aboutsummaryrefslogtreecommitdiff
path: root/src/dsp/arm/warp_neon.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/dsp/arm/warp_neon.cc')
-rw-r--r--src/dsp/arm/warp_neon.cc453
1 files changed, 453 insertions, 0 deletions
diff --git a/src/dsp/arm/warp_neon.cc b/src/dsp/arm/warp_neon.cc
new file mode 100644
index 0000000..7a41998
--- /dev/null
+++ b/src/dsp/arm/warp_neon.cc
@@ -0,0 +1,453 @@
+// Copyright 2019 The libgav1 Authors
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "src/dsp/warp.h"
+#include "src/utils/cpu.h"
+
+#if LIBGAV1_ENABLE_NEON
+
+#include <arm_neon.h>
+
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <cstdlib>
+#include <type_traits>
+
+#include "src/dsp/arm/common_neon.h"
+#include "src/dsp/constants.h"
+#include "src/dsp/dsp.h"
+#include "src/utils/common.h"
+#include "src/utils/constants.h"
+
+namespace libgav1 {
+namespace dsp {
+namespace low_bitdepth {
+namespace {
+
+// Number of extra bits of precision in warped filtering.
+constexpr int kWarpedDiffPrecisionBits = 10;
+constexpr int kFirstPassOffset = 1 << 14;
+constexpr int kOffsetRemoval =
+ (kFirstPassOffset >> kInterRoundBitsHorizontal) * 128;
+
+// Applies the horizontal filter to one source row and stores the result in
+// |intermediate_result_row|. |intermediate_result_row| is a row in the 15x8
+// |intermediate_result| two-dimensional array.
+//
+// src_row_centered contains 16 "centered" samples of a source row. (We center
+// the samples by subtracting 128 from the samples.)
+void HorizontalFilter(const int sx4, const int16_t alpha,
+ const int8x16_t src_row_centered,
+ int16_t intermediate_result_row[8]) {
+ int sx = sx4 - MultiplyBy4(alpha);
+ int8x8_t filter[8];
+ for (int x = 0; x < 8; ++x) {
+ const int offset = RightShiftWithRounding(sx, kWarpedDiffPrecisionBits) +
+ kWarpedPixelPrecisionShifts;
+ filter[x] = vld1_s8(kWarpedFilters8[offset]);
+ sx += alpha;
+ }
+ Transpose8x8(filter);
+ // Add kFirstPassOffset to ensure |sum| stays within uint16_t.
+ // Add 128 (offset) * 128 (filter sum) (also 1 << 14) to account for the
+ // centering of the source samples. These combined are 1 << 15 or -32768.
+ int16x8_t sum =
+ vdupq_n_s16(static_cast<int16_t>(kFirstPassOffset + 128 * 128));
+ // Unrolled k = 0..7 loop. We need to manually unroll the loop because the
+ // third argument (an index value) to vextq_s8() must be a constant
+ // (immediate). src_row_window is a sliding window of length 8 into
+ // src_row_centered.
+ // k = 0.
+ int8x8_t src_row_window = vget_low_s8(src_row_centered);
+ sum = vmlal_s8(sum, filter[0], src_row_window);
+ // k = 1.
+ src_row_window = vget_low_s8(vextq_s8(src_row_centered, src_row_centered, 1));
+ sum = vmlal_s8(sum, filter[1], src_row_window);
+ // k = 2.
+ src_row_window = vget_low_s8(vextq_s8(src_row_centered, src_row_centered, 2));
+ sum = vmlal_s8(sum, filter[2], src_row_window);
+ // k = 3.
+ src_row_window = vget_low_s8(vextq_s8(src_row_centered, src_row_centered, 3));
+ sum = vmlal_s8(sum, filter[3], src_row_window);
+ // k = 4.
+ src_row_window = vget_low_s8(vextq_s8(src_row_centered, src_row_centered, 4));
+ sum = vmlal_s8(sum, filter[4], src_row_window);
+ // k = 5.
+ src_row_window = vget_low_s8(vextq_s8(src_row_centered, src_row_centered, 5));
+ sum = vmlal_s8(sum, filter[5], src_row_window);
+ // k = 6.
+ src_row_window = vget_low_s8(vextq_s8(src_row_centered, src_row_centered, 6));
+ sum = vmlal_s8(sum, filter[6], src_row_window);
+ // k = 7.
+ src_row_window = vget_low_s8(vextq_s8(src_row_centered, src_row_centered, 7));
+ sum = vmlal_s8(sum, filter[7], src_row_window);
+ // End of unrolled k = 0..7 loop.
+ // Due to the offset |sum| is guaranteed to be unsigned.
+ uint16x8_t sum_unsigned = vreinterpretq_u16_s16(sum);
+ sum_unsigned = vrshrq_n_u16(sum_unsigned, kInterRoundBitsHorizontal);
+ // After the shift |sum_unsigned| will fit into int16_t.
+ vst1q_s16(intermediate_result_row, vreinterpretq_s16_u16(sum_unsigned));
+}
+
+template <bool is_compound>
+void Warp_NEON(const void* const source, const ptrdiff_t source_stride,
+ const int source_width, const int source_height,
+ const int* const warp_params, const int subsampling_x,
+ const int subsampling_y, const int block_start_x,
+ const int block_start_y, const int block_width,
+ const int block_height, const int16_t alpha, const int16_t beta,
+ const int16_t gamma, const int16_t delta, void* dest,
+ const ptrdiff_t dest_stride) {
+ constexpr int kRoundBitsVertical =
+ is_compound ? kInterRoundBitsCompoundVertical : kInterRoundBitsVertical;
+ union {
+ // Intermediate_result is the output of the horizontal filtering and
+ // rounding. The range is within 13 (= bitdepth + kFilterBits + 1 -
+ // kInterRoundBitsHorizontal) bits (unsigned). We use the signed int16_t
+ // type so that we can multiply it by kWarpedFilters (which has signed
+ // values) using vmlal_s16().
+ int16_t intermediate_result[15][8]; // 15 rows, 8 columns.
+ // In the simple special cases where the samples in each row are all the
+ // same, store one sample per row in a column vector.
+ int16_t intermediate_result_column[15];
+ };
+
+ const auto* const src = static_cast<const uint8_t*>(source);
+ using DestType =
+ typename std::conditional<is_compound, int16_t, uint8_t>::type;
+ auto* dst = static_cast<DestType*>(dest);
+
+ assert(block_width >= 8);
+ assert(block_height >= 8);
+
+ // Warp process applies for each 8x8 block.
+ int start_y = block_start_y;
+ do {
+ int start_x = block_start_x;
+ do {
+ const int src_x = (start_x + 4) << subsampling_x;
+ const int src_y = (start_y + 4) << subsampling_y;
+ const int dst_x =
+ src_x * warp_params[2] + src_y * warp_params[3] + warp_params[0];
+ const int dst_y =
+ src_x * warp_params[4] + src_y * warp_params[5] + warp_params[1];
+ const int x4 = dst_x >> subsampling_x;
+ const int y4 = dst_y >> subsampling_y;
+ const int ix4 = x4 >> kWarpedModelPrecisionBits;
+ const int iy4 = y4 >> kWarpedModelPrecisionBits;
+ // A prediction block may fall outside the frame's boundaries. If a
+ // prediction block is calculated using only samples outside the frame's
+ // boundary, the filtering can be simplified. We can divide the plane
+ // into several regions and handle them differently.
+ //
+ // | |
+ // 1 | 3 | 1
+ // | |
+ // -------+-----------+-------
+ // |***********|
+ // 2 |*****4*****| 2
+ // |***********|
+ // -------+-----------+-------
+ // | |
+ // 1 | 3 | 1
+ // | |
+ //
+ // At the center, region 4 represents the frame and is the general case.
+ //
+ // In regions 1 and 2, the prediction block is outside the frame's
+ // boundary horizontally. Therefore the horizontal filtering can be
+ // simplified. Furthermore, in the region 1 (at the four corners), the
+ // prediction is outside the frame's boundary both horizontally and
+ // vertically, so we get a constant prediction block.
+ //
+ // In region 3, the prediction block is outside the frame's boundary
+ // vertically. Unfortunately because we apply the horizontal filters
+ // first, by the time we apply the vertical filters, they no longer see
+ // simple inputs. So the only simplification is that all the rows are
+ // the same, but we still need to apply all the horizontal and vertical
+ // filters.
+
+ // Check for two simple special cases, where the horizontal filter can
+ // be significantly simplified.
+ //
+ // In general, for each row, the horizontal filter is calculated as
+ // follows:
+ // for (int x = -4; x < 4; ++x) {
+ // const int offset = ...;
+ // int sum = first_pass_offset;
+ // for (int k = 0; k < 8; ++k) {
+ // const int column = Clip3(ix4 + x + k - 3, 0, source_width - 1);
+ // sum += kWarpedFilters[offset][k] * src_row[column];
+ // }
+ // ...
+ // }
+ // The column index before clipping, ix4 + x + k - 3, varies in the range
+ // ix4 - 7 <= ix4 + x + k - 3 <= ix4 + 7. If ix4 - 7 >= source_width - 1
+ // or ix4 + 7 <= 0, then all the column indexes are clipped to the same
+ // border index (source_width - 1 or 0, respectively). Then for each x,
+ // the inner for loop of the horizontal filter is reduced to multiplying
+ // the border pixel by the sum of the filter coefficients.
+ if (ix4 - 7 >= source_width - 1 || ix4 + 7 <= 0) {
+ // Regions 1 and 2.
+ // Points to the left or right border of the first row of |src|.
+ const uint8_t* first_row_border =
+ (ix4 + 7 <= 0) ? src : src + source_width - 1;
+ // In general, for y in [-7, 8), the row number iy4 + y is clipped:
+ // const int row = Clip3(iy4 + y, 0, source_height - 1);
+ // In two special cases, iy4 + y is clipped to either 0 or
+ // source_height - 1 for all y. In the rest of the cases, iy4 + y is
+ // bounded and we can avoid clipping iy4 + y by relying on a reference
+ // frame's boundary extension on the top and bottom.
+ if (iy4 - 7 >= source_height - 1 || iy4 + 7 <= 0) {
+ // Region 1.
+ // Every sample used to calculate the prediction block has the same
+ // value. So the whole prediction block has the same value.
+ const int row = (iy4 + 7 <= 0) ? 0 : source_height - 1;
+ const uint8_t row_border_pixel =
+ first_row_border[row * source_stride];
+
+ DestType* dst_row = dst + start_x - block_start_x;
+ for (int y = 0; y < 8; ++y) {
+ if (is_compound) {
+ const int16x8_t sum =
+ vdupq_n_s16(row_border_pixel << (kInterRoundBitsVertical -
+ kRoundBitsVertical));
+ vst1q_s16(reinterpret_cast<int16_t*>(dst_row), sum);
+ } else {
+ memset(dst_row, row_border_pixel, 8);
+ }
+ dst_row += dest_stride;
+ }
+ // End of region 1. Continue the |start_x| do-while loop.
+ start_x += 8;
+ continue;
+ }
+
+ // Region 2.
+ // Horizontal filter.
+ // The input values in this region are generated by extending the border
+ // which makes them identical in the horizontal direction. This
+ // computation could be inlined in the vertical pass but most
+ // implementations will need a transpose of some sort.
+ // It is not necessary to use the offset values here because the
+ // horizontal pass is a simple shift and the vertical pass will always
+ // require using 32 bits.
+ for (int y = -7; y < 8; ++y) {
+ // We may over-read up to 13 pixels above the top source row, or up
+ // to 13 pixels below the bottom source row. This is proved in
+ // warp.cc.
+ const int row = iy4 + y;
+ int sum = first_row_border[row * source_stride];
+ sum <<= (kFilterBits - kInterRoundBitsHorizontal);
+ intermediate_result_column[y + 7] = sum;
+ }
+ // Vertical filter.
+ DestType* dst_row = dst + start_x - block_start_x;
+ int sy4 =
+ (y4 & ((1 << kWarpedModelPrecisionBits) - 1)) - MultiplyBy4(delta);
+ for (int y = 0; y < 8; ++y) {
+ int sy = sy4 - MultiplyBy4(gamma);
+#if defined(__aarch64__)
+ const int16x8_t intermediate =
+ vld1q_s16(&intermediate_result_column[y]);
+ int16_t tmp[8];
+ for (int x = 0; x < 8; ++x) {
+ const int offset =
+ RightShiftWithRounding(sy, kWarpedDiffPrecisionBits) +
+ kWarpedPixelPrecisionShifts;
+ const int16x8_t filter = vld1q_s16(kWarpedFilters[offset]);
+ const int32x4_t product_low =
+ vmull_s16(vget_low_s16(filter), vget_low_s16(intermediate));
+ const int32x4_t product_high =
+ vmull_s16(vget_high_s16(filter), vget_high_s16(intermediate));
+ // vaddvq_s32 is only available on __aarch64__.
+ const int32_t sum =
+ vaddvq_s32(product_low) + vaddvq_s32(product_high);
+ const int16_t sum_descale =
+ RightShiftWithRounding(sum, kRoundBitsVertical);
+ if (is_compound) {
+ dst_row[x] = sum_descale;
+ } else {
+ tmp[x] = sum_descale;
+ }
+ sy += gamma;
+ }
+ if (!is_compound) {
+ const int16x8_t sum = vld1q_s16(tmp);
+ vst1_u8(reinterpret_cast<uint8_t*>(dst_row), vqmovun_s16(sum));
+ }
+#else // !defined(__aarch64__)
+ int16x8_t filter[8];
+ for (int x = 0; x < 8; ++x) {
+ const int offset =
+ RightShiftWithRounding(sy, kWarpedDiffPrecisionBits) +
+ kWarpedPixelPrecisionShifts;
+ filter[x] = vld1q_s16(kWarpedFilters[offset]);
+ sy += gamma;
+ }
+ Transpose8x8(filter);
+ int32x4_t sum_low = vdupq_n_s32(0);
+ int32x4_t sum_high = sum_low;
+ for (int k = 0; k < 8; ++k) {
+ const int16_t intermediate = intermediate_result_column[y + k];
+ sum_low =
+ vmlal_n_s16(sum_low, vget_low_s16(filter[k]), intermediate);
+ sum_high =
+ vmlal_n_s16(sum_high, vget_high_s16(filter[k]), intermediate);
+ }
+ const int16x8_t sum =
+ vcombine_s16(vrshrn_n_s32(sum_low, kRoundBitsVertical),
+ vrshrn_n_s32(sum_high, kRoundBitsVertical));
+ if (is_compound) {
+ vst1q_s16(reinterpret_cast<int16_t*>(dst_row), sum);
+ } else {
+ vst1_u8(reinterpret_cast<uint8_t*>(dst_row), vqmovun_s16(sum));
+ }
+#endif // defined(__aarch64__)
+ dst_row += dest_stride;
+ sy4 += delta;
+ }
+ // End of region 2. Continue the |start_x| do-while loop.
+ start_x += 8;
+ continue;
+ }
+
+ // Regions 3 and 4.
+ // At this point, we know ix4 - 7 < source_width - 1 and ix4 + 7 > 0.
+
+ // In general, for y in [-7, 8), the row number iy4 + y is clipped:
+ // const int row = Clip3(iy4 + y, 0, source_height - 1);
+ // In two special cases, iy4 + y is clipped to either 0 or
+ // source_height - 1 for all y. In the rest of the cases, iy4 + y is
+ // bounded and we can avoid clipping iy4 + y by relying on a reference
+ // frame's boundary extension on the top and bottom.
+ if (iy4 - 7 >= source_height - 1 || iy4 + 7 <= 0) {
+ // Region 3.
+ // Horizontal filter.
+ const int row = (iy4 + 7 <= 0) ? 0 : source_height - 1;
+ const uint8_t* const src_row = src + row * source_stride;
+ // Read 15 samples from &src_row[ix4 - 7]. The 16th sample is also
+ // read but is ignored.
+ //
+ // NOTE: This may read up to 13 bytes before src_row[0] or up to 14
+ // bytes after src_row[source_width - 1]. We assume the source frame
+ // has left and right borders of at least 13 bytes that extend the
+ // frame boundary pixels. We also assume there is at least one extra
+ // padding byte after the right border of the last source row.
+ const uint8x16_t src_row_v = vld1q_u8(&src_row[ix4 - 7]);
+ // Convert src_row_v to int8 (subtract 128).
+ const int8x16_t src_row_centered =
+ vreinterpretq_s8_u8(vsubq_u8(src_row_v, vdupq_n_u8(128)));
+ int sx4 = (x4 & ((1 << kWarpedModelPrecisionBits) - 1)) - beta * 7;
+ for (int y = -7; y < 8; ++y) {
+ HorizontalFilter(sx4, alpha, src_row_centered,
+ intermediate_result[y + 7]);
+ sx4 += beta;
+ }
+ } else {
+ // Region 4.
+ // Horizontal filter.
+ int sx4 = (x4 & ((1 << kWarpedModelPrecisionBits) - 1)) - beta * 7;
+ for (int y = -7; y < 8; ++y) {
+ // We may over-read up to 13 pixels above the top source row, or up
+ // to 13 pixels below the bottom source row. This is proved in
+ // warp.cc.
+ const int row = iy4 + y;
+ const uint8_t* const src_row = src + row * source_stride;
+ // Read 15 samples from &src_row[ix4 - 7]. The 16th sample is also
+ // read but is ignored.
+ //
+ // NOTE: This may read up to 13 bytes before src_row[0] or up to 14
+ // bytes after src_row[source_width - 1]. We assume the source frame
+ // has left and right borders of at least 13 bytes that extend the
+ // frame boundary pixels. We also assume there is at least one extra
+ // padding byte after the right border of the last source row.
+ const uint8x16_t src_row_v = vld1q_u8(&src_row[ix4 - 7]);
+ // Convert src_row_v to int8 (subtract 128).
+ const int8x16_t src_row_centered =
+ vreinterpretq_s8_u8(vsubq_u8(src_row_v, vdupq_n_u8(128)));
+ HorizontalFilter(sx4, alpha, src_row_centered,
+ intermediate_result[y + 7]);
+ sx4 += beta;
+ }
+ }
+
+ // Regions 3 and 4.
+ // Vertical filter.
+ DestType* dst_row = dst + start_x - block_start_x;
+ int sy4 =
+ (y4 & ((1 << kWarpedModelPrecisionBits) - 1)) - MultiplyBy4(delta);
+ for (int y = 0; y < 8; ++y) {
+ int sy = sy4 - MultiplyBy4(gamma);
+ int16x8_t filter[8];
+ for (int x = 0; x < 8; ++x) {
+ const int offset =
+ RightShiftWithRounding(sy, kWarpedDiffPrecisionBits) +
+ kWarpedPixelPrecisionShifts;
+ filter[x] = vld1q_s16(kWarpedFilters[offset]);
+ sy += gamma;
+ }
+ Transpose8x8(filter);
+ int32x4_t sum_low = vdupq_n_s32(-kOffsetRemoval);
+ int32x4_t sum_high = sum_low;
+ for (int k = 0; k < 8; ++k) {
+ const int16x8_t intermediate = vld1q_s16(intermediate_result[y + k]);
+ sum_low = vmlal_s16(sum_low, vget_low_s16(filter[k]),
+ vget_low_s16(intermediate));
+ sum_high = vmlal_s16(sum_high, vget_high_s16(filter[k]),
+ vget_high_s16(intermediate));
+ }
+ const int16x8_t sum =
+ vcombine_s16(vrshrn_n_s32(sum_low, kRoundBitsVertical),
+ vrshrn_n_s32(sum_high, kRoundBitsVertical));
+ if (is_compound) {
+ vst1q_s16(reinterpret_cast<int16_t*>(dst_row), sum);
+ } else {
+ vst1_u8(reinterpret_cast<uint8_t*>(dst_row), vqmovun_s16(sum));
+ }
+ dst_row += dest_stride;
+ sy4 += delta;
+ }
+ start_x += 8;
+ } while (start_x < block_start_x + block_width);
+ dst += 8 * dest_stride;
+ start_y += 8;
+ } while (start_y < block_start_y + block_height);
+}
+
+void Init8bpp() {
+ Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8);
+ assert(dsp != nullptr);
+ dsp->warp = Warp_NEON</*is_compound=*/false>;
+ dsp->warp_compound = Warp_NEON</*is_compound=*/true>;
+}
+
+} // namespace
+} // namespace low_bitdepth
+
+void WarpInit_NEON() { low_bitdepth::Init8bpp(); }
+
+} // namespace dsp
+} // namespace libgav1
+#else // !LIBGAV1_ENABLE_NEON
+namespace libgav1 {
+namespace dsp {
+
+void WarpInit_NEON() {}
+
+} // namespace dsp
+} // namespace libgav1
+#endif // LIBGAV1_ENABLE_NEON