_n_u16(0)), kFilterIndexShift);
+ const uint8x8_t filter_indices =
+ vand_u8(filter_index_offsets, filter_index_mask);
+ // Note that filter_id depends on x.
+ // For each x, tapsK has kSubPixelFilters[filter_index][filter_id][k].
+ const uint8x8_t taps[4] = {VQTbl1U8(filter_taps0, filter_indices),
+ VQTbl1U8(filter_taps1, filter_indices),
+ VQTbl1U8(filter_taps2, filter_indices),
+ VQTbl1U8(filter_taps3, filter_indices)};
+
+ const uint8x8_t src_indices_base =
+ vshr_n_u8(filter_index_offsets, kScaleSubPixelBits - kFilterIndexShift);
+
+ const uint8x8_t src_indices[4] = {src_indices_base,
+ vadd_u8(src_indices_base, vdup_n_u8(1)),
+ vadd_u8(src_indices_base, vdup_n_u8(2)),
+ vadd_u8(src_indices_base, vdup_n_u8(3))};
+
+ int y = 0;
+ do {
+ // Load a pool of samples to select from using stepped indices.
+ const uint8x16_t src_vals = vld1q_u8(src_x);
+
+ // For each x, srcK contains src_x[k] where k=1.
+ // Whereas taps come from different arrays, src pixels are drawn from the
+ // same contiguous line.
+ const uint8x8_t src[4] = {
+ VQTbl1U8(src_vals, src_indices[0]), VQTbl1U8(src_vals, src_indices[1]),
+ VQTbl1U8(src_vals, src_indices[2]), VQTbl1U8(src_vals, src_indices[3])};
+
+ vst1q_s16(intermediate,
+ vrshrq_n_s16(SumOnePassTaps</*filter_index=*/4>(src, taps),
+ kInterRoundBitsHorizontal - 1));
+ src_x += src_stride;
+ intermediate += kIntermediateStride;
+ } while (++y < intermediate_height);
+}
+
+// Pre-transpose the 6 tap filters in |kAbsHalfSubPixelFilters|[0].
+inline uint8x16_t GetSigned6TapFilter(const int tap_index) {
+ assert(tap_index < 6);
+ alignas(16) static constexpr uint8_t
+ kAbsHalfSubPixel6TapSignedFilterColumns[6][16] = {
+ {0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0},
+ {0, 3, 5, 6, 7, 7, 8, 7, 7, 6, 6, 6, 5, 4, 2, 1},
+ {64, 63, 61, 58, 55, 51, 47, 42, 38, 33, 29, 24, 19, 14, 9, 4},
+ {0, 4, 9, 14, 19, 24, 29, 33, 38, 42, 47, 51, 55, 58, 61, 63},
+ {0, 1, 2, 4, 5, 6, 6, 6, 7, 7, 8, 7, 7, 6, 5, 3},
+ {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}};
+
+ return vld1q_u8(kAbsHalfSubPixel6TapSignedFilterColumns[tap_index]);
+}
+
+// This filter is only possible when width >= 8.
+template <int grade_x>
+inline void ConvolveKernelHorizontalSigned6Tap(
+ const uint8_t* src, const ptrdiff_t src_stride, const int width,
+ const int subpixel_x, const int step_x, const int intermediate_height,
+ int16_t* intermediate) {
+ const int kernel_offset = 1;
+ const uint8x8_t one = vdup_n_u8(1);
+ const uint8x8_t filter_index_mask = vdup_n_u8(kSubPixelMask);
+ const int ref_x = subpixel_x >> kScaleSubPixelBits;
+ const int step_x8 = step_x << 3;
+ uint8x16_t filter_taps[6];
+ for (int i = 0; i < 6; ++i) {
+ filter_taps[i] = GetSigned6TapFilter(i);
+ }
+ const uint16x8_t index_steps = vmulq_n_u16(
+ vmovl_u8(vcreate_u8(0x0706050403020100)), static_cast<uint16_t>(step_x));
+
+ int x = 0;
+ int p = subpixel_x;
+ do {
+ // Avoid overloading outside the reference boundaries. This means
+ // |trailing_width| can be up to 24.
+ const uint8_t* src_x =
+ &src[(p >> kScaleSubPixelBits) - ref_x + kernel_offset];
+ int16_t* intermediate_x = intermediate + x;
+ // Only add steps to the 10-bit truncated p to avoid overflow.
+ const uint16x8_t p_fraction = vdupq_n_u16(p & 1023);
+ const uint16x8_t subpel_index_offsets = vaddq_u16(index_steps, p_fraction);
+ const uint8x8_t src_indices =
+ vmovn_u16(vshrq_n_u16(subpel_index_offsets, kScaleSubPixelBits));
+ uint8x8_t src_lookup[6];
+ src_lookup[0] = src_indices;
+ for (int i = 1; i < 6; ++i) {
+ src_lookup[i] = vadd_u8(src_lookup[i - 1], one);
+ }
+
+ const uint8x8_t filter_indices =
+ vand_u8(vshrn_n_u16(subpel_index_offsets, kFilterIndexShift),
+ filter_index_mask);
+ // For each x, a lane of taps[k] has
+ // kSubPixelFilters[filter_index][filter_id][k], where filter_id depends
+ // on x.
+ uint8x8_t taps[6];
+ for (int i = 0; i < 6; ++i) {
+ taps[i] = VQTbl1U8(filter_taps[i], filter_indices);
+ }
+ int y = 0;
+ do {
+ // Load a pool of samples to select from using stepped indices.
+ const uint8x8x3_t src_vals = LoadSrcVals<grade_x>(src_x);
+
+ const uint8x8_t src[6] = {
+ vtbl3_u8(src_vals, src_lookup[0]), vtbl3_u8(src_vals, src_lookup[1]),
+ vtbl3_u8(src_vals, src_lookup[2]), vtbl3_u8(src_vals, src_lookup[3]),
+ vtbl3_u8(src_vals, src_lookup[4]), vtbl3_u8(src_vals, src_lookup[5])};
+
+ vst1q_s16(intermediate_x,
+ vrshrq_n_s16(SumOnePassTaps</*filter_index=*/0>(src, taps),
+ kInterRoundBitsHorizontal - 1));
+ src_x += src_stride;
+ intermediate_x += kIntermediateStride;
+ } while (++y < intermediate_height);
+ x += 8;
+ p += step_x8;
+ } while (x < width);
+}
+
+// Pre-transpose the 6 tap filters in |kAbsHalfSubPixelFilters|[1]. This filter
+// has mixed positive and negative outer taps which are handled in
+// GetMixed6TapFilter().
+inline uint8x16_t GetPositive6TapFilter(const int tap_index) {
+ assert(tap_index < 6);
+ alignas(16) static constexpr uint8_t
+ kAbsHalfSubPixel6TapPositiveFilterColumns[4][16] = {
+ {0, 14, 13, 11, 10, 9, 8, 8, 7, 6, 5, 4, 3, 2, 2, 1},
+ {64, 31, 31, 31, 30, 29, 28, 27, 26, 24, 23, 22, 21, 20, 18, 17},
+ {0, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 31, 31},
+ {0, 1, 2, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 11, 13, 14}};
+
+ return vld1q_u8(kAbsHalfSubPixel6TapPositiveFilterColumns[tap_index]);
+}
+
+inline int8x16_t GetMixed6TapFilter(const int tap_index) {
+ assert(tap_index < 2);
+ alignas(
+ 16) static constexpr int8_t kHalfSubPixel6TapMixedFilterColumns[2][16] = {
+ {0, 1, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0},
+ {0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 1}};
+
+ return vld1q_s8(kHalfSubPixel6TapMixedFilterColumns[tap_index]);
+}
+
+// This filter is only possible when width >= 8.
+template <int grade_x>
+inline void ConvolveKernelHorizontalMixed6Tap(
+ const uint8_t* src, const ptrdiff_t src_stride, const int width,
+ const int subpixel_x, const int step_x, const int intermediate_height,
+ int16_t* intermediate) {
+ const int kernel_offset = 1;
+ const uint8x8_t one = vdup_n_u8(1);
+ const uint8x8_t filter_index_mask = vdup_n_u8(kSubPixelMask);
+ const int ref_x = subpixel_x >> kScaleSubPixelBits;
+ const int step_x8 = step_x << 3;
+ uint8x8_t taps[4];
+ int16x8_t mixed_taps[2];
+ uint8x16_t positive_filter_taps[4];
+ for (int i = 0; i < 4; ++i) {
+ positive_filter_taps[i] = GetPositive6TapFilter(i);
+ }
+ int8x16_t mixed_filter_taps[2];
+ mixed_filter_taps[0] = GetMixed6TapFilter(0);
+ mixed_filter_taps[1] = GetMixed6TapFilter(1);
+ const uint16x8_t index_steps = vmulq_n_u16(
+ vmovl_u8(vcreate_u8(0x0706050403020100)), static_cast<uint16_t>(step_x));
+
+ int x = 0;
+ int p = subpixel_x;
+ do {
+ const uint8_t* src_x =
+ &src[(p >> kScaleSubPixelBits) - ref_x + kernel_offset];
+ int16_t* intermediate_x = intermediate + x;
+ // Only add steps to the 10-bit truncated p to avoid overflow.
+ const uint16x8_t p_fraction = vdupq_n_u16(p & 1023);
+ const uint16x8_t subpel_index_offsets = vaddq_u16(index_steps, p_fraction);
+ const uint8x8_t src_indices =
+ vmovn_u16(vshrq_n_u16(subpel_index_offsets, kScaleSubPixelBits));
+ uint8x8_t src_lookup[6];
+ src_lookup[0] = src_indices;
+ for (int i = 1; i < 6; ++i) {
+ src_lookup[i] = vadd_u8(src_lookup[i - 1], one);
+ }
+
+ const uint8x8_t filter_indices =
+ vand_u8(vshrn_n_u16(subpel_index_offsets, kFilterIndexShift),
+ filter_index_mask);
+ // For each x, a lane of taps[k] has
+ // kSubPixelFilters[filter_index][filter_id][k], where filter_id depends
+ // on x.
+ for (int i = 0; i < 4; ++i) {
+ taps[i] = VQTbl1U8(positive_filter_taps[i], filter_indices);
+ }
+ mixed_taps[0] = vmovl_s8(VQTbl1S8(mixed_filter_taps[0], filter_indices));
+ mixed_taps[1] = vmovl_s8(VQTbl1S8(mixed_filter_taps[1], filter_indices));
+
+ int y = 0;
+ do {
+ // Load a pool of samples to select from using stepped indices.
+ const uint8x8x3_t src_vals = LoadSrcVals<grade_x>(src_x);
+
+ int16x8_t sum_mixed = vmulq_s16(
+ mixed_taps[0], ZeroExtend(vtbl3_u8(src_vals, src_lookup[0])));
+ sum_mixed = vmlaq_s16(sum_mixed, mixed_taps[1],
+ ZeroExtend(vtbl3_u8(src_vals, src_lookup[5])));
+ uint16x8_t sum = vreinterpretq_u16_s16(sum_mixed);
+ sum = vmlal_u8(sum, taps[0], vtbl3_u8(src_vals, src_lookup[1]));
+ sum = vmlal_u8(sum, taps[1], vtbl3_u8(src_vals, src_lookup[2]));
+ sum = vmlal_u8(sum, taps[2], vtbl3_u8(src_vals, src_lookup[3]));
+ sum = vmlal_u8(sum, taps[3], vtbl3_u8(src_vals, src_lookup[4]));
+
+ vst1q_s16(intermediate_x, vrshrq_n_s16(vreinterpretq_s16_u16(sum),
+ kInterRoundBitsHorizontal - 1));
+ src_x += src_stride;
+ intermediate_x += kIntermediateStride;
+ } while (++y < intermediate_height);
+ x += 8;
+ p += step_x8;
+ } while (x < width);
+}
+
+// Pre-transpose the 8 tap filters in |kAbsHalfSubPixelFilters|[2].
+inline uint8x16_t GetSigned8TapFilter(const int tap_index) {
+ assert(tap_index < 8);
+ alignas(16) static constexpr uint8_t
+ kAbsHalfSubPixel8TapSignedFilterColumns[8][16] = {
+ {0, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0},
+ {0, 1, 3, 4, 5, 5, 5, 5, 6, 5, 4, 4, 3, 3, 2, 1},
+ {0, 3, 6, 9, 11, 11, 12, 12, 12, 11, 10, 9, 7, 5, 3, 1},
+ {64, 63, 62, 60, 58, 54, 50, 45, 40, 35, 30, 24, 19, 13, 8, 4},
+ {0, 4, 8, 13, 19, 24, 30, 35, 40, 45, 50, 54, 58, 60, 62, 63},
+ {0, 1, 3, 5, 7, 9, 10, 11, 12, 12, 12, 11, 11, 9, 6, 3},
+ {0, 1, 2, 3, 3, 4, 4, 5, 6, 5, 5, 5, 5, 4, 3, 1},
+ {0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1}};
+
+ return vld1q_u8(kAbsHalfSubPixel8TapSignedFilterColumns[tap_index]);
+}
+
+// This filter is only possible when width >= 8.
+template <int grade_x>
+inline void ConvolveKernelHorizontalSigned8Tap(
+ const uint8_t* src, const ptrdiff_t src_stride, const int width,
+ const int subpixel_x, const int step_x, const int intermediate_height,
+ int16_t* intermediate) {
+ const uint8x8_t one = vdup_n_u8(1);
+ const uint8x8_t filter_index_mask = vdup_n_u8(kSubPixelMask);
+ const int ref_x = subpixel_x >> kScaleSubPixelBits;
+ const int step_x8 = step_x << 3;
+ uint8x8_t taps[8];
+ uint8x16_t filter_taps[8];
+ for (int i = 0; i < 8; ++i) {
+ filter_taps[i] = GetSigned8TapFilter(i);
+ }
+ const uint16x8_t index_steps = vmulq_n_u16(
+ vmovl_u8(vcreate_u8(0x0706050403020100)), static_cast<uint16_t>(step_x));
+ int x = 0;
+ int p = subpixel_x;
+ do {
+ const uint8_t* src_x = &src[(p >> kScaleSubPixelBits) - ref_x];
+ int16_t* intermediate_x = intermediate + x;
+ // Only add steps to the 10-bit truncated p to avoid overflow.
+ const uint16x8_t p_fraction = vdupq_n_u16(p & 1023);
+ const uint16x8_t subpel_index_offsets = vaddq_u16(index_steps, p_fraction);
+ const uint8x8_t src_indices =
+ vmovn_u16(vshrq_n_u16(subpel_index_offsets, kScaleSubPixelBits));
+ uint8x8_t src_lookup[8];
+ src_lookup[0] = src_indices;
+ for (int i = 1; i < 8; ++i) {
+ src_lookup[i] = vadd_u8(src_lookup[i - 1], one);
+ }
+
+ const uint8x8_t filter_indices =
+ vand_u8(vshrn_n_u16(subpel_index_offsets, kFilterIndexShift),
+ filter_index_mask);
+ // For each x, a lane of taps[k] has
+ // kSubPixelFilters[filter_index][filter_id][k], where filter_id depends
+ // on x.
+ for (int i = 0; i < 8; ++i) {
+ taps[i] = VQTbl1U8(filter_taps[i], filter_indices);
+ }
+
+ int y = 0;
+ do {
+ // Load a pool of samples to select from using stepped indices.
+ const uint8x8x3_t src_vals = LoadSrcVals<grade_x>(src_x);
+
+ const uint8x8_t src[8] = {
+ vtbl3_u8(src_vals, src_lookup[0]), vtbl3_u8(src_vals, src_lookup[1]),
+ vtbl3_u8(src_vals, src_lookup[2]), vtbl3_u8(src_vals, src_lookup[3]),
+ vtbl3_u8(src_vals, src_lookup[4]), vtbl3_u8(src_vals, src_lookup[5]),
+ vtbl3_u8(src_vals, src_lookup[6]), vtbl3_u8(src_vals, src_lookup[7])};
+
+ vst1q_s16(intermediate_x,
+ vrshrq_n_s16(SumOnePassTaps</*filter_index=*/2>(src, taps),
+ kInterRoundBitsHorizontal - 1));
+ src_x += src_stride;
+ intermediate_x += kIntermediateStride;
+ } while (++y < intermediate_height);
+ x += 8;
+ p += step_x8;
+ } while (x < width);
+}
+
+// This function handles blocks of width 2 or 4.
+template <int num_taps, int grade_y, int width, bool is_compound>
+void ConvolveVerticalScale4xH(const int16_t* src, const int subpixel_y,
+ const int filter_index, const int step_y,
+ const int height, void* dest,
+ const ptrdiff_t dest_stride) {
+ constexpr ptrdiff_t src_stride = kIntermediateStride;
+ const int16_t* src_y = src;
+ // |dest| is 16-bit in compound mode, Pixel otherwise.
+ uint16_t* dest16_y = static_cast<uint16_t*>(dest);
+ uint8_t* dest_y = static_cast<uint8_t*>(dest);
+ int16x4_t s[num_taps + grade_y];
+
+ int p = subpixel_y & 1023;
+ int prev_p = p;
+ int y = 0;
+ do { // y < height
+ for (int i = 0; i < num_taps; ++i) {
+ s[i] = vld1_s16(src_y + i * src_stride);
+ }
+ int filter_id = (p >> 6) & kSubPixelMask;
+ int16x8_t filter =
+ vmovl_s8(vld1_s8(kHalfSubPixelFilters[filter_index][filter_id]));
+ int16x4_t sums = Sum2DVerticalTaps4<num_taps, is_compound>(s, filter);
+ if (is_compound) {
+ assert(width != 2);
+ const uint16x4_t result = vreinterpret_u16_s16(sums);
+ vst1_u16(dest16_y, result);
+ } else {
+ const uint8x8_t result = vqmovun_s16(vcombine_s16(sums, sums));
+ if (width == 2) {
+ Store2<0>(dest_y, result);
+ } else {
+ StoreLo4(dest_y, result);
+ }
+ }
+ p += step_y;
+ const int p_diff =
+ (p >> kScaleSubPixelBits) - (prev_p >> kScaleSubPixelBits);
+ prev_p = p;
+ // Here we load extra source in case it is needed. If |p_diff| == 0, these
+ // values will be unused, but it's faster to load than to branch.
+ s[num_taps] = vld1_s16(src_y + num_taps * src_stride);
+ if (grade_y > 1) {
+ s[num_taps + 1] = vld1_s16(src_y + (num_taps + 1) * src_stride);
+ }
+ dest16_y += dest_stride;
+ dest_y += dest_stride;
+
+ filter_id = (p >> 6) & kSubPixelMask;
+ filter = vmovl_s8(vld1_s8(kHalfSubPixelFilters[filter_index][filter_id]));
+ sums = Sum2DVerticalTaps4<num_taps, is_compound>(&s[p_diff], filter);
+ if (is_compound) {
+ assert(width != 2);
+ const uint16x4_t result = vreinterpret_u16_s16(sums);
+ vst1_u16(dest16_y, result);
+ } else {
+ const uint8x8_t result = vqmovun_s16(vcombine_s16(sums, sums));
+ if (width == 2) {
+ Store2<0>(dest_y, result);
+ } else {
+ StoreLo4(dest_y, result);
+ }
+ }
+ p += step_y;
+ src_y = src + (p >> kScaleSubPixelBits) * src_stride;
+ prev_p = p;
+ dest16_y += dest_stride;
+ dest_y += dest_stride;
+
+ y += 2;
+ } while (y < height);
+}
+
+template <int num_taps, int grade_y, bool is_compound>
+inline void ConvolveVerticalScale(const int16_t* src, const int width,
+ const int subpixel_y, const int filter_index,
+ const int step_y, const int height,
+ void* dest, const ptrdiff_t dest_stride) {
+ constexpr ptrdiff_t src_stride = kIntermediateStride;
+ // A possible improvement is to use arithmetic to decide how many times to
+ // apply filters to same source before checking whether to load new srcs.
+ // However, this will only improve performance with very small step sizes.
+ int16x8_t s[num_taps + grade_y];
+ // |dest| is 16-bit in compound mode, Pixel otherwise.
+ uint16_t* dest16_y;
+ uint8_t* dest_y;
+
+ int x = 0;
+ do { // x < width
+ const int16_t* src_x = src + x;
+ const int16_t* src_y = src_x;
+ dest16_y = static_cast<uint16_t*>(dest) + x;
+ dest_y = static_cast<uint8_t*>(dest) + x;
+ int p = subpixel_y & 1023;
+ int prev_p = p;
+ int y = 0;
+ do { // y < height
+ for (int i = 0; i < num_taps; ++i) {
+ s[i] = vld1q_s16(src_y + i * src_stride);
+ }
+ int filter_id = (p >> 6) & kSubPixelMask;
+ int16x8_t filter =
+ vmovl_s8(vld1_s8(kHalfSubPixelFilters[filter_index][filter_id]));
+ int16x8_t sum = SimpleSum2DVerticalTaps<num_taps, is_compound>(s, filter);
+ if (is_compound) {
+ vst1q_u16(dest16_y, vreinterpretq_u16_s16(sum));
+ } else {
+ vst1_u8(dest_y, vqmovun_s16(sum));
+ }
+ p += step_y;
+ const int p_diff =
+ (p >> kScaleSubPixelBits) - (prev_p >> kScaleSubPixelBits);
+ // |grade_y| > 1 always means p_diff > 0, so load vectors that may be
+ // needed. Otherwise, we only need to load one vector because |p_diff|
+ // can't exceed 1.
+ s[num_taps] = vld1q_s16(src_y + num_taps * src_stride);
+ if (grade_y > 1) {
+ s[num_taps + 1] = vld1q_s16(src_y + (num_taps + 1) * src_stride);
+ }
+ dest16_y += dest_stride;
+ dest_y += dest_stride;
+
+ filter_id = (p >> 6) & kSubPixelMask;
+ filter = vmovl_s8(vld1_s8(kHalfSubPixelFilters[filter_index][filter_id]));
+ sum = SimpleSum2DVerticalTaps<num_taps, is_compound>(&s[p_diff], filter);
+ if (is_compound) {
+ vst1q_u16(dest16_y, vreinterpretq_u16_s16(sum));
+ } else {
+ vst1_u8(dest_y, vqmovun_s16(sum));
+ }
+ p += step_y;
+ src_y = src_x + (p >> kScaleSubPixelBits) * src_stride;
+ prev_p = p;
+ dest16_y += dest_stride;
+ dest_y += dest_stride;
+
+ y += 2;
+ } while (y < height);
+ x += 8;
+ } while (x < width);
+}
+
+template <bool is_compound>
+void ConvolveScale2D_NEON(const void* const reference,
+ const ptrdiff_t reference_stride,
+ const int horizontal_filter_index,
+ const int vertical_filter_index, const int subpixel_x,
+ const int subpixel_y, const int step_x,
+ const int step_y, const int width, const int height,
+ void* prediction, const ptrdiff_t pred_stride) {
+ const int horiz_filter_index = GetFilterIndex(horizontal_filter_index, width);
+ const int vert_filter_index = GetFilterIndex(vertical_filter_index, height);
+ assert(step_x <= 2048);
+ const int num_vert_taps = GetNumTapsInFilter(vert_filter_index);
+ const int intermediate_height =
+ (((height - 1) * step_y + (1 << kScaleSubPixelBits) - 1) >>
+ kScaleSubPixelBits) +
+ num_vert_taps;
+ assert(step_x <= 2048);
+ // The output of the horizontal filter, i.e. the intermediate_result, is
+ // guaranteed to fit in int16_t.
+ int16_t intermediate_result[kMaxSuperBlockSizeInPixels *
+ (2 * kMaxSuperBlockSizeInPixels + 8)];
+
+ // Horizontal filter.
+ // Filter types used for width <= 4 are different from those for width > 4.
+ // When width > 4, the valid filter index range is always [0, 3].
+ // When width <= 4, the valid filter index range is always [3, 5].
+ // Similarly for height.
+ int filter_index = GetFilterIndex(horizontal_filter_index, width);
+ int16_t* intermediate = intermediate_result;
+ const ptrdiff_t src_stride = reference_stride;
+ const auto* src = static_cast<const uint8_t*>(reference);
+ const int vert_kernel_offset = (8 - num_vert_taps) / 2;
+ src += vert_kernel_offset * src_stride;
+
+ // Derive the maximum value of |step_x| at which all source values fit in one
+ // 16-byte load. Final index is src_x + |num_taps| - 1 < 16
+ // step_x*7 is the final base subpel index for the shuffle mask for filter
+ // inputs in each iteration on large blocks. When step_x is large, we need a
+ // larger structure and use a larger table lookup in order to gather all
+ // filter inputs.
+ // |num_taps| - 1 is the shuffle index of the final filter input.
+ const int num_horiz_taps = GetNumTapsInFilter(horiz_filter_index);
+ const int kernel_start_ceiling = 16 - num_horiz_taps;
+ // This truncated quotient |grade_x_threshold| selects |step_x| such that:
+ // (step_x * 7) >> kScaleSubPixelBits < single load limit
+ const int grade_x_threshold =
+ (kernel_start_ceiling << kScaleSubPixelBits) / 7;
+ switch (filter_index) {
+ case 0:
+ if (step_x > grade_x_threshold) {
+ ConvolveKernelHorizontalSigned6Tap<2>(
+ src, src_stride, width, subpixel_x, step_x, intermediate_height,
+ intermediate);
+ } else {
+ ConvolveKernelHorizontalSigned6Tap<1>(
+ src, src_stride, width, subpixel_x, step_x, intermediate_height,
+ intermediate);
+ }
+ break;
+ case 1:
+ if (step_x > grade_x_threshold) {
+ ConvolveKernelHorizontalMixed6Tap<2>(src, src_stride, width, subpixel_x,
+ step_x, intermediate_height,
+ intermediate);
+
+ } else {
+ ConvolveKernelHorizontalMixed6Tap<1>(src, src_stride, width, subpixel_x,
+ step_x, intermediate_height,
+ intermediate);
+ }
+ break;
+ case 2:
+ if (step_x > grade_x_threshold) {
+ ConvolveKernelHorizontalSigned8Tap<2>(
+ src, src_stride, width, subpixel_x, step_x, intermediate_height,
+ intermediate);
+ } else {
+ ConvolveKernelHorizontalSigned8Tap<1>(
+ src, src_stride, width, subpixel_x, step_x, intermediate_height,
+ intermediate);
+ }
+ break;
+ case 3:
+ if (step_x > grade_x_threshold) {
+ ConvolveKernelHorizontal2Tap<2>(src, src_stride, width, subpixel_x,
+ step_x, intermediate_height,
+ intermediate);
+ } else {
+ ConvolveKernelHorizontal2Tap<1>(src, src_stride, width, subpixel_x,
+ step_x, intermediate_height,
+ intermediate);
+ }
+ break;
+ case 4:
+ assert(width <= 4);
+ ConvolveKernelHorizontalSigned4Tap(src, src_stride, subpixel_x, step_x,
+ intermediate_height, intermediate);
+ break;
+ default:
+ assert(filter_index == 5);
+ ConvolveKernelHorizontalPositive4Tap(src, src_stride, subpixel_x, step_x,
+ intermediate_height, intermediate);
+ }
+ // Vertical filter.
+ filter_index = GetFilterIndex(vertical_filter_index, height);
+ intermediate = intermediate_result;
+
+ switch (filter_index) {
+ case 0:
+ case 1:
+ if (step_y <= 1024) {
+ if (!is_compound && width == 2) {
+ ConvolveVerticalScale4xH<6, 1, 2, is_compound>(
+ intermediate, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ } else if (width == 4) {
+ ConvolveVerticalScale4xH<6, 1, 4, is_compound>(
+ intermediate, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ } else {
+ ConvolveVerticalScale<6, 1, is_compound>(
+ intermediate, width, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ }
+ } else {
+ if (!is_compound && width == 2) {
+ ConvolveVerticalScale4xH<6, 2, 2, is_compound>(
+ intermediate, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ } else if (width == 4) {
+ ConvolveVerticalScale4xH<6, 2, 4, is_compound>(
+ intermediate, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ } else {
+ ConvolveVerticalScale<6, 2, is_compound>(
+ intermediate, width, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ }
+ }
+ break;
+ case 2:
+ if (step_y <= 1024) {
+ if (!is_compound && width == 2) {
+ ConvolveVerticalScale4xH<8, 1, 2, is_compound>(
+ intermediate, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ } else if (width == 4) {
+ ConvolveVerticalScale4xH<8, 1, 4, is_compound>(
+ intermediate, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ } else {
+ ConvolveVerticalScale<8, 1, is_compound>(
+ intermediate, width, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ }
+ } else {
+ if (!is_compound && width == 2) {
+ ConvolveVerticalScale4xH<8, 2, 2, is_compound>(
+ intermediate, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ } else if (width == 4) {
+ ConvolveVerticalScale4xH<8, 2, 4, is_compound>(
+ intermediate, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ } else {
+ ConvolveVerticalScale<8, 2, is_compound>(
+ intermediate, width, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ }
+ }
+ break;
+ case 3:
+ if (step_y <= 1024) {
+ if (!is_compound && width == 2) {
+ ConvolveVerticalScale4xH<2, 1, 2, is_compound>(
+ intermediate, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ } else if (width == 4) {
+ ConvolveVerticalScale4xH<2, 1, 4, is_compound>(
+ intermediate, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ } else {
+ ConvolveVerticalScale<2, 1, is_compound>(
+ intermediate, width, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ }
+ } else {
+ if (!is_compound && width == 2) {
+ ConvolveVerticalScale4xH<2, 2, 2, is_compound>(
+ intermediate, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ } else if (width == 4) {
+ ConvolveVerticalScale4xH<2, 2, 4, is_compound>(
+ intermediate, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ } else {
+ ConvolveVerticalScale<2, 2, is_compound>(
+ intermediate, width, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ }
+ }
+ break;
+ case 4:
+ default:
+ assert(filter_index == 4 || filter_index == 5);
+ assert(height <= 4);
+ if (step_y <= 1024) {
+ if (!is_compound && width == 2) {
+ ConvolveVerticalScale4xH<4, 1, 2, is_compound>(
+ intermediate, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ } else if (width == 4) {
+ ConvolveVerticalScale4xH<4, 1, 4, is_compound>(
+ intermediate, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ } else {
+ ConvolveVerticalScale<4, 1, is_compound>(
+ intermediate, width, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ }
+ } else {
+ if (!is_compound && width == 2) {
+ ConvolveVerticalScale4xH<4, 2, 2, is_compound>(
+ intermediate, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ } else if (width == 4) {
+ ConvolveVerticalScale4xH<4, 2, 4, is_compound>(
+ intermediate, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ } else {
+ ConvolveVerticalScale<4, 2, is_compound>(
+ intermediate, width, subpixel_y, filter_index, step_y, height,
+ prediction, pred_stride);
+ }
+ }
+ }
+}
+
+void ConvolveHorizontal_NEON(const void* const reference,
+ const ptrdiff_t reference_stride,
+ const int horizontal_filter_index,
+ const int /*vertical_filter_index*/,
+ const int horizontal_filter_id,
+ const int /*vertical_filter_id*/, const int width,
+ const int height, void* prediction,
+ const ptrdiff_t pred_stride) {
+ const int filter_index = GetFilterIndex(horizontal_filter_index, width);
+ // Set |src| to the outermost tap.
+ const auto* src = static_cast<const uint8_t*>(reference) - kHorizontalOffset;
+ auto* dest = static_cast<uint8_t*>(prediction);
+
+ DoHorizontalPass(src, reference_stride, dest, pred_stride, width, height,
+ horizontal_filter_id, filter_index);
+}
+
+// The 1D compound shift is always |kInterRoundBitsHorizontal|, even for 1D
+// Vertical calculations.
+uint16x8_t Compound1DShift(const int16x8_t sum) {
+ return vreinterpretq_u16_s16(
+ vrshrq_n_s16(sum, kInterRoundBitsHorizontal - 1));
+}
+
+template <int filter_index, bool is_compound = false,
+ bool negative_outside_taps = false>
+void FilterVertical(const uint8_t* src, const ptrdiff_t src_stride,
+ void* const dst, const ptrdiff_t dst_stride,
+ const int width, const int height,
+ const uint8x8_t* const taps) {
+ const int num_taps = GetNumTapsInFilter(filter_index);
+ const int next_row = num_taps - 1;
+ auto* dst8 = static_cast<uint8_t*>(dst);
+ auto* dst16 = static_cast<uint16_t*>(dst);
+ assert(width >= 8);
+
+ int x = 0;
+ do {
+ const uint8_t* src_x = src + x;
+ uint8x8_t srcs[8];
+ srcs[0] = vld1_u8(src_x);
+ src_x += src_stride;
+ if (num_taps >= 4) {
+ srcs[1] = vld1_u8(src_x);
+ src_x += src_stride;
+ srcs[2] = vld1_u8(src_x);
+ src_x += src_stride;
+ if (num_taps >= 6) {
+ srcs[3] = vld1_u8(src_x);
+ src_x += src_stride;
+ srcs[4] = vld1_u8(src_x);
+ src_x += src_stride;
+ if (num_taps == 8) {
+ srcs[5] = vld1_u8(src_x);
+ src_x += src_stride;
+ srcs[6] = vld1_u8(src_x);
+ src_x += src_stride;
+ }
+ }
+ }
+
+ int y = 0;
+ do {
+ srcs[next_row] = vld1_u8(src_x);
+ src_x += src_stride;
+
+ const int16x8_t sums =
+ SumOnePassTaps<filter_index, negative_outside_taps>(srcs, taps);
+ if (is_compound) {
+ const uint16x8_t results = Compound1DShift(sums);
+ vst1q_u16(dst16 + x + y * dst_stride, results);
+ } else {
+ const uint8x8_t results = vqrshrun_n_s16(sums, kFilterBits - 1);
+ vst1_u8(dst8 + x + y * dst_stride, results);
+ }
+
+ srcs[0] = srcs[1];
+ if (num_taps >= 4) {
+ srcs[1] = srcs[2];
+ srcs[2] = srcs[3];
+ if (num_taps >= 6) {
+ srcs[3] = srcs[4];
+ srcs[4] = srcs[5];
+ if (num_taps == 8) {
+ srcs[5] = srcs[6];
+ srcs[6] = srcs[7];
+ }
+ }
+ }
+ } while (++y < height);
+ x += 8;
+ } while (x < width);
+}
+
+template <int filter_index, bool is_compound = false,
+ bool negative_outside_taps = false>
+void FilterVertical4xH(const uint8_t* src, const ptrdiff_t src_stride,
+ void* const dst, const ptrdiff_t dst_stride,
+ const int height, const uint8x8_t* const taps) {
+ const int num_taps = GetNumTapsInFilter(filter_index);
+ auto* dst8 = static_cast<uint8_t*>(dst);
+ auto* dst16 = static_cast<uint16_t*>(dst);
+
+ uint8x8_t srcs[9];
+
+ if (num_taps == 2) {
+ srcs[2] = vdup_n_u8(0);
+
+ srcs[0] = Load4(src);
+ src += src_stride;
+
+ int y = 0;
+ do {
+ srcs[0] = Load4<1>(src, srcs[0]);
+ src += src_stride;
+ srcs[2] = Load4<0>(src, srcs[2]);
+ src += src_stride;
+ srcs[1] = vext_u8(srcs[0], srcs[2], 4);
+
+ const int16x8_t sums =
+ SumOnePassTaps<filter_index, negative_outside_taps>(srcs, taps);
+ if (is_compound) {
+ const uint16x8_t results = Compound1DShift(sums);
+
+ vst1q_u16(dst16, results);
+ dst16 += 4 << 1;
+ } else {
+ const uint8x8_t results = vqrshrun_n_s16(sums, kFilterBits - 1);
+
+ StoreLo4(dst8, results);
+ dst8 += dst_stride;
+ StoreHi4(dst8, results);
+ dst8 += dst_stride;
+ }
+
+ srcs[0] = srcs[2];
+ y += 2;
+ } while (y < height);
+ } else if (num_taps == 4) {
+ srcs[4] = vdup_n_u8(0);
+
+ srcs[0] = Load4(src);
+ src += src_stride;
+ srcs[0] = Load4<1>(src, srcs[0]);
+ src += src_stride;
+ srcs[2] = Load4(src);
+ src += src_stride;
+ srcs[1] = vext_u8(srcs[0], srcs[2], 4);
+
+ int y = 0;
+ do {
+ srcs[2] = Load4<1>(src, srcs[2]);
+ src += src_stride;
+ srcs[4] = Load4<0>(src, srcs[4]);
+ src += src_stride;
+ srcs[3] = vext_u8(srcs[2], srcs[4], 4);
+
+ const int16x8_t sums =
+ SumOnePassTaps<filter_index, negative_outside_taps>(srcs, taps);
+ if (is_compound) {
+ const uint16x8_t results = Compound1DShift(sums);
+
+ vst1q_u16(dst16, results);
+ dst16 += 4 << 1;
+ } else {
+ const uint8x8_t results = vqrshrun_n_s16(sums, kFilterBits - 1);
+
+ StoreLo4(dst8, results);
+ dst8 += dst_stride;
+ StoreHi4(dst8, results);
+ dst8 += dst_stride;
+ }
+
+ srcs[0] = srcs[2];
+ srcs[1] = srcs[3];
+ srcs[2] = srcs[4];
+ y += 2;
+ } while (y < height);
+ } else if (num_taps == 6) {
+ srcs[6] = vdup_n_u8(0);
+
+ srcs[0] = Load4(src);
+ src += src_stride;
+ srcs[0] = Load4<1>(src, srcs[0]);
+ src += src_stride;
+ srcs[2] = Load4(src);
+ src += src_stride;
+ srcs[1] = vext_u8(srcs[0], srcs[2], 4);
+ srcs[2] = Load4<1>(src, srcs[2]);
+ src += src_stride;
+ srcs[4] = Load4(src);
+ src += src_stride;
+ srcs[3] = vext_u8(srcs[2], srcs[4], 4);
+
+ int y = 0;
+ do {
+ srcs[4] = Load4<1>(src, srcs[4]);
+ src += src_stride;
+ srcs[6] = Load4<0>(src, srcs[6]);
+ src += src_stride;
+ srcs[5] = vext_u8(srcs[4], srcs[6], 4);
+
+ const int16x8_t sums =
+ SumOnePassTaps<filter_index, negative_outside_taps>(srcs, taps);
+ if (is_compound) {
+ const uint16x8_t results = Compound1DShift(sums);
+
+ vst1q_u16(dst16, results);
+ dst16 += 4 << 1;
+ } else {
+ const uint8x8_t results = vqrshrun_n_s16(sums, kFilterBits - 1);
+
+ StoreLo4(dst8, results);
+ dst8 += dst_stride;
+ StoreHi4(dst8, results);
+ dst8 += dst_stride;
+ }
+
+ srcs[0] = srcs[2];
+ srcs[1] = srcs[3];
+ srcs[2] = srcs[4];
+ srcs[3] = srcs[5];
+ srcs[4] = srcs[6];
+ y += 2;
+ } while (y < height);
+ } else if (num_taps == 8) {
+ srcs[8] = vdup_n_u8(0);
+
+ srcs[0] = Load4(src);
+ src += src_stride;
+ srcs[0] = Load4<1>(src, srcs[0]);
+ src += src_stride;
+ srcs[2] = Load4(src);
+ src += src_stride;
+ srcs[1] = vext_u8(srcs[0], srcs[2], 4);
+ srcs[2] = Load4<1>(src, srcs[2]);
+ src += src_stride;
+ srcs[4] = Load4(src);
+ src += src_stride;
+ srcs[3] = vext_u8(srcs[2], srcs[4], 4);
+ srcs[4] = Load4<1>(src, srcs[4]);
+ src += src_stride;
+ srcs[6] = Load4(src);
+ src += src_stride;
+ srcs[5] = vext_u8(srcs[4], srcs[6], 4);
+
+ int y = 0;
+ do {
+ srcs[6] = Load4<1>(src, srcs[6]);
+ src += src_stride;
+ srcs[8] = Load4<0>(src, srcs[8]);
+ src += src_stride;
+ srcs[7] = vext_u8(srcs[6], srcs[8], 4);
+
+ const int16x8_t sums =
+ SumOnePassTaps<filter_index, negative_outside_taps>(srcs, taps);
+ if (is_compound) {
+ const uint16x8_t results = Compound1DShift(sums);
+
+ vst1q_u16(dst16, results);
+ dst16 += 4 << 1;
+ } else {
+ const uint8x8_t results = vqrshrun_n_s16(sums, kFilterBits - 1);
+
+ StoreLo4(dst8, results);
+ dst8 += dst_stride;
+ StoreHi4(dst8, results);
+ dst8 += dst_stride;
+ }
+
+ srcs[0] = srcs[2];
+ srcs[1] = srcs[3];
+ srcs[2] = srcs[4];
+ srcs[3] = srcs[5];
+ srcs[4] = srcs[6];
+ srcs[5] = srcs[7];
+ srcs[6] = srcs[8];
+ y += 2;
+ } while (y < height);
+ }
+}
+
+template <int filter_index, bool negative_outside_taps = false>
+void FilterVertical2xH(const uint8_t* src, const ptrdiff_t src_stride,
+ void* const dst, const ptrdiff_t dst_stride,
+ const int height, const uint8x8_t* const taps) {
+ const int num_taps = GetNumTapsInFilter(filter_index);
+ auto* dst8 = static_cast<uint8_t*>(dst);
+
+ uint8x8_t srcs[9];
+
+ if (num_taps == 2) {
+ srcs[2] = vdup_n_u8(0);
+
+ srcs[0] = Load2(src);
+ src += src_stride;
+
+ int y = 0;
+ do {
+ srcs[0] = Load2<1>(src, srcs[0]);
+ src += src_stride;
+ srcs[0] = Load2<2>(src, srcs[0]);
+ src += src_stride;
+ srcs[0] = Load2<3>(src, srcs[0]);
+ src += src_stride;
+ srcs[2] = Load2<0>(src, srcs[2]);
+ src += src_stride;
+ srcs[1] = vext_u8(srcs[0], srcs[2], 2);
+
+ // This uses srcs[0]..srcs[1].
+ const int16x8_t sums =
+ SumOnePassTaps<filter_index, negative_outside_taps>(srcs, taps);
+ const uint8x8_t results = vqrshrun_n_s16(sums, kFilterBits - 1);
+
+ Store2<0>(dst8, results);
+ dst8 += dst_stride;
+ Store2<1>(dst8, results);
+ if (height == 2) return;
+ dst8 += dst_stride;
+ Store2<2>(dst8, results);
+ dst8 += dst_stride;
+ Store2<3>(dst8, results);
+ dst8 += dst_stride;
+
+ srcs[0] = srcs[2];
+ y += 4;
+ } while (y < height);
+ } else if (num_taps == 4) {
+ srcs[4] = vdup_n_u8(0);
+
+ srcs[0] = Load2(src);
+ src += src_stride;
+ srcs[0] = Load2<1>(src, srcs[0]);
+ src += src_stride;
+ srcs[0] = Load2<2>(src, srcs[0]);
+ src += src_stride;
+
+ int y = 0;
+ do {
+ srcs[0] = Load2<3>(src, srcs[0]);
+ src += src_stride;
+ srcs[4] = Load2<0>(src, srcs[4]);
+ src += src_stride;
+ srcs[1] = vext_u8(srcs[0], srcs[4], 2);
+ srcs[4] = Load2<1>(src, srcs[4]);
+ src += src_stride;
+ srcs[2] = vext_u8(srcs[0], srcs[4], 4);
+ srcs[4] = Load2<2>(src, srcs[4]);
+ src += src_stride;
+ srcs[3] = vext_u8(srcs[0], srcs[4], 6);
+
+ // This uses srcs[0]..srcs[3].
+ const int16x8_t sums =
+ SumOnePassTaps<filter_index, negative_outside_taps>(srcs, taps);
+ const uint8x8_t results = vqrshrun_n_s16(sums, kFilterBits - 1);
+
+ Store2<0>(dst8, results);
+ dst8 += dst_stride;
+ Store2<1>(dst8, results);
+ if (height == 2) return;
+ dst8 += dst_stride;
+ Store2<2>(dst8, results);
+ dst8 += dst_stride;
+ Store2<3>(dst8, results);
+ dst8 += dst_stride;
+
+ srcs[0] = srcs[4];
+ y += 4;
+ } while (y < height);
+ } else if (num_taps == 6) {
+ // During the vertical pass the number of taps is restricted when
+ // |height| <= 4.
+ assert(height > 4);
+ srcs[8] = vdup_n_u8(0);
+
+ srcs[0] = Load2(src);
+ src += src_stride;
+ srcs[0] = Load2<1>(src, srcs[0]);
+ src += src_stride;
+ srcs[0] = Load2<2>(src, srcs[0]);
+ src += src_stride;
+ srcs[0] = Load2<3>(src, srcs[0]);
+ src += src_stride;
+ srcs[4] = Load2(src);
+ src += src_stride;
+ srcs[1] = vext_u8(srcs[0], srcs[4], 2);
+
+ int y = 0;
+ do {
+ srcs[4] = Load2<1>(src, srcs[4]);
+ src += src_stride;
+ srcs[2] = vext_u8(srcs[0], srcs[4], 4);
+ srcs[4] = Load2<2>(src, srcs[4]);
+ src += src_stride;
+ srcs[3] = vext_u8(srcs[0], srcs[4], 6);
+ srcs[4] = Load2<3>(src, srcs[4]);
+ src += src_stride;
+ srcs[8] = Load2<0>(src, srcs[8]);
+ src += src_stride;
+ srcs[5] = vext_u8(srcs[4], srcs[8], 2);
+
+ // This uses srcs[0]..srcs[5].
+ const int16x8_t sums =
+ SumOnePassTaps<filter_index, negative_outside_taps>(srcs, taps);
+ const uint8x8_t results = vqrshrun_n_s16(sums, kFilterBits - 1);
+
+ Store2<0>(dst8, results);
+ dst8 += dst_stride;
+ Store2<1>(dst8, results);
+ dst8 += dst_stride;
+ Store2<2>(dst8, results);
+ dst8 += dst_stride;
+ Store2<3>(dst8, results);
+ dst8 += dst_stride;
+
+ srcs[0] = srcs[4];
+ srcs[1] = srcs[5];
+ srcs[4] = srcs[8];
+ y += 4;
+ } while (y < height);
+ } else if (num_taps == 8) {
+ // During the vertical pass the number of taps is restricted when
+ // |height| <= 4.
+ assert(height > 4);
+ srcs[8] = vdup_n_u8(0);
+
+ srcs[0] = Load2(src);
+ src += src_stride;
+ srcs[0] = Load2<1>(src, srcs[0]);
+ src += src_stride;
+ srcs[0] = Load2<2>(src, srcs[0]);
+ src += src_stride;
+ srcs[0] = Load2<3>(src, srcs[0]);
+ src += src_stride;
+ srcs[4] = Load2(src);
+ src += src_stride;
+ srcs[1] = vext_u8(srcs[0], srcs[4], 2);
+ srcs[4] = Load2<1>(src, srcs[4]);
+ src += src_stride;
+ srcs[2] = vext_u8(srcs[0], srcs[4], 4);
+ srcs[4] = Load2<2>(src, srcs[4]);
+ src += src_stride;
+ srcs[3] = vext_u8(srcs[0], srcs[4], 6);
+
+ int y = 0;
+ do {
+ srcs[4] = Load2<3>(src, srcs[4]);
+ src += src_stride;
+ srcs[8] = Load2<0>(src, srcs[8]);
+ src += src_stride;
+ srcs[5] = vext_u8(srcs[4], srcs[8], 2);
+ srcs[8] = Load2<1>(src, srcs[8]);
+ src += src_stride;
+ srcs[6] = vext_u8(srcs[4], srcs[8], 4);
+ srcs[8] = Load2<2>(src, srcs[8]);
+ src += src_stride;
+ srcs[7] = vext_u8(srcs[4], srcs[8], 6);
+
+ // This uses srcs[0]..srcs[7].
+ const int16x8_t sums =
+ SumOnePassTaps<filter_index, negative_outside_taps>(srcs, taps);
+ const uint8x8_t results = vqrshrun_n_s16(sums, kFilterBits - 1);
+
+ Store2<0>(dst8, results);
+ dst8 += dst_stride;
+ Store2<1>(dst8, results);
+ dst8 += dst_stride;
+ Store2<2>(dst8, results);
+ dst8 += dst_stride;
+ Store2<3>(dst8, results);
+ dst8 += dst_stride;
+
+ srcs[0] = srcs[4];
+ srcs[1] = srcs[5];
+ srcs[2] = srcs[6];
+ srcs[3] = srcs[7];
+ srcs[4] = srcs[8];
+ y += 4;
+ } while (y < height);
+ }
+}
+
+// This function is a simplified version of Convolve2D_C.
+// It is called when it is single prediction mode, where only vertical
+// filtering is required.
+// The output is the single prediction of the block, clipped to valid pixel
+// range.
+void ConvolveVertical_NEON(const void* const reference,
+ const ptrdiff_t reference_stride,
+ const int /*horizontal_filter_index*/,
+ const int vertical_filter_index,
+ const int /*horizontal_filter_id*/,
+ const int vertical_filter_id, const int width,
+ const int height, void* prediction,
+ const ptrdiff_t pred_stride) {
+ const int filter_index = GetFilterIndex(vertical_filter_index, height);
+ const int vertical_taps = GetNumTapsInFilter(filter_index);
+ const ptrdiff_t src_stride = reference_stride;
+ const auto* src = static_cast<const uint8_t*>(reference) -
+ (vertical_taps / 2 - 1) * src_stride;
+ auto* dest = static_cast<uint8_t*>(prediction);
+ const ptrdiff_t dest_stride = pred_stride;
+ assert(vertical_filter_id != 0);
+
+ uint8x8_t taps[8];
+ for (int k = 0; k < kSubPixelTaps; ++k) {
+ taps[k] =
+ vdup_n_u8(kAbsHalfSubPixelFilters[filter_index][vertical_filter_id][k]);
+ }
+
+ if (filter_index == 0) { // 6 tap.
+ if (width == 2) {
+ FilterVertical2xH<0>(src, src_stride, dest, dest_stride, height,
+ taps + 1);
+ } else if (width == 4) {
+ FilterVertical4xH<0>(src, src_stride, dest, dest_stride, height,
+ taps + 1);
+ } else {
+ FilterVertical<0>(src, src_stride, dest, dest_stride, width, height,
+ taps + 1);
+ }
+ } else if ((filter_index == 1) & ((vertical_filter_id == 1) |
+ (vertical_filter_id == 15))) { // 5 tap.
+ if (width == 2) {
+ FilterVertical2xH<1>(src, src_stride, dest, dest_stride, height,
+ taps + 1);
+ } else if (width == 4) {
+ FilterVertical4xH<1>(src, src_stride, dest, dest_stride, height,
+ taps + 1);
+ } else {
+ FilterVertical<1>(src, src_stride, dest, dest_stride, width, height,
+ taps + 1);
+ }
+ } else if ((filter_index == 1) &
+ ((vertical_filter_id == 7) | (vertical_filter_id == 8) |
+ (vertical_filter_id == 9))) { // 6 tap with weird negative taps.
+ if (width == 2) {
+ FilterVertical2xH<1,
+ /*negative_outside_taps=*/true>(
+ src, src_stride, dest, dest_stride, height, taps + 1);
+ } else if (width == 4) {
+ FilterVertical4xH<1, /*is_compound=*/false,
+ /*negative_outside_taps=*/true>(
+ src, src_stride, dest, dest_stride, height, taps + 1);
+ } else {
+ FilterVertical<1, /*is_compound=*/false, /*negative_outside_taps=*/true>(
+ src, src_stride, dest, dest_stride, width, height, taps + 1);
+ }
+ } else if (filter_index == 2) { // 8 tap.
+ if (width == 2) {
+ FilterVertical2xH<2>(src, src_stride, dest, dest_stride, height, taps);
+ } else if (width == 4) {
+ FilterVertical4xH<2>(src, src_stride, dest, dest_stride, height, taps);
+ } else {
+ FilterVertical<2>(src, src_stride, dest, dest_stride, width, height,
+ taps);
+ }
+ } else if (filter_index == 3) { // 2 tap.
+ if (width == 2) {
+ FilterVertical2xH<3>(src, src_stride, dest, dest_stride, height,
+ taps + 3);
+ } else if (width == 4) {
+ FilterVertical4xH<3>(src, src_stride, dest, dest_stride, height,
+ taps + 3);
+ } else {
+ FilterVertical<3>(src, src_stride, dest, dest_stride, width, height,
+ taps + 3);
+ }
+ } else if (filter_index == 4) { // 4 tap.
+ // Outside taps are negative.
+ if (width == 2) {
+ FilterVertical2xH<4>(src, src_stride, dest, dest_stride, height,
+ taps + 2);
+ } else if (width == 4) {
+ FilterVertical4xH<4>(src, src_stride, dest, dest_stride, height,
+ taps + 2);
+ } else {
+ FilterVertical<4>(src, src_stride, dest, dest_stride, width, height,
+ taps + 2);
+ }
+ } else {
+ // 4 tap. When |filter_index| == 1 the |vertical_filter_id| values listed
+ // below map to 4 tap filters.
+ assert(filter_index == 5 ||
+ (filter_index == 1 &&
+ (vertical_filter_id == 2 || vertical_filter_id == 3 ||
+ vertical_filter_id == 4 || vertical_filter_id == 5 ||
+ vertical_filter_id == 6 || vertical_filter_id == 10 ||
+ vertical_filter_id == 11 || vertical_filter_id == 12 ||
+ vertical_filter_id == 13 || vertical_filter_id == 14)));
+ // According to GetNumTapsInFilter() this has 6 taps but here we are
+ // treating it as though it has 4.
+ if (filter_index == 1) src += src_stride;
+ if (width == 2) {
+ FilterVertical2xH<5>(src, src_stride, dest, dest_stride, height,
+ taps + 2);
+ } else if (width == 4) {
+ FilterVertical4xH<5>(src, src_stride, dest, dest_stride, height,
+ taps + 2);
+ } else {
+ FilterVertical<5>(src, src_stride, dest, dest_stride, width, height,
+ taps + 2);
+ }
+ }
+}
+
+void ConvolveCompoundCopy_NEON(
+ const void* const reference, const ptrdiff_t reference_stride,
+ const int /*horizontal_filter_index*/, const int /*vertical_filter_index*/,
+ const int /*horizontal_filter_id*/, const int /*vertical_filter_id*/,
+ const int width, const int height, void* prediction,
+ const ptrdiff_t /*pred_stride*/) {
+ const auto* src = static_cast<const uint8_t*>(reference);
+ const ptrdiff_t src_stride = reference_stride;
+ auto* dest = static_cast<uint16_t*>(prediction);
+ constexpr int final_shift =
+ kInterRoundBitsVertical - kInterRoundBitsCompoundVertical;
+
+ if (width >= 16) {
+ int y = 0;
+ do {
+ int x = 0;
+ do {
+ const uint8x16_t v_src = vld1q_u8(&src[x]);
+ const uint16x8_t v_dest_lo =
+ vshll_n_u8(vget_low_u8(v_src), final_shift);
+ const uint16x8_t v_dest_hi =
+ vshll_n_u8(vget_high_u8(v_src), final_shift);
+ vst1q_u16(&dest[x], v_dest_lo);
+ x += 8;
+ vst1q_u16(&dest[x], v_dest_hi);
+ x += 8;
+ } while (x < width);
+ src += src_stride;
+ dest += width;
+ } while (++y < height);
+ } else if (width == 8) {
+ int y = 0;
+ do {
+ const uint8x8_t v_src = vld1_u8(&src[0]);
+ const uint16x8_t v_dest = vshll_n_u8(v_src, final_shift);
+ vst1q_u16(&dest[0], v_dest);
+ src += src_stride;
+ dest += width;
+ } while (++y < height);
+ } else { /* width == 4 */
+ uint8x8_t v_src = vdup_n_u8(0);
+
+ int y = 0;
+ do {
+ v_src = Load4<0>(&src[0], v_src);
+ src += src_stride;
+ v_src = Load4<1>(&src[0], v_src);
+ src += src_stride;
+ const uint16x8_t v_dest = vshll_n_u8(v_src, final_shift);
+ vst1q_u16(&dest[0], v_dest);
+ dest += 4 << 1;
+ y += 2;
+ } while (y < height);
+ }
+}
+
+void ConvolveCompoundVertical_NEON(
+ const void* const reference, const ptrdiff_t reference_stride,
+ const int /*horizontal_filter_index*/, const int vertical_filter_index,
+ const int /*horizontal_filter_id*/, const int vertical_filter_id,
+ const int width, const int height, void* prediction,
+ const ptrdiff_t /*pred_stride*/) {
+ const int filter_index = GetFilterIndex(vertical_filter_index, height);
+ const int vertical_taps = GetNumTapsInFilter(filter_index);
+ const ptrdiff_t src_stride = reference_stride;
+ const auto* src = static_cast<const uint8_t*>(reference) -
+ (vertical_taps / 2 - 1) * src_stride;
+ auto* dest = static_cast<uint16_t*>(prediction);
+ assert(vertical_filter_id != 0);
+
+ uint8x8_t taps[8];
+ for (int k = 0; k < kSubPixelTaps; ++k) {
+ taps[k] =
+ vdup_n_u8(kAbsHalfSubPixelFilters[filter_index][vertical_filter_id][k]);
+ }
+
+ if (filter_index == 0) { // 6 tap.
+ if (width == 4) {
+ FilterVertical4xH<0, /*is_compound=*/true>(src, src_stride, dest, 4,
+ height, taps + 1);
+ } else {
+ FilterVertical<0, /*is_compound=*/true>(src, src_stride, dest, width,
+ width, height, taps + 1);
+ }
+ } else if ((filter_index == 1) & ((vertical_filter_id == 1) |
+ (vertical_filter_id == 15))) { // 5 tap.
+ if (width == 4) {
+ FilterVertical4xH<1, /*is_compound=*/true>(src, src_stride, dest, 4,
+ height, taps + 1);
+ } else {
+ FilterVertical<1, /*is_compound=*/true>(src, src_stride, dest, width,
+ width, height, taps + 1);
+ }
+ } else if ((filter_index == 1) &
+ ((vertical_filter_id == 7) | (vertical_filter_id == 8) |
+ (vertical_filter_id == 9))) { // 6 tap with weird negative taps.
+ if (width == 4) {
+ FilterVertical4xH<1, /*is_compound=*/true,
+ /*negative_outside_taps=*/true>(src, src_stride, dest,
+ 4, height, taps + 1);
+ } else {
+ FilterVertical<1, /*is_compound=*/true, /*negative_outside_taps=*/true>(
+ src, src_stride, dest, width, width, height, taps + 1);
+ }
+ } else if (filter_index == 2) { // 8 tap.
+ if (width == 4) {
+ FilterVertical4xH<2, /*is_compound=*/true>(src, src_stride, dest, 4,
+ height, taps);
+ } else {
+ FilterVertical<2, /*is_compound=*/true>(src, src_stride, dest, width,
+ width, height, taps);
+ }
+ } else if (filter_index == 3) { // 2 tap.
+ if (width == 4) {
+ FilterVertical4xH<3, /*is_compound=*/true>(src, src_stride, dest, 4,
+ height, taps + 3);
+ } else {
+ FilterVertical<3, /*is_compound=*/true>(src, src_stride, dest, width,
+ width, height, taps + 3);
+ }
+ } else if (filter_index == 4) { // 4 tap.
+ if (width == 4) {
+ FilterVertical4xH<4, /*is_compound=*/true>(src, src_stride, dest, 4,
+ height, taps + 2);
+ } else {
+ FilterVertical<4, /*is_compound=*/true>(src, src_stride, dest, width,
+ width, height, taps + 2);
+ }
+ } else {
+ // 4 tap. When |filter_index| == 1 the |filter_id| values listed below map
+ // to 4 tap filters.
+ assert(filter_index == 5 ||
+ (filter_index == 1 &&
+ (vertical_filter_id == 2 || vertical_filter_id == 3 ||
+ vertical_filter_id == 4 || vertical_filter_id == 5 ||
+ vertical_filter_id == 6 || vertical_filter_id == 10 ||
+ vertical_filter_id == 11 || vertical_filter_id == 12 ||
+ vertical_filter_id == 13 || vertical_filter_id == 14)));
+ // According to GetNumTapsInFilter() this has 6 taps but here we are
+ // treating it as though it has 4.
+ if (filter_index == 1) src += src_stride;
+ if (width == 4) {
+ FilterVertical4xH<5, /*is_compound=*/true>(src, src_stride, dest, 4,
+ height, taps + 2);
+ } else {
+ FilterVertical<5, /*is_compound=*/true>(src, src_stride, dest, width,
+ width, height, taps + 2);
+ }
+ }
+}
+
+void ConvolveCompoundHorizontal_NEON(
+ const void* const reference, const ptrdiff_t reference_stride,
+ const int horizontal_filter_index, const int /*vertical_filter_index*/,
+ const int horizontal_filter_id, const int /*vertical_filter_id*/,
+ const int width, const int height, void* prediction,
+ const ptrdiff_t /*pred_stride*/) {
+ const int filter_index = GetFilterIndex(horizontal_filter_index, width);
+ const auto* src = static_cast<const uint8_t*>(reference) - kHorizontalOffset;
+ auto* dest = static_cast<uint16_t*>(prediction);
+
+ DoHorizontalPass</*is_2d=*/false, /*is_compound=*/true>(
+ src, reference_stride, dest, width, width, height, horizontal_filter_id,
+ filter_index);
+}
+
+void ConvolveCompound2D_NEON(const void* const reference,
+ const ptrdiff_t reference_stride,
+ const int horizontal_filter_index,
+ const int vertical_filter_index,
+ const int horizontal_filter_id,
+ const int vertical_filter_id, const int width,
+ const int height, void* prediction,
+ const ptrdiff_t /*pred_stride*/) {
+ // The output of the horizontal filter, i.e. the intermediate_result, is
+ // guaranteed to fit in int16_t.
+ uint16_t
+ intermediate_result[kMaxSuperBlockSizeInPixels *
+ (kMaxSuperBlockSizeInPixels + kSubPixelTaps - 1)];
+
+ // Horizontal filter.
+ // Filter types used for width <= 4 are different from those for width > 4.
+ // When width > 4, the valid filter index range is always [0, 3].
+ // When width <= 4, the valid filter index range is always [4, 5].
+ // Similarly for height.
+ const int horiz_filter_index = GetFilterIndex(horizontal_filter_index, width);
+ const int vert_filter_index = GetFilterIndex(vertical_filter_index, height);
+ const int vertical_taps = GetNumTapsInFilter(vert_filter_index);
+ const int intermediate_height = height + vertical_taps - 1;
+ const ptrdiff_t src_stride = reference_stride;
+ const auto* const src = static_cast<const uint8_t*>(reference) -
+ (vertical_taps / 2 - 1) * src_stride -
+ kHorizontalOffset;
+
+ DoHorizontalPass</*is_2d=*/true, /*is_compound=*/true>(
+ src, src_stride, intermediate_result, width, width, intermediate_height,
+ horizontal_filter_id, horiz_filter_index);
+
+ // Vertical filter.
+ auto* dest = static_cast<uint16_t*>(prediction);
+ assert(vertical_filter_id != 0);
+
+ const ptrdiff_t dest_stride = width;
+ const int16x8_t taps = vmovl_s8(
+ vld1_s8(kHalfSubPixelFilters[vert_filter_index][vertical_filter_id]));
+
+ if (vertical_taps == 8) {
+ if (width == 4) {
+ Filter2DVertical4xH<8, /*is_compound=*/true>(intermediate_result, dest,
+ dest_stride, height, taps);
+ } else {
+ Filter2DVertical<8, /*is_compound=*/true>(
+ intermediate_result, dest, dest_stride, width, height, taps);
+ }
+ } else if (vertical_taps == 6) {
+ if (width == 4) {
+ Filter2DVertical4xH<6, /*is_compound=*/true>(intermediate_result, dest,
+ dest_stride, height, taps);
+ } else {
+ Filter2DVertical<6, /*is_compound=*/true>(
+ intermediate_result, dest, dest_stride, width, height, taps);
+ }
+ } else if (vertical_taps == 4) {
+ if (width == 4) {
+ Filter2DVertical4xH<4, /*is_compound=*/true>(intermediate_result, dest,
+ dest_stride, height, taps);
+ } else {
+ Filter2DVertical<4, /*is_compound=*/true>(
+ intermediate_result, dest, dest_stride, width, height, taps);
+ }
+ } else { // |vertical_taps| == 2
+ if (width == 4) {
+ Filter2DVertical4xH<2, /*is_compound=*/true>(intermediate_result, dest,
+ dest_stride, height, taps);
+ } else {
+ Filter2DVertical<2, /*is_compound=*/true>(
+ intermediate_result, dest, dest_stride, width, height, taps);
+ }
+ }
+}
+
+inline void HalfAddHorizontal(const uint8_t* src, uint8_t* dst) {
+ const uint8x16_t left = vld1q_u8(src);
+ const uint8x16_t right = vld1q_u8(src + 1);
+ vst1q_u8(dst, vrhaddq_u8(left, right));
+}
+
+template <int width>
+inline void IntraBlockCopyHorizontal(const uint8_t* src,
+ const ptrdiff_t src_stride,
+ const int height, uint8_t* dst,
+ const ptrdiff_t dst_stride) {
+ const ptrdiff_t src_remainder_stride = src_stride - (width - 16);
+ const ptrdiff_t dst_remainder_stride = dst_stride - (width - 16);
+
+ int y = 0;
+ do {
+ HalfAddHorizontal(src, dst);
+ if (width >= 32) {
+ src += 16;
+ dst += 16;
+ HalfAddHorizontal(src, dst);
+ if (width >= 64) {
+ src += 16;
+ dst += 16;
+ HalfAddHorizontal(src, dst);
+ src += 16;
+ dst += 16;
+ HalfAddHorizontal(src, dst);
+ if (width == 128) {
+ src += 16;
+ dst += 16;
+ HalfAddHorizontal(src, dst);
+ src += 16;
+ dst += 16;
+ HalfAddHorizontal(src, dst);
+ src += 16;
+ dst += 16;
+ HalfAddHorizontal(src, dst);
+ src += 16;
+ dst += 16;
+ HalfAddHorizontal(src, dst);
+ }
+ }
+ }
+ src += src_remainder_stride;
+ dst += dst_remainder_stride;
+ } while (++y < height);
+}
+
+void ConvolveIntraBlockCopyHorizontal_NEON(
+ const void* const reference, const ptrdiff_t reference_stride,
+ const int /*horizontal_filter_index*/, const int /*vertical_filter_index*/,
+ const int /*subpixel_x*/, const int /*subpixel_y*/, const int width,
+ const int height, void* const prediction, const ptrdiff_t pred_stride) {
+ const auto* src = static_cast<const uint8_t*>(reference);
+ auto* dest = static_cast<uint8_t*>(prediction);
+
+ if (width == 128) {
+ IntraBlockCopyHorizontal<128>(src, reference_stride, height, dest,
+ pred_stride);
+ } else if (width == 64) {
+ IntraBlockCopyHorizontal<64>(src, reference_stride, height, dest,
+ pred_stride);
+ } else if (width == 32) {
+ IntraBlockCopyHorizontal<32>(src, reference_stride, height, dest,
+ pred_stride);
+ } else if (width == 16) {
+ IntraBlockCopyHorizontal<16>(src, reference_stride, height, dest,
+ pred_stride);
+ } else if (width == 8) {
+ int y = 0;
+ do {
+ const uint8x8_t left = vld1_u8(src);
+ const uint8x8_t right = vld1_u8(src + 1);
+ vst1_u8(dest, vrhadd_u8(left, right));
+
+ src += reference_stride;
+ dest += pred_stride;
+ } while (++y < height);
+ } else if (width == 4) {
+ uint8x8_t left = vdup_n_u8(0);
+ uint8x8_t right = vdup_n_u8(0);
+ int y = 0;
+ do {
+ left = Load4<0>(src, left);
+ right = Load4<0>(src + 1, right);
+ src += reference_stride;
+ left = Load4<1>(src, left);
+ right = Load4<1>(src + 1, right);
+ src += reference_stride;
+
+ const uint8x8_t result = vrhadd_u8(left, right);
+
+ StoreLo4(dest, result);
+ dest += pred_stride;
+ StoreHi4(dest, result);
+ dest += pred_stride;
+ y += 2;
+ } while (y < height);
+ } else {
+ assert(width == 2);
+ uint8x8_t left = vdup_n_u8(0);
+ uint8x8_t right = vdup_n_u8(0);
+ int y = 0;
+ do {
+ left = Load2<0>(src, left);
+ right = Load2<0>(src + 1, right);
+ src += reference_stride;
+ left = Load2<1>(src, left);
+ right = Load2<1>(src + 1, right);
+ src += reference_stride;
+
+ const uint8x8_t result = vrhadd_u8(left, right);
+
+ Store2<0>(dest, result);
+ dest += pred_stride;
+ Store2<1>(dest, result);
+ dest += pred_stride;
+ y += 2;
+ } while (y < height);
+ }
+}
+
+template <int width>
+inline void IntraBlockCopyVertical(const uint8_t* src,
+ const ptrdiff_t src_stride, const int height,
+ uint8_t* dst, const ptrdiff_t dst_stride) {
+ const ptrdiff_t src_remainder_stride = src_stride - (width - 16);
+ const ptrdiff_t dst_remainder_stride = dst_stride - (width - 16);
+ uint8x16_t row[8], below[8];
+
+ row[0] = vld1q_u8(src);
+ if (width >= 32) {
+ src += 16;
+ row[1] = vld1q_u8(src);
+ if (width >= 64) {
+ src += 16;
+ row[2] = vld1q_u8(src);
+ src += 16;
+ row[3] = vld1q_u8(src);
+ if (width == 128) {
+ src += 16;
+ row[4] = vld1q_u8(src);
+ src += 16;
+ row[5] = vld1q_u8(src);
+ src += 16;
+ row[6] = vld1q_u8(src);
+ src += 16;
+ row[7] = vld1q_u8(src);
+ }
+ }
+ }
+ src += src_remainder_stride;
+
+ int y = 0;
+ do {
+ below[0] = vld1q_u8(src);
+ if (width >= 32) {
+ src += 16;
+ below[1] = vld1q_u8(src);
+ if (width >= 64) {
+ src += 16;
+ below[2] = vld1q_u8(src);
+ src += 16;
+ below[3] = vld1q_u8(src);
+ if (width == 128) {
+ src += 16;
+ below[4] = vld1q_u8(src);
+ src += 16;
+ below[5] = vld1q_u8(src);
+ src += 16;
+ below[6] = vld1q_u8(src);
+ src += 16;
+ below[7] = vld1q_u8(src);
+ }
+ }
+ }
+ src += src_remainder_stride;
+
+ vst1q_u8(dst, vrhaddq_u8(row[0], below[0]));
+ row[0] = below[0];
+ if (width >= 32) {
+ dst += 16;
+ vst1q_u8(dst, vrhaddq_u8(row[1], below[1]));
+ row[1] = below[1];
+ if (width >= 64) {
+ dst += 16;
+ vst1q_u8(dst, vrhaddq_u8(row[2], below[2]));
+ row[2] = below[2];
+ dst += 16;
+ vst1q_u8(dst, vrhaddq_u8(row[3], below[3]));
+ row[3] = below[3];
+ if (width >= 128) {
+ dst += 16;
+ vst1q_u8(dst, vrhaddq_u8(row[4], below[4]));
+ row[4] = below[4];
+ dst += 16;
+ vst1q_u8(dst, vrhaddq_u8(row[5], below[5]));
+ row[5] = below[5];
+ dst += 16;
+ vst1q_u8(dst, vrhaddq_u8(row[6], below[6]));
+ row[6] = below[6];
+ dst += 16;
+ vst1q_u8(dst, vrhaddq_u8(row[7], below[7]));
+ row[7] = below[7];
+ }
+ }
+ }
+ dst += dst_remainder_stride;
+ } while (++y < height);
+}
+
+void ConvolveIntraBlockCopyVertical_NEON(
+ const void* const reference, const ptrdiff_t reference_stride,
+ const int /*horizontal_filter_index*/, const int /*vertical_filter_index*/,
+ const int /*horizontal_filter_id*/, const int /*vertical_filter_id*/,
+ const int width, const int height, void* const prediction,
+ const ptrdiff_t pred_stride) {
+ const auto* src = static_cast<const uint8_t*>(reference);
+ auto* dest = static_cast<uint8_t*>(prediction);
+
+ if (width == 128) {
+ IntraBlockCopyVertical<128>(src, reference_stride, height, dest,
+ pred_stride);
+ } else if (width == 64) {
+ IntraBlockCopyVertical<64>(src, reference_stride, height, dest,
+ pred_stride);
+ } else if (width == 32) {
+ IntraBlockCopyVertical<32>(src, reference_stride, height, dest,
+ pred_stride);
+ } else if (width == 16) {
+ IntraBlockCopyVertical<16>(src, reference_stride, height, dest,
+ pred_stride);
+ } else if (width == 8) {
+ uint8x8_t row, below;
+ row = vld1_u8(src);
+ src += reference_stride;
+
+ int y = 0;
+ do {
+ below = vld1_u8(src);
+ src += reference_stride;
+
+ vst1_u8(dest, vrhadd_u8(row, below));
+ dest += pred_stride;
+
+ row = below;
+ } while (++y < height);
+ } else if (width == 4) {
+ uint8x8_t row = Load4(src);
+ uint8x8_t below = vdup_n_u8(0);
+ src += reference_stride;
+
+ int y = 0;
+ do {
+ below = Load4<0>(src, below);
+ src += reference_stride;
+
+ StoreLo4(dest, vrhadd_u8(row, below));
+ dest += pred_stride;
+
+ row = below;
+ } while (++y < height);
+ } else {
+ assert(width == 2);
+ uint8x8_t row = Load2(src);
+ uint8x8_t below = vdup_n_u8(0);
+ src += reference_stride;
+
+ int y = 0;
+ do {
+ below = Load2<0>(src, below);
+ src += reference_stride;
+
+ Store2<0>(dest, vrhadd_u8(row, below));
+ dest += pred_stride;
+
+ row = below;
+ } while (++y < height);
+ }
+}
+
+template <int width>
+inline void IntraBlockCopy2D(const uint8_t* src, const ptrdiff_t src_stride,
+ const int height, uint8_t* dst,
+ const ptrdiff_t dst_stride) {
+ const ptrdiff_t src_remainder_stride = src_stride - (width - 8);
+ const ptrdiff_t dst_remainder_stride = dst_stride - (width - 8);
+ uint16x8_t row[16];
+ row[0] = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ if (width >= 16) {
+ src += 8;
+ row[1] = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ if (width >= 32) {
+ src += 8;
+ row[2] = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ src += 8;
+ row[3] = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ if (width >= 64) {
+ src += 8;
+ row[4] = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ src += 8;
+ row[5] = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ src += 8;
+ row[6] = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ src += 8;
+ row[7] = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ if (width == 128) {
+ src += 8;
+ row[8] = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ src += 8;
+ row[9] = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ src += 8;
+ row[10] = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ src += 8;
+ row[11] = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ src += 8;
+ row[12] = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ src += 8;
+ row[13] = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ src += 8;
+ row[14] = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ src += 8;
+ row[15] = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ }
+ }
+ }
+ }
+ src += src_remainder_stride;
+
+ int y = 0;
+ do {
+ const uint16x8_t below_0 = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ vst1_u8(dst, vrshrn_n_u16(vaddq_u16(row[0], below_0), 2));
+ row[0] = below_0;
+ if (width >= 16) {
+ src += 8;
+ dst += 8;
+
+ const uint16x8_t below_1 = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ vst1_u8(dst, vrshrn_n_u16(vaddq_u16(row[1], below_1), 2));
+ row[1] = below_1;
+ if (width >= 32) {
+ src += 8;
+ dst += 8;
+
+ const uint16x8_t below_2 = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ vst1_u8(dst, vrshrn_n_u16(vaddq_u16(row[2], below_2), 2));
+ row[2] = below_2;
+ src += 8;
+ dst += 8;
+
+ const uint16x8_t below_3 = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ vst1_u8(dst, vrshrn_n_u16(vaddq_u16(row[3], below_3), 2));
+ row[3] = below_3;
+ if (width >= 64) {
+ src += 8;
+ dst += 8;
+
+ const uint16x8_t below_4 = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ vst1_u8(dst, vrshrn_n_u16(vaddq_u16(row[4], below_4), 2));
+ row[4] = below_4;
+ src += 8;
+ dst += 8;
+
+ const uint16x8_t below_5 = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ vst1_u8(dst, vrshrn_n_u16(vaddq_u16(row[5], below_5), 2));
+ row[5] = below_5;
+ src += 8;
+ dst += 8;
+
+ const uint16x8_t below_6 = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ vst1_u8(dst, vrshrn_n_u16(vaddq_u16(row[6], below_6), 2));
+ row[6] = below_6;
+ src += 8;
+ dst += 8;
+
+ const uint16x8_t below_7 = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ vst1_u8(dst, vrshrn_n_u16(vaddq_u16(row[7], below_7), 2));
+ row[7] = below_7;
+ if (width == 128) {
+ src += 8;
+ dst += 8;
+
+ const uint16x8_t below_8 = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ vst1_u8(dst, vrshrn_n_u16(vaddq_u16(row[8], below_8), 2));
+ row[8] = below_8;
+ src += 8;
+ dst += 8;
+
+ const uint16x8_t below_9 = vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ vst1_u8(dst, vrshrn_n_u16(vaddq_u16(row[9], below_9), 2));
+ row[9] = below_9;
+ src += 8;
+ dst += 8;
+
+ const uint16x8_t below_10 =
+ vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ vst1_u8(dst, vrshrn_n_u16(vaddq_u16(row[10], below_10), 2));
+ row[10] = below_10;
+ src += 8;
+ dst += 8;
+
+ const uint16x8_t below_11 =
+ vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ vst1_u8(dst, vrshrn_n_u16(vaddq_u16(row[11], below_11), 2));
+ row[11] = below_11;
+ src += 8;
+ dst += 8;
+
+ const uint16x8_t below_12 =
+ vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ vst1_u8(dst, vrshrn_n_u16(vaddq_u16(row[12], below_12), 2));
+ row[12] = below_12;
+ src += 8;
+ dst += 8;
+
+ const uint16x8_t below_13 =
+ vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ vst1_u8(dst, vrshrn_n_u16(vaddq_u16(row[13], below_13), 2));
+ row[13] = below_13;
+ src += 8;
+ dst += 8;
+
+ const uint16x8_t below_14 =
+ vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ vst1_u8(dst, vrshrn_n_u16(vaddq_u16(row[14], below_14), 2));
+ row[14] = below_14;
+ src += 8;
+ dst += 8;
+
+ const uint16x8_t below_15 =
+ vaddl_u8(vld1_u8(src), vld1_u8(src + 1));
+ vst1_u8(dst, vrshrn_n_u16(vaddq_u16(row[15], below_15), 2));
+ row[15] = below_15;
+ }
+ }
+ }
+ }
+ src += src_remainder_stride;
+ dst += dst_remainder_stride;
+ } while (++y < height);
+}
+
+void ConvolveIntraBlockCopy2D_NEON(
+ const void* const reference, const ptrdiff_t reference_stride,
+ const int /*horizontal_filter_index*/, const int /*vertical_filter_index*/,
+ const int /*horizontal_filter_id*/, const int /*vertical_filter_id*/,
+ const int width, const int height, void* const prediction,
+ const ptrdiff_t pred_stride) {
+ const auto* src = static_cast<const uint8_t*>(reference);
+ auto* dest = static_cast<uint8_t*>(prediction);
+ // Note: allow vertical access to height + 1. Because this function is only
+ // for u/v plane of intra block copy, such access is guaranteed to be within
+ // the prediction block.
+
+ if (width == 128) {
+ IntraBlockCopy2D<128>(src, reference_stride, height, dest, pred_stride);
+ } else if (width == 64) {
+ IntraBlockCopy2D<64>(src, reference_stride, height, dest, pred_stride);
+ } else if (width == 32) {
+ IntraBlockCopy2D<32>(src, reference_stride, height, dest, pred_stride);
+ } else if (width == 16) {
+ IntraBlockCopy2D<16>(src, reference_stride, height, dest, pred_stride);
+ } else if (width == 8) {
+ IntraBlockCopy2D<8>(src, reference_stride, height, dest, pred_stride);
+ } else if (width == 4) {
+ uint8x8_t left = Load4(src);
+ uint8x8_t right = Load4(src + 1);
+ src += reference_stride;
+
+ uint16x4_t row = vget_low_u16(vaddl_u8(left, right));
+
+ int y = 0;
+ do {
+ left = Load4<0>(src, left);
+ right = Load4<0>(src + 1, right);
+ src += reference_stride;
+ left = Load4<1>(src, left);
+ right = Load4<1>(src + 1, right);
+ src += reference_stride;
+
+ const uint16x8_t below = vaddl_u8(left, right);
+
+ const uint8x8_t result = vrshrn_n_u16(
+ vaddq_u16(vcombine_u16(row, vget_low_u16(below)), below), 2);
+ StoreLo4(dest, result);
+ dest += pred_stride;
+ StoreHi4(dest, result);
+ dest += pred_stride;
+
+ row = vget_high_u16(below);
+ y += 2;
+ } while (y < height);
+ } else {
+ uint8x8_t left = Load2(src);
+ uint8x8_t right = Load2(src + 1);
+ src += reference_stride;
+
+ uint16x4_t row = vget_low_u16(vaddl_u8(left, right));
+
+ int y = 0;
+ do {
+ left = Load2<0>(src, left);
+ right = Load2<0>(src + 1, right);
+ src += reference_stride;
+ left = Load2<2>(src, left);
+ right = Load2<2>(src + 1, right);
+ src += reference_stride;
+
+ const uint16x8_t below = vaddl_u8(left, right);
+
+ const uint8x8_t result = vrshrn_n_u16(
+ vaddq_u16(vcombine_u16(row, vget_low_u16(below)), below), 2);
+ Store2<0>(dest, result);
+ dest += pred_stride;
+ Store2<2>(dest, result);
+ dest += pred_stride;
+
+ row = vget_high_u16(below);
+ y += 2;
+ } while (y < height);
+ }
+}
+
+void Init8bpp() {
+ Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8);
+ assert(dsp != nullptr);
+ dsp->convolve[0][0][0][1] = ConvolveHorizontal_NEON;
+ dsp->convolve[0][0][1][0] = ConvolveVertical_NEON;
+ dsp->convolve[0][0][1][1] = Convolve2D_NEON;
+
+ dsp->convolve[0][1][0][0] = ConvolveCompoundCopy_NEON;
+ dsp->convolve[0][1][0][1] = ConvolveCompoundHorizontal_NEON;
+ dsp->convolve[0][1][1][0] = ConvolveCompoundVertical_NEON;
+ dsp->convolve[0][1][1][1] = ConvolveCompound2D_NEON;
+
+ dsp->convolve[1][0][0][1] = ConvolveIntraBlockCopyHorizontal_NEON;
+ dsp->convolve[1][0][1][0] = ConvolveIntraBlockCopyVertical_NEON;
+ dsp->convolve[1][0][1][1] = ConvolveIntraBlockCopy2D_NEON;
+
+ dsp->convolve_scale[0] = ConvolveScale2D_NEON<false>;
+ dsp->convolve_scale[1] = ConvolveScale2D_NEON<true>;
+}
+
+} // namespace
+} // namespace low_bitdepth
+
+void ConvolveInit_NEON() { low_bitdepth::Init8bpp(); }
+
+} // namespace dsp
+} // namespace libgav1
+
+#else // !LIBGAV1_ENABLE_NEON
+
+namespace libgav1 {
+namespace dsp {
+
+void ConvolveInit_NEON() {}
+
+} // namespace dsp
+} // namespace libgav1
+#endif // LIBGAV1_ENABLE_NEON