aboutsummaryrefslogtreecommitdiff
path: root/src/dsp/intrapred_directional_test.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/dsp/intrapred_directional_test.cc')
-rw-r--r--src/dsp/intrapred_directional_test.cc929
1 files changed, 929 insertions, 0 deletions
diff --git a/src/dsp/intrapred_directional_test.cc b/src/dsp/intrapred_directional_test.cc
new file mode 100644
index 0000000..ebf9da0
--- /dev/null
+++ b/src/dsp/intrapred_directional_test.cc
@@ -0,0 +1,929 @@
+// Copyright 2021 The libgav1 Authors
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "src/dsp/intrapred_directional.h"
+
+#include <cmath>
+#include <cstddef>
+#include <cstdint>
+#include <cstring>
+#include <memory>
+#include <ostream>
+
+#include "absl/strings/match.h"
+#include "absl/time/clock.h"
+#include "absl/time/time.h"
+#include "gtest/gtest.h"
+#include "src/dsp/constants.h"
+#include "src/dsp/dsp.h"
+#include "src/utils/common.h"
+#include "src/utils/constants.h"
+#include "src/utils/cpu.h"
+#include "src/utils/memory.h"
+#include "tests/block_utils.h"
+#include "tests/third_party/libvpx/acm_random.h"
+#include "tests/utils.h"
+
+namespace libgav1 {
+namespace dsp {
+namespace {
+
+constexpr int kMaxBlockSize = 64;
+constexpr int kTotalPixels = kMaxBlockSize * kMaxBlockSize;
+constexpr int kNumDirectionalIntraPredictors = 3;
+
+constexpr int kBaseAngles[] = {45, 67, 90, 113, 135, 157, 180, 203};
+
+const char* const kDirectionalPredNames[kNumDirectionalIntraPredictors] = {
+ "kDirectionalIntraPredictorZone1", "kDirectionalIntraPredictorZone2",
+ "kDirectionalIntraPredictorZone3"};
+
+int16_t GetDirectionalIntraPredictorDerivative(const int angle) {
+ EXPECT_GE(angle, 3);
+ EXPECT_LE(angle, 87);
+ return kDirectionalIntraPredictorDerivative[DivideBy2(angle) - 1];
+}
+
+template <int bitdepth, typename Pixel>
+class IntraPredTestBase : public testing::TestWithParam<TransformSize>,
+ public test_utils::MaxAlignedAllocable {
+ public:
+ IntraPredTestBase() {
+ switch (tx_size_) {
+ case kNumTransformSizes:
+ EXPECT_NE(tx_size_, kNumTransformSizes);
+ break;
+ default:
+ block_width_ = kTransformWidth[tx_size_];
+ block_height_ = kTransformHeight[tx_size_];
+ break;
+ }
+ }
+
+ IntraPredTestBase(const IntraPredTestBase&) = delete;
+ IntraPredTestBase& operator=(const IntraPredTestBase&) = delete;
+ ~IntraPredTestBase() override = default;
+
+ protected:
+ struct IntraPredMem {
+ void Reset(libvpx_test::ACMRandom* rnd) {
+ ASSERT_NE(rnd, nullptr);
+ Pixel* const left = left_mem + 16;
+ Pixel* const top = top_mem + 16;
+ const int mask = (1 << bitdepth) - 1;
+ for (auto& r : ref_src) r = rnd->Rand16() & mask;
+ for (int i = 0; i < kMaxBlockSize; ++i) left[i] = rnd->Rand16() & mask;
+ for (int i = -1; i < kMaxBlockSize; ++i) top[i] = rnd->Rand16() & mask;
+
+ // Some directional predictors require top-right, bottom-left.
+ for (int i = kMaxBlockSize; i < 2 * kMaxBlockSize; ++i) {
+ left[i] = rnd->Rand16() & mask;
+ top[i] = rnd->Rand16() & mask;
+ }
+ // TODO(jzern): reorder this and regenerate the digests after switching
+ // random number generators.
+ // Upsampling in the directional predictors extends left/top[-1] to [-2].
+ left[-1] = rnd->Rand16() & mask;
+ left[-2] = rnd->Rand16() & mask;
+ top[-2] = rnd->Rand16() & mask;
+ memset(left_mem, 0, sizeof(left_mem[0]) * 14);
+ memset(top_mem, 0, sizeof(top_mem[0]) * 14);
+ memset(top_mem + kMaxBlockSize * 2 + 16, 0,
+ sizeof(top_mem[0]) * kTopMemPadding);
+ }
+
+ // Set ref_src, top-left, top and left to |pixel|.
+ void Set(const Pixel pixel) {
+ Pixel* const left = left_mem + 16;
+ Pixel* const top = top_mem + 16;
+ for (auto& r : ref_src) r = pixel;
+ // Upsampling in the directional predictors extends left/top[-1] to [-2].
+ for (int i = -2; i < 2 * kMaxBlockSize; ++i) {
+ left[i] = top[i] = pixel;
+ }
+ }
+
+ // DirectionalZone1_Large() overreads up to 7 pixels in |top_mem|.
+ static constexpr int kTopMemPadding = 7;
+ alignas(kMaxAlignment) Pixel dst[kTotalPixels];
+ alignas(kMaxAlignment) Pixel ref_src[kTotalPixels];
+ alignas(kMaxAlignment) Pixel left_mem[kMaxBlockSize * 2 + 16];
+ alignas(
+ kMaxAlignment) Pixel top_mem[kMaxBlockSize * 2 + 16 + kTopMemPadding];
+ };
+
+ void SetUp() override { test_utils::ResetDspTable(bitdepth); }
+
+ const TransformSize tx_size_ = GetParam();
+ int block_width_;
+ int block_height_;
+ IntraPredMem intra_pred_mem_;
+};
+
+//------------------------------------------------------------------------------
+// DirectionalIntraPredTest
+
+template <int bitdepth, typename Pixel>
+class DirectionalIntraPredTest : public IntraPredTestBase<bitdepth, Pixel> {
+ public:
+ DirectionalIntraPredTest() = default;
+ DirectionalIntraPredTest(const DirectionalIntraPredTest&) = delete;
+ DirectionalIntraPredTest& operator=(const DirectionalIntraPredTest&) = delete;
+ ~DirectionalIntraPredTest() override = default;
+
+ protected:
+ using IntraPredTestBase<bitdepth, Pixel>::tx_size_;
+ using IntraPredTestBase<bitdepth, Pixel>::block_width_;
+ using IntraPredTestBase<bitdepth, Pixel>::block_height_;
+ using IntraPredTestBase<bitdepth, Pixel>::intra_pred_mem_;
+
+ enum Zone { kZone1, kZone2, kZone3, kNumZones };
+
+ enum { kAngleDeltaStart = -9, kAngleDeltaStop = 9, kAngleDeltaStep = 3 };
+
+ void SetUp() override {
+ IntraPredTestBase<bitdepth, Pixel>::SetUp();
+ IntraPredDirectionalInit_C();
+
+ const Dsp* const dsp = GetDspTable(bitdepth);
+ ASSERT_NE(dsp, nullptr);
+ base_directional_intra_pred_zone1_ = dsp->directional_intra_predictor_zone1;
+ base_directional_intra_pred_zone2_ = dsp->directional_intra_predictor_zone2;
+ base_directional_intra_pred_zone3_ = dsp->directional_intra_predictor_zone3;
+
+ const testing::TestInfo* const test_info =
+ testing::UnitTest::GetInstance()->current_test_info();
+ const char* const test_case = test_info->test_suite_name();
+ if (absl::StartsWith(test_case, "C/")) {
+ base_directional_intra_pred_zone1_ = nullptr;
+ base_directional_intra_pred_zone2_ = nullptr;
+ base_directional_intra_pred_zone3_ = nullptr;
+ } else if (absl::StartsWith(test_case, "NEON/")) {
+ IntraPredDirectionalInit_NEON();
+ } else if (absl::StartsWith(test_case, "SSE41/")) {
+ if ((GetCpuInfo() & kSSE4_1) != 0) {
+ IntraPredDirectionalInit_SSE4_1();
+ }
+ } else {
+ FAIL() << "Unrecognized architecture prefix in test case name: "
+ << test_case;
+ }
+
+ cur_directional_intra_pred_zone1_ = dsp->directional_intra_predictor_zone1;
+ cur_directional_intra_pred_zone2_ = dsp->directional_intra_predictor_zone2;
+ cur_directional_intra_pred_zone3_ = dsp->directional_intra_predictor_zone3;
+
+ // Skip functions that haven't been specialized for this particular
+ // architecture.
+ if (cur_directional_intra_pred_zone1_ ==
+ base_directional_intra_pred_zone1_) {
+ cur_directional_intra_pred_zone1_ = nullptr;
+ }
+ if (cur_directional_intra_pred_zone2_ ==
+ base_directional_intra_pred_zone2_) {
+ cur_directional_intra_pred_zone2_ = nullptr;
+ }
+ if (cur_directional_intra_pred_zone3_ ==
+ base_directional_intra_pred_zone3_) {
+ cur_directional_intra_pred_zone3_ = nullptr;
+ }
+ }
+
+ bool IsEdgeUpsampled(int delta, const int filter_type) const {
+ delta = std::abs(delta);
+ if (delta == 0 || delta >= 40) return false;
+ const int block_wh = block_width_ + block_height_;
+ return (filter_type == 1) ? block_wh <= 8 : block_wh <= 16;
+ }
+
+ // Returns the minimum and maximum (exclusive) range of angles that the
+ // predictor should be applied to.
+ void GetZoneAngleRange(const Zone zone, int* const min_angle,
+ int* const max_angle) const {
+ ASSERT_NE(min_angle, nullptr);
+ ASSERT_NE(max_angle, nullptr);
+ switch (zone) {
+ // The overall minimum angle comes from mode D45_PRED, yielding:
+ // min_angle = 45-(MAX_ANGLE_DELTA*ANGLE_STEP) = 36
+ // The overall maximum angle comes from mode D203_PRED, yielding:
+ // max_angle = 203+(MAX_ANGLE_DELTA*ANGLE_STEP) = 212
+ // The angles 180 and 90 are not permitted because they correspond to
+ // V_PRED and H_PRED, which are handled in distinct functions.
+ case kZone1:
+ *min_angle = 36;
+ *max_angle = 87;
+ break;
+ case kZone2:
+ *min_angle = 93;
+ *max_angle = 177;
+ break;
+ case kZone3:
+ *min_angle = 183;
+ *max_angle = 212;
+ break;
+ case kNumZones:
+ FAIL() << "Invalid zone value: " << zone;
+ break;
+ }
+ }
+
+ // These tests modify intra_pred_mem_.
+ void TestSpeed(const char* const digests[kNumDirectionalIntraPredictors],
+ Zone zone, int num_runs);
+ void TestSaturatedValues();
+ void TestRandomValues();
+
+ DirectionalIntraPredictorZone1Func base_directional_intra_pred_zone1_;
+ DirectionalIntraPredictorZone2Func base_directional_intra_pred_zone2_;
+ DirectionalIntraPredictorZone3Func base_directional_intra_pred_zone3_;
+ DirectionalIntraPredictorZone1Func cur_directional_intra_pred_zone1_;
+ DirectionalIntraPredictorZone2Func cur_directional_intra_pred_zone2_;
+ DirectionalIntraPredictorZone3Func cur_directional_intra_pred_zone3_;
+};
+
+template <int bitdepth, typename Pixel>
+void DirectionalIntraPredTest<bitdepth, Pixel>::TestSpeed(
+ const char* const digests[kNumDirectionalIntraPredictors], const Zone zone,
+ const int num_runs) {
+ switch (zone) {
+ case kZone1:
+ if (cur_directional_intra_pred_zone1_ == nullptr) return;
+ break;
+ case kZone2:
+ if (cur_directional_intra_pred_zone2_ == nullptr) return;
+ break;
+ case kZone3:
+ if (cur_directional_intra_pred_zone3_ == nullptr) return;
+ break;
+ case kNumZones:
+ FAIL() << "Invalid zone value: " << zone;
+ break;
+ }
+ ASSERT_NE(digests, nullptr);
+ const Pixel* const left = intra_pred_mem_.left_mem + 16;
+ const Pixel* const top = intra_pred_mem_.top_mem + 16;
+
+ libvpx_test::ACMRandom rnd(libvpx_test::ACMRandom::DeterministicSeed());
+ intra_pred_mem_.Reset(&rnd);
+
+ // Allocate separate blocks for each angle + filter + upsampled combination.
+ // Add a 1 pixel right border to test for overwrites.
+ static constexpr int kMaxZoneAngles = 27; // zone 2
+ static constexpr int kMaxFilterTypes = 2;
+ static constexpr int kBlockBorder = 1;
+ static constexpr int kBorderSize =
+ kBlockBorder * kMaxZoneAngles * kMaxFilterTypes;
+ const int ref_stride =
+ kMaxZoneAngles * kMaxFilterTypes * block_width_ + kBorderSize;
+ const size_t ref_alloc_size = sizeof(Pixel) * ref_stride * block_height_;
+
+ using AlignedPtr = std::unique_ptr<Pixel[], decltype(&AlignedFree)>;
+ AlignedPtr ref_src(static_cast<Pixel*>(AlignedAlloc(16, ref_alloc_size)),
+ &AlignedFree);
+ AlignedPtr dest(static_cast<Pixel*>(AlignedAlloc(16, ref_alloc_size)),
+ &AlignedFree);
+ ASSERT_NE(ref_src, nullptr);
+ ASSERT_NE(dest, nullptr);
+
+ const int mask = (1 << bitdepth) - 1;
+ for (size_t i = 0; i < ref_alloc_size / sizeof(ref_src[0]); ++i) {
+ ref_src[i] = rnd.Rand16() & mask;
+ }
+
+ int min_angle = 0, max_angle = 0;
+ ASSERT_NO_FATAL_FAILURE(GetZoneAngleRange(zone, &min_angle, &max_angle));
+
+ absl::Duration elapsed_time;
+ for (int run = 0; run < num_runs; ++run) {
+ Pixel* dst = dest.get();
+ memcpy(dst, ref_src.get(), ref_alloc_size);
+ for (const auto& base_angle : kBaseAngles) {
+ for (int filter_type = 0; filter_type <= 1; ++filter_type) {
+ for (int angle_delta = kAngleDeltaStart; angle_delta <= kAngleDeltaStop;
+ angle_delta += kAngleDeltaStep) {
+ const int predictor_angle = base_angle + angle_delta;
+ if (predictor_angle < min_angle || predictor_angle > max_angle) {
+ continue;
+ }
+
+ ASSERT_GT(predictor_angle, 0) << "base_angle: " << base_angle
+ << " angle_delta: " << angle_delta;
+ const bool upsampled_left =
+ IsEdgeUpsampled(predictor_angle - 180, filter_type);
+ const bool upsampled_top =
+ IsEdgeUpsampled(predictor_angle - 90, filter_type);
+ const ptrdiff_t stride = ref_stride * sizeof(ref_src[0]);
+ if (predictor_angle < 90) {
+ ASSERT_EQ(zone, kZone1);
+ const int xstep =
+ GetDirectionalIntraPredictorDerivative(predictor_angle);
+ const absl::Time start = absl::Now();
+ cur_directional_intra_pred_zone1_(dst, stride, top, block_width_,
+ block_height_, xstep,
+ upsampled_top);
+ elapsed_time += absl::Now() - start;
+ } else if (predictor_angle < 180) {
+ ASSERT_EQ(zone, kZone2);
+ const int xstep =
+ GetDirectionalIntraPredictorDerivative(180 - predictor_angle);
+ const int ystep =
+ GetDirectionalIntraPredictorDerivative(predictor_angle - 90);
+ const absl::Time start = absl::Now();
+ cur_directional_intra_pred_zone2_(
+ dst, stride, top, left, block_width_, block_height_, xstep,
+ ystep, upsampled_top, upsampled_left);
+ elapsed_time += absl::Now() - start;
+ } else {
+ ASSERT_EQ(zone, kZone3);
+ ASSERT_LT(predictor_angle, 270);
+ const int ystep =
+ GetDirectionalIntraPredictorDerivative(270 - predictor_angle);
+ const absl::Time start = absl::Now();
+ cur_directional_intra_pred_zone3_(dst, stride, left, block_width_,
+ block_height_, ystep,
+ upsampled_left);
+ elapsed_time += absl::Now() - start;
+ }
+ dst += block_width_ + kBlockBorder;
+ }
+ }
+ }
+ }
+
+ test_utils::CheckMd5Digest(ToString(tx_size_), kDirectionalPredNames[zone],
+ digests[zone], dest.get(), ref_alloc_size,
+ elapsed_time);
+}
+
+template <int bitdepth, typename Pixel>
+void DirectionalIntraPredTest<bitdepth, Pixel>::TestSaturatedValues() {
+ const Pixel* const left = intra_pred_mem_.left_mem + 16;
+ const Pixel* const top = intra_pred_mem_.top_mem + 16;
+ const auto kMaxPixel = static_cast<Pixel>((1 << bitdepth) - 1);
+ intra_pred_mem_.Set(kMaxPixel);
+
+ for (int i = kZone1; i < kNumZones; ++i) {
+ switch (i) {
+ case kZone1:
+ if (cur_directional_intra_pred_zone1_ == nullptr) continue;
+ break;
+ case kZone2:
+ if (cur_directional_intra_pred_zone2_ == nullptr) continue;
+ break;
+ case kZone3:
+ if (cur_directional_intra_pred_zone3_ == nullptr) continue;
+ break;
+ case kNumZones:
+ FAIL() << "Invalid zone value: " << i;
+ break;
+ }
+ int min_angle = 0, max_angle = 0;
+ ASSERT_NO_FATAL_FAILURE(
+ GetZoneAngleRange(static_cast<Zone>(i), &min_angle, &max_angle));
+
+ for (const auto& base_angle : kBaseAngles) {
+ for (int filter_type = 0; filter_type <= 1; ++filter_type) {
+ for (int angle_delta = kAngleDeltaStart; angle_delta <= kAngleDeltaStop;
+ angle_delta += kAngleDeltaStep) {
+ const int predictor_angle = base_angle + angle_delta;
+ if (predictor_angle <= min_angle || predictor_angle >= max_angle) {
+ continue;
+ }
+ ASSERT_GT(predictor_angle, 0) << "base_angle: " << base_angle
+ << " angle_delta: " << angle_delta;
+
+ memcpy(intra_pred_mem_.dst, intra_pred_mem_.ref_src,
+ sizeof(intra_pred_mem_.dst));
+
+ const bool upsampled_left =
+ IsEdgeUpsampled(predictor_angle - 180, filter_type);
+ const bool upsampled_top =
+ IsEdgeUpsampled(predictor_angle - 90, filter_type);
+ const ptrdiff_t stride = kMaxBlockSize * sizeof(Pixel);
+ if (predictor_angle < 90) {
+ const int xstep =
+ GetDirectionalIntraPredictorDerivative(predictor_angle);
+ cur_directional_intra_pred_zone1_(intra_pred_mem_.dst, stride, top,
+ block_width_, block_height_,
+ xstep, upsampled_top);
+ } else if (predictor_angle < 180) {
+ const int xstep =
+ GetDirectionalIntraPredictorDerivative(180 - predictor_angle);
+ const int ystep =
+ GetDirectionalIntraPredictorDerivative(predictor_angle - 90);
+ cur_directional_intra_pred_zone2_(
+ intra_pred_mem_.dst, stride, top, left, block_width_,
+ block_height_, xstep, ystep, upsampled_top, upsampled_left);
+ } else {
+ ASSERT_LT(predictor_angle, 270);
+ const int ystep =
+ GetDirectionalIntraPredictorDerivative(270 - predictor_angle);
+ cur_directional_intra_pred_zone3_(intra_pred_mem_.dst, stride, left,
+ block_width_, block_height_,
+ ystep, upsampled_left);
+ }
+
+ if (!test_utils::CompareBlocks(
+ intra_pred_mem_.dst, intra_pred_mem_.ref_src, block_width_,
+ block_height_, kMaxBlockSize, kMaxBlockSize, true)) {
+ ADD_FAILURE() << "Expected " << kDirectionalPredNames[i]
+ << " (angle: " << predictor_angle
+ << " filter type: " << filter_type
+ << ") to produce a block containing '"
+ << static_cast<int>(kMaxPixel) << "'";
+ return;
+ }
+ }
+ }
+ }
+ }
+}
+
+template <int bitdepth, typename Pixel>
+void DirectionalIntraPredTest<bitdepth, Pixel>::TestRandomValues() {
+ const Pixel* const left = intra_pred_mem_.left_mem + 16;
+ const Pixel* const top = intra_pred_mem_.top_mem + 16;
+ // Use an alternate seed to differentiate this test from TestSpeed().
+ libvpx_test::ACMRandom rnd(test_utils::kAlternateDeterministicSeed);
+
+ for (int i = kZone1; i < kNumZones; ++i) {
+ // Only run when there is a reference version (base) and a different
+ // optimized version (cur).
+ switch (i) {
+ case kZone1:
+ if (base_directional_intra_pred_zone1_ == nullptr ||
+ cur_directional_intra_pred_zone1_ == nullptr) {
+ continue;
+ }
+ break;
+ case kZone2:
+ if (base_directional_intra_pred_zone2_ == nullptr ||
+ cur_directional_intra_pred_zone2_ == nullptr) {
+ continue;
+ }
+ break;
+ case kZone3:
+ if (base_directional_intra_pred_zone3_ == nullptr ||
+ cur_directional_intra_pred_zone3_ == nullptr) {
+ continue;
+ }
+ break;
+ case kNumZones:
+ FAIL() << "Invalid zone value: " << i;
+ break;
+ }
+ int min_angle = 0, max_angle = 0;
+ ASSERT_NO_FATAL_FAILURE(
+ GetZoneAngleRange(static_cast<Zone>(i), &min_angle, &max_angle));
+
+ for (const auto& base_angle : kBaseAngles) {
+ for (int n = 0; n < 1000; ++n) {
+ for (int filter_type = 0; filter_type <= 1; ++filter_type) {
+ for (int angle_delta = kAngleDeltaStart;
+ angle_delta <= kAngleDeltaStop; angle_delta += kAngleDeltaStep) {
+ const int predictor_angle = base_angle + angle_delta;
+ if (predictor_angle <= min_angle || predictor_angle >= max_angle) {
+ continue;
+ }
+ ASSERT_GT(predictor_angle, 0) << "base_angle: " << base_angle
+ << " angle_delta: " << angle_delta;
+
+ intra_pred_mem_.Reset(&rnd);
+ memcpy(intra_pred_mem_.dst, intra_pred_mem_.ref_src,
+ sizeof(intra_pred_mem_.dst));
+
+ const bool upsampled_left =
+ IsEdgeUpsampled(predictor_angle - 180, filter_type);
+ const bool upsampled_top =
+ IsEdgeUpsampled(predictor_angle - 90, filter_type);
+ const ptrdiff_t stride = kMaxBlockSize * sizeof(Pixel);
+ if (predictor_angle < 90) {
+ const int xstep =
+ GetDirectionalIntraPredictorDerivative(predictor_angle);
+ base_directional_intra_pred_zone1_(
+ intra_pred_mem_.ref_src, stride, top, block_width_,
+ block_height_, xstep, upsampled_top);
+ cur_directional_intra_pred_zone1_(
+ intra_pred_mem_.dst, stride, top, block_width_, block_height_,
+ xstep, upsampled_top);
+ } else if (predictor_angle < 180) {
+ const int xstep =
+ GetDirectionalIntraPredictorDerivative(180 - predictor_angle);
+ const int ystep =
+ GetDirectionalIntraPredictorDerivative(predictor_angle - 90);
+ base_directional_intra_pred_zone2_(
+ intra_pred_mem_.ref_src, stride, top, left, block_width_,
+ block_height_, xstep, ystep, upsampled_top, upsampled_left);
+ cur_directional_intra_pred_zone2_(
+ intra_pred_mem_.dst, stride, top, left, block_width_,
+ block_height_, xstep, ystep, upsampled_top, upsampled_left);
+ } else {
+ ASSERT_LT(predictor_angle, 270);
+ const int ystep =
+ GetDirectionalIntraPredictorDerivative(270 - predictor_angle);
+ base_directional_intra_pred_zone3_(
+ intra_pred_mem_.ref_src, stride, left, block_width_,
+ block_height_, ystep, upsampled_left);
+ cur_directional_intra_pred_zone3_(
+ intra_pred_mem_.dst, stride, left, block_width_,
+ block_height_, ystep, upsampled_left);
+ }
+
+ if (!test_utils::CompareBlocks(
+ intra_pred_mem_.dst, intra_pred_mem_.ref_src, block_width_,
+ block_height_, kMaxBlockSize, kMaxBlockSize, true)) {
+ ADD_FAILURE() << "Result from optimized version of "
+ << kDirectionalPredNames[i]
+ << " differs from reference at angle "
+ << predictor_angle << " with filter type "
+ << filter_type << " in iteration #" << n;
+ return;
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+using DirectionalIntraPredTest8bpp = DirectionalIntraPredTest<8, uint8_t>;
+
+const char* const* GetDirectionalIntraPredDigests8bpp(TransformSize tx_size) {
+ static const char* const kDigests4x4[kNumDirectionalIntraPredictors] = {
+ "9cfc1da729ad08682e165826c29b280b",
+ "bb73539c7afbda7bddd2184723b932d6",
+ "9d2882800ffe948196e984a26a2da72c",
+ };
+ static const char* const kDigests4x8[kNumDirectionalIntraPredictors] = {
+ "090efe6f83cc6fa301f65d3bbd5c38d2",
+ "d0fba4cdfb90f8bd293a94cae9db1a15",
+ "f7ad0eeab4389d0baa485d30fec87617",
+ };
+ static const char* const kDigests4x16[kNumDirectionalIntraPredictors] = {
+ "1d32b33c75fe85248c48cdc8caa78d84",
+ "7000e18159443d366129a6cc6ef8fcee",
+ "06c02fac5f8575f687abb3f634eb0b4c",
+ };
+ static const char* const kDigests8x4[kNumDirectionalIntraPredictors] = {
+ "1b591799685bc135982114b731293f78",
+ "5cd9099acb9f7b2618dafa6712666580",
+ "d023883efede88f99c19d006044d9fa1",
+ };
+ static const char* const kDigests8x8[kNumDirectionalIntraPredictors] = {
+ "f1e46ecf62a2516852f30c5025adb7ea",
+ "864442a209c16998065af28d8cdd839a",
+ "411a6e554868982af577de69e53f12e8",
+ };
+ static const char* const kDigests8x16[kNumDirectionalIntraPredictors] = {
+ "89278302be913a85cfb06feaea339459",
+ "6c42f1a9493490cd4529fd40729cec3c",
+ "2516b5e1c681e5dcb1acedd5f3d41106",
+ };
+ static const char* const kDigests8x32[kNumDirectionalIntraPredictors] = {
+ "aea7078f3eeaa8afbfe6c959c9e676f1",
+ "cad30babf12729dda5010362223ba65c",
+ "ff384ebdc832007775af418a2aae1463",
+ };
+ static const char* const kDigests16x4[kNumDirectionalIntraPredictors] = {
+ "964a821c313c831e12f4d32e616c0b55",
+ "adf6dad3a84ab4d16c16eea218bec57a",
+ "a54fa008d43895e523474686c48a81c2",
+ };
+ static const char* const kDigests16x8[kNumDirectionalIntraPredictors] = {
+ "fe2851b4e4f9fcf924cf17d50415a4c0",
+ "50a0e279c481437ff315d08eb904c733",
+ "0682065c8fb6cbf9be4949316c87c9e5",
+ };
+ static const char* const kDigests16x16[kNumDirectionalIntraPredictors] = {
+ "ef15503b1943642e7a0bace1616c0e11",
+ "bf1a4d3f855f1072a902a88ec6ce0350",
+ "7e87a03e29cd7fd843fd71b729a18f3f",
+ };
+ static const char* const kDigests16x32[kNumDirectionalIntraPredictors] = {
+ "f7b636615d2e5bf289b5db452a6f188d",
+ "e95858c532c10d00b0ce7a02a02121dd",
+ "34a18ccf58ef490f32268e85ce8c7de4",
+ };
+ static const char* const kDigests16x64[kNumDirectionalIntraPredictors] = {
+ "b250099986c2fab9670748598058846b",
+ "f25d80af4da862a9b6b72979f1e17cb4",
+ "5347dc7bc346733b4887f6c8ad5e0898",
+ };
+ static const char* const kDigests32x8[kNumDirectionalIntraPredictors] = {
+ "72e4c9f8af043b1cb1263490351818ab",
+ "1fc010d2df011b9e4e3d0957107c78df",
+ "f4cbfa3ca941ef08b972a68d7e7bafc4",
+ };
+ static const char* const kDigests32x16[kNumDirectionalIntraPredictors] = {
+ "37e5a1aaf7549d2bce08eece9d20f0f6",
+ "6a2794025d0aca414ab17baa3cf8251a",
+ "63dd37a6efdc91eeefef166c99ce2db1",
+ };
+ static const char* const kDigests32x32[kNumDirectionalIntraPredictors] = {
+ "198aabc958992eb49cceab97d1acb43e",
+ "aee88b6c8bacfcf38799fe338e6c66e7",
+ "01e8f8f96696636f6d79d33951907a16",
+ };
+ static const char* const kDigests32x64[kNumDirectionalIntraPredictors] = {
+ "0611390202c4f90f7add7aec763ded58",
+ "960240c7ceda2ccfac7c90b71460578a",
+ "7e7d97594aab8ad56e8c01c340335607",
+ };
+ static const char* const kDigests64x16[kNumDirectionalIntraPredictors] = {
+ "7e1f567e7fc510757f2d89d638bc826f",
+ "c929d687352ce40a58670be2ce3c8c90",
+ "f6881e6a9ba3c3d3d730b425732656b1",
+ };
+ static const char* const kDigests64x32[kNumDirectionalIntraPredictors] = {
+ "27b4c2a7081d4139f22003ba8b6dfdf2",
+ "301e82740866b9274108a04c872fa848",
+ "98d3aa4fef838f4abf00dac33806659f",
+ };
+ static const char* const kDigests64x64[kNumDirectionalIntraPredictors] = {
+ "b31816db8fade3accfd975b21aa264c7",
+ "2adce01a03b9452633d5830e1a9b4e23",
+ "7b988fadba8b07c36e88d7be6b270494",
+ };
+
+ switch (tx_size) {
+ case kTransformSize4x4:
+ return kDigests4x4;
+ case kTransformSize4x8:
+ return kDigests4x8;
+ case kTransformSize4x16:
+ return kDigests4x16;
+ case kTransformSize8x4:
+ return kDigests8x4;
+ case kTransformSize8x8:
+ return kDigests8x8;
+ case kTransformSize8x16:
+ return kDigests8x16;
+ case kTransformSize8x32:
+ return kDigests8x32;
+ case kTransformSize16x4:
+ return kDigests16x4;
+ case kTransformSize16x8:
+ return kDigests16x8;
+ case kTransformSize16x16:
+ return kDigests16x16;
+ case kTransformSize16x32:
+ return kDigests16x32;
+ case kTransformSize16x64:
+ return kDigests16x64;
+ case kTransformSize32x8:
+ return kDigests32x8;
+ case kTransformSize32x16:
+ return kDigests32x16;
+ case kTransformSize32x32:
+ return kDigests32x32;
+ case kTransformSize32x64:
+ return kDigests32x64;
+ case kTransformSize64x16:
+ return kDigests64x16;
+ case kTransformSize64x32:
+ return kDigests64x32;
+ case kTransformSize64x64:
+ return kDigests64x64;
+ default:
+ ADD_FAILURE() << "Unknown transform size: " << tx_size;
+ return nullptr;
+ }
+}
+
+TEST_P(DirectionalIntraPredTest8bpp, DISABLED_Speed) {
+ const auto num_runs = static_cast<int>(5e7 / (block_width_ * block_height_));
+ for (int i = kZone1; i < kNumZones; ++i) {
+ TestSpeed(GetDirectionalIntraPredDigests8bpp(tx_size_),
+ static_cast<Zone>(i), num_runs);
+ }
+}
+
+TEST_P(DirectionalIntraPredTest8bpp, FixedInput) {
+ for (int i = kZone1; i < kNumZones; ++i) {
+ TestSpeed(GetDirectionalIntraPredDigests8bpp(tx_size_),
+ static_cast<Zone>(i), 1);
+ }
+}
+
+TEST_P(DirectionalIntraPredTest8bpp, Overflow) { TestSaturatedValues(); }
+TEST_P(DirectionalIntraPredTest8bpp, Random) { TestRandomValues(); }
+
+//------------------------------------------------------------------------------
+#if LIBGAV1_MAX_BITDEPTH >= 10
+
+using DirectionalIntraPredTest10bpp = DirectionalIntraPredTest<10, uint16_t>;
+
+const char* const* GetDirectionalIntraPredDigests10bpp(TransformSize tx_size) {
+ static const char* const kDigests4x4[kNumDirectionalIntraPredictors] = {
+ "a683f4d7ccd978737615f61ecb4d638d",
+ "90c94374eaf7e9501f197863937b8639",
+ "0d3969cd081523ac6a906eecc7980c43",
+ };
+ static const char* const kDigests4x8[kNumDirectionalIntraPredictors] = {
+ "c3ffa2979b325644e4a56c882fe27347",
+ "1f61f5ee413a9a3b8d1d93869ec2aee0",
+ "4795ea944779ec4a783408769394d874",
+ };
+ static const char* const kDigests4x16[kNumDirectionalIntraPredictors] = {
+ "45c3282c9aa51024c1d64a40f230aa45",
+ "5cd47dd69f8bd0b15365a0c5cfc0a49a",
+ "06336c507b05f98c1d6a21abc43e6182",
+ };
+ static const char* const kDigests8x4[kNumDirectionalIntraPredictors] = {
+ "7370476ff0abbdc5e92f811b8879c861",
+ "a239a50adb28a4791b52a0dfff3bee06",
+ "4779a17f958a9ca04e8ec08c5aba1d36",
+ };
+ static const char* const kDigests8x8[kNumDirectionalIntraPredictors] = {
+ "305463f346c376594f82aad8304e0362",
+ "0cd481e5bda286c87a645417569fd948",
+ "48c7899dc9b7163b0b1f61b3a2b4b73e",
+ };
+ static const char* const kDigests8x16[kNumDirectionalIntraPredictors] = {
+ "5c18fd5339be90628c82b1fb6af50d5e",
+ "35eaa566ebd3bb7c903cfead5dc9ac78",
+ "9fdb0e790e5965810d02c02713c84071",
+ };
+ static const char* const kDigests8x32[kNumDirectionalIntraPredictors] = {
+ "2168d6cc858c704748b7b343ced2ac3a",
+ "1d3ce273107447faafd2e55877e48ffb",
+ "d344164049d1fe9b65a3ae8764bbbd37",
+ };
+ static const char* const kDigests16x4[kNumDirectionalIntraPredictors] = {
+ "dcef2cf51abe3fe150f388a14c762d30",
+ "6a810b289b1c14f8eab8ca1274e91ecd",
+ "c94da7c11f3fb11963d85c8804fce2d9",
+ };
+ static const char* const kDigests16x8[kNumDirectionalIntraPredictors] = {
+ "50a0d08b0d99b7a574bad2cfb36efc39",
+ "2dcb55874db39da70c8ca1318559f9fe",
+ "6390bcd30ff3bc389ecc0a0952bea531",
+ };
+ static const char* const kDigests16x16[kNumDirectionalIntraPredictors] = {
+ "7146c83c2620935606d49f3cb5876f41",
+ "2318ddf30c070a53c9b9cf199cd1b2c5",
+ "e9042e2124925aa7c1b6110617cb10e8",
+ };
+ static const char* const kDigests16x32[kNumDirectionalIntraPredictors] = {
+ "c970f401de7b7c5bb4e3ad447fcbef8f",
+ "a18cc70730eecdaa31dbcf4306ff490f",
+ "32c1528ad4a576a2210399d6b4ccd46e",
+ };
+ static const char* const kDigests16x64[kNumDirectionalIntraPredictors] = {
+ "00b3f0007da2e5d01380594a3d7162d5",
+ "1971af519e4a18967b7311f93efdd1b8",
+ "e6139769ce5a9c4982cfab9363004516",
+ };
+ static const char* const kDigests32x8[kNumDirectionalIntraPredictors] = {
+ "08107ad971179cc9f465ae5966bd4901",
+ "b215212a3c0dfe9182c4f2e903d731f7",
+ "791274416a0da87c674e1ae318b3ce09",
+ };
+ static const char* const kDigests32x16[kNumDirectionalIntraPredictors] = {
+ "94ea6cccae35b5d08799aa003ac08ccf",
+ "ae105e20e63fb55d4fd9d9e59dc62dde",
+ "973d0b2358ea585e4f486e7e645c5310",
+ };
+ static const char* const kDigests32x32[kNumDirectionalIntraPredictors] = {
+ "d14c695c4853ddf5e5d8256bc1d1ed60",
+ "6bd0ebeb53adecc11442b1218b870cb7",
+ "e03bc402a9999aba8272275dce93e89f",
+ };
+ static const char* const kDigests32x64[kNumDirectionalIntraPredictors] = {
+ "b21a8a8723758392ee659eeeae518a1e",
+ "e50285454896210ce44d6f04dfde05a7",
+ "f0f8ea0c6c2acc8d7d390927c3a90370",
+ };
+ static const char* const kDigests64x16[kNumDirectionalIntraPredictors] = {
+ "ce51db16fd4fa56e601631397b098c89",
+ "aa87a8635e02c1e91d13158c61e443f6",
+ "4c1ee3afd46ef34bd711a34d0bf86f13",
+ };
+ static const char* const kDigests64x32[kNumDirectionalIntraPredictors] = {
+ "25aaf5971e24e543e3e69a47254af777",
+ "eb6f444b3df127d69460778ab5bf8fc1",
+ "2f846cc0d506f90c0a58438600819817",
+ };
+ static const char* const kDigests64x64[kNumDirectionalIntraPredictors] = {
+ "b26ce5b5f4b5d4a438b52e5987877fb8",
+ "35721a00a70938111939cf69988d928e",
+ "0af7ec35939483fac82c246a13845806",
+ };
+
+ switch (tx_size) {
+ case kTransformSize4x4:
+ return kDigests4x4;
+ case kTransformSize4x8:
+ return kDigests4x8;
+ case kTransformSize4x16:
+ return kDigests4x16;
+ case kTransformSize8x4:
+ return kDigests8x4;
+ case kTransformSize8x8:
+ return kDigests8x8;
+ case kTransformSize8x16:
+ return kDigests8x16;
+ case kTransformSize8x32:
+ return kDigests8x32;
+ case kTransformSize16x4:
+ return kDigests16x4;
+ case kTransformSize16x8:
+ return kDigests16x8;
+ case kTransformSize16x16:
+ return kDigests16x16;
+ case kTransformSize16x32:
+ return kDigests16x32;
+ case kTransformSize16x64:
+ return kDigests16x64;
+ case kTransformSize32x8:
+ return kDigests32x8;
+ case kTransformSize32x16:
+ return kDigests32x16;
+ case kTransformSize32x32:
+ return kDigests32x32;
+ case kTransformSize32x64:
+ return kDigests32x64;
+ case kTransformSize64x16:
+ return kDigests64x16;
+ case kTransformSize64x32:
+ return kDigests64x32;
+ case kTransformSize64x64:
+ return kDigests64x64;
+ default:
+ ADD_FAILURE() << "Unknown transform size: " << tx_size;
+ return nullptr;
+ }
+}
+
+TEST_P(DirectionalIntraPredTest10bpp, DISABLED_Speed) {
+ const auto num_runs = static_cast<int>(5e7 / (block_width_ * block_height_));
+ for (int i = kZone1; i < kNumZones; ++i) {
+ TestSpeed(GetDirectionalIntraPredDigests10bpp(tx_size_),
+ static_cast<Zone>(i), num_runs);
+ }
+}
+
+TEST_P(DirectionalIntraPredTest10bpp, FixedInput) {
+ for (int i = kZone1; i < kNumZones; ++i) {
+ TestSpeed(GetDirectionalIntraPredDigests10bpp(tx_size_),
+ static_cast<Zone>(i), 1);
+ }
+}
+
+TEST_P(DirectionalIntraPredTest10bpp, Overflow) { TestSaturatedValues(); }
+
+#endif // LIBGAV1_MAX_BITDEPTH >= 10
+
+constexpr TransformSize kTransformSizes[] = {
+ kTransformSize4x4, kTransformSize4x8, kTransformSize4x16,
+ kTransformSize8x4, kTransformSize8x8, kTransformSize8x16,
+ kTransformSize8x32, kTransformSize16x4, kTransformSize16x8,
+ kTransformSize16x16, kTransformSize16x32, kTransformSize16x64,
+ kTransformSize32x8, kTransformSize32x16, kTransformSize32x32,
+ kTransformSize32x64, kTransformSize64x16, kTransformSize64x32,
+ kTransformSize64x64};
+
+INSTANTIATE_TEST_SUITE_P(C, DirectionalIntraPredTest8bpp,
+ testing::ValuesIn(kTransformSizes));
+#if LIBGAV1_ENABLE_SSE4_1
+INSTANTIATE_TEST_SUITE_P(SSE41, DirectionalIntraPredTest8bpp,
+ testing::ValuesIn(kTransformSizes));
+#endif // LIBGAV1_ENABLE_SSE4_1
+#if LIBGAV1_ENABLE_NEON
+INSTANTIATE_TEST_SUITE_P(NEON, DirectionalIntraPredTest8bpp,
+ testing::ValuesIn(kTransformSizes));
+#endif // LIBGAV1_ENABLE_NEON
+
+#if LIBGAV1_MAX_BITDEPTH >= 10
+INSTANTIATE_TEST_SUITE_P(C, DirectionalIntraPredTest10bpp,
+ testing::ValuesIn(kTransformSizes));
+#if LIBGAV1_ENABLE_SSE4_1
+INSTANTIATE_TEST_SUITE_P(SSE41, DirectionalIntraPredTest10bpp,
+ testing::ValuesIn(kTransformSizes));
+#endif // LIBGAV1_ENABLE_SSE4_1
+#if LIBGAV1_ENABLE_NEON
+INSTANTIATE_TEST_SUITE_P(NEON, DirectionalIntraPredTest10bpp,
+ testing::ValuesIn(kTransformSizes));
+#endif // LIBGAV1_ENABLE_NEON
+
+#endif // LIBGAV1_MAX_BITDEPTH >= 10
+
+} // namespace
+} // namespace dsp
+
+static std::ostream& operator<<(std::ostream& os, const TransformSize tx_size) {
+ return os << ToString(tx_size);
+}
+
+} // namespace libgav1