aboutsummaryrefslogtreecommitdiff
path: root/src/dsp/warp.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/dsp/warp.cc')
-rw-r--r--src/dsp/warp.cc475
1 files changed, 475 insertions, 0 deletions
diff --git a/src/dsp/warp.cc b/src/dsp/warp.cc
new file mode 100644
index 0000000..fbde65a
--- /dev/null
+++ b/src/dsp/warp.cc
@@ -0,0 +1,475 @@
+// Copyright 2019 The libgav1 Authors
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "src/dsp/warp.h"
+
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <cstdlib>
+#include <type_traits>
+
+#include "src/dsp/constants.h"
+#include "src/dsp/dsp.h"
+#include "src/utils/common.h"
+#include "src/utils/constants.h"
+#include "src/utils/memory.h"
+
+namespace libgav1 {
+namespace dsp {
+namespace {
+
+// Number of extra bits of precision in warped filtering.
+constexpr int kWarpedDiffPrecisionBits = 10;
+
+// Warp prediction output ranges from WarpTest.ShowRange.
+// Bitdepth: 8 Input range: [ 0, 255]
+// 8bpp intermediate offset: 16384.
+// intermediate range: [ 4399, 61009]
+// first pass output range: [ 550, 7626]
+// 8bpp intermediate offset removal: 262144.
+// intermediate range: [ -620566, 1072406]
+// second pass output range: [ 0, 255]
+// compound second pass output range: [ -4848, 8378]
+//
+// Bitdepth: 10 Input range: [ 0, 1023]
+// intermediate range: [ -48081, 179025]
+// first pass output range: [ -6010, 22378]
+// intermediate range: [-2103516, 4198620]
+// second pass output range: [ 0, 1023]
+// compound second pass output range: [ 8142, 57378]
+//
+// Bitdepth: 12 Input range: [ 0, 4095]
+// intermediate range: [ -192465, 716625]
+// first pass output range: [ -6015, 22395]
+// intermediate range: [-2105190, 4201830]
+// second pass output range: [ 0, 4095]
+// compound second pass output range: [ 8129, 57403]
+
+template <bool is_compound, int bitdepth, typename Pixel>
+void Warp_C(const void* const source, ptrdiff_t source_stride,
+ const int source_width, const int source_height,
+ const int* const warp_params, const int subsampling_x,
+ const int subsampling_y, const int block_start_x,
+ const int block_start_y, const int block_width,
+ const int block_height, const int16_t alpha, const int16_t beta,
+ const int16_t gamma, const int16_t delta, void* dest,
+ ptrdiff_t dest_stride) {
+ assert(block_width >= 8 && block_height >= 8);
+ if (is_compound) {
+ assert(dest_stride == block_width);
+ }
+ constexpr int kRoundBitsHorizontal = (bitdepth == 12)
+ ? kInterRoundBitsHorizontal12bpp
+ : kInterRoundBitsHorizontal;
+ constexpr int kRoundBitsVertical =
+ is_compound ? kInterRoundBitsCompoundVertical
+ : (bitdepth == 12) ? kInterRoundBitsVertical12bpp
+ : kInterRoundBitsVertical;
+
+ // Only used for 8bpp. Allows for keeping the first pass intermediates within
+ // uint16_t. With 10/12bpp the intermediate value will always require int32_t.
+ constexpr int first_pass_offset = (bitdepth == 8) ? 1 << 14 : 0;
+ constexpr int offset_removal =
+ (first_pass_offset >> kRoundBitsHorizontal) * 128;
+
+ constexpr int kMaxPixel = (1 << bitdepth) - 1;
+ union {
+ // |intermediate_result| is the output of the horizontal filtering and
+ // rounding. The range is within int16_t.
+ int16_t intermediate_result[15][8]; // 15 rows, 8 columns.
+ // In the simple special cases where the samples in each row are all the
+ // same, store one sample per row in a column vector.
+ int16_t intermediate_result_column[15];
+ };
+ const auto* const src = static_cast<const Pixel*>(source);
+ source_stride /= sizeof(Pixel);
+ using DestType =
+ typename std::conditional<is_compound, uint16_t, Pixel>::type;
+ auto* dst = static_cast<DestType*>(dest);
+ if (!is_compound) dest_stride /= sizeof(dst[0]);
+
+ assert(block_width >= 8);
+ assert(block_height >= 8);
+
+ // Warp process applies for each 8x8 block (or smaller).
+ for (int start_y = block_start_y; start_y < block_start_y + block_height;
+ start_y += 8) {
+ for (int start_x = block_start_x; start_x < block_start_x + block_width;
+ start_x += 8) {
+ const int src_x = (start_x + 4) << subsampling_x;
+ const int src_y = (start_y + 4) << subsampling_y;
+ const int dst_x =
+ src_x * warp_params[2] + src_y * warp_params[3] + warp_params[0];
+ const int dst_y =
+ src_x * warp_params[4] + src_y * warp_params[5] + warp_params[1];
+ const int x4 = dst_x >> subsampling_x;
+ const int y4 = dst_y >> subsampling_y;
+ const int ix4 = x4 >> kWarpedModelPrecisionBits;
+ const int iy4 = y4 >> kWarpedModelPrecisionBits;
+
+ // A prediction block may fall outside the frame's boundaries. If a
+ // prediction block is calculated using only samples outside the frame's
+ // boundary, the filtering can be simplified. We can divide the plane
+ // into several regions and handle them differently.
+ //
+ // | |
+ // 1 | 3 | 1
+ // | |
+ // -------+-----------+-------
+ // |***********|
+ // 2 |*****4*****| 2
+ // |***********|
+ // -------+-----------+-------
+ // | |
+ // 1 | 3 | 1
+ // | |
+ //
+ // At the center, region 4 represents the frame and is the general case.
+ //
+ // In regions 1 and 2, the prediction block is outside the frame's
+ // boundary horizontally. Therefore the horizontal filtering can be
+ // simplified. Furthermore, in the region 1 (at the four corners), the
+ // prediction is outside the frame's boundary both horizontally and
+ // vertically, so we get a constant prediction block.
+ //
+ // In region 3, the prediction block is outside the frame's boundary
+ // vertically. Unfortunately because we apply the horizontal filters
+ // first, by the time we apply the vertical filters, they no longer see
+ // simple inputs. So the only simplification is that all the rows are
+ // the same, but we still need to apply all the horizontal and vertical
+ // filters.
+
+ // Check for two simple special cases, where the horizontal filter can
+ // be significantly simplified.
+ //
+ // In general, for each row, the horizontal filter is calculated as
+ // follows:
+ // for (int x = -4; x < 4; ++x) {
+ // const int offset = ...;
+ // int sum = first_pass_offset;
+ // for (int k = 0; k < 8; ++k) {
+ // const int column = Clip3(ix4 + x + k - 3, 0, source_width - 1);
+ // sum += kWarpedFilters[offset][k] * src_row[column];
+ // }
+ // ...
+ // }
+ // The column index before clipping, ix4 + x + k - 3, varies in the range
+ // ix4 - 7 <= ix4 + x + k - 3 <= ix4 + 7. If ix4 - 7 >= source_width - 1
+ // or ix4 + 7 <= 0, then all the column indexes are clipped to the same
+ // border index (source_width - 1 or 0, respectively). Then for each x,
+ // the inner for loop of the horizontal filter is reduced to multiplying
+ // the border pixel by the sum of the filter coefficients.
+ if (ix4 - 7 >= source_width - 1 || ix4 + 7 <= 0) {
+ // Regions 1 and 2.
+ // Points to the left or right border of the first row of |src|.
+ const Pixel* first_row_border =
+ (ix4 + 7 <= 0) ? src : src + source_width - 1;
+ // In general, for y in [-7, 8), the row number iy4 + y is clipped:
+ // const int row = Clip3(iy4 + y, 0, source_height - 1);
+ // In two special cases, iy4 + y is clipped to either 0 or
+ // source_height - 1 for all y. In the rest of the cases, iy4 + y is
+ // bounded and we can avoid clipping iy4 + y by relying on a reference
+ // frame's boundary extension on the top and bottom.
+ if (iy4 - 7 >= source_height - 1 || iy4 + 7 <= 0) {
+ // Region 1.
+ // Every sample used to calculate the prediction block has the same
+ // value. So the whole prediction block has the same value.
+ const int row = (iy4 + 7 <= 0) ? 0 : source_height - 1;
+ const Pixel row_border_pixel = first_row_border[row * source_stride];
+ DestType* dst_row = dst + start_x - block_start_x;
+ if (is_compound) {
+ int sum = row_border_pixel
+ << ((14 - kRoundBitsHorizontal) - kRoundBitsVertical);
+ sum += (bitdepth == 8) ? 0 : kCompoundOffset;
+ Memset(dst_row, sum, 8);
+ } else {
+ Memset(dst_row, row_border_pixel, 8);
+ }
+ const DestType* const first_dst_row = dst_row;
+ dst_row += dest_stride;
+ for (int y = 1; y < 8; ++y) {
+ memcpy(dst_row, first_dst_row, 8 * sizeof(*dst_row));
+ dst_row += dest_stride;
+ }
+ // End of region 1. Continue the |start_x| for loop.
+ continue;
+ }
+
+ // Region 2.
+ // Horizontal filter.
+ // The input values in this region are generated by extending the border
+ // which makes them identical in the horizontal direction. This
+ // computation could be inlined in the vertical pass but most
+ // implementations will need a transpose of some sort.
+ // It is not necessary to use the offset values here because the
+ // horizontal pass is a simple shift and the vertical pass will always
+ // require using 32 bits.
+ for (int y = -7; y < 8; ++y) {
+ // We may over-read up to 13 pixels above the top source row, or up
+ // to 13 pixels below the bottom source row. This is proved below.
+ const int row = iy4 + y;
+ int sum = first_row_border[row * source_stride];
+ sum <<= kFilterBits - kRoundBitsHorizontal;
+ intermediate_result_column[y + 7] = sum;
+ }
+ // Vertical filter.
+ DestType* dst_row = dst + start_x - block_start_x;
+ int sy4 =
+ (y4 & ((1 << kWarpedModelPrecisionBits) - 1)) - MultiplyBy4(delta);
+ for (int y = 0; y < 8; ++y) {
+ int sy = sy4 - MultiplyBy4(gamma);
+ for (int x = 0; x < 8; ++x) {
+ const int offset =
+ RightShiftWithRounding(sy, kWarpedDiffPrecisionBits) +
+ kWarpedPixelPrecisionShifts;
+ assert(offset >= 0);
+ assert(offset < 3 * kWarpedPixelPrecisionShifts + 1);
+ int sum = 0;
+ for (int k = 0; k < 8; ++k) {
+ sum +=
+ kWarpedFilters[offset][k] * intermediate_result_column[y + k];
+ }
+ sum = RightShiftWithRounding(sum, kRoundBitsVertical);
+ if (is_compound) {
+ sum += (bitdepth == 8) ? 0 : kCompoundOffset;
+ dst_row[x] = static_cast<DestType>(sum);
+ } else {
+ dst_row[x] = static_cast<DestType>(Clip3(sum, 0, kMaxPixel));
+ }
+ sy += gamma;
+ }
+ dst_row += dest_stride;
+ sy4 += delta;
+ }
+ // End of region 2. Continue the |start_x| for loop.
+ continue;
+ }
+
+ // Regions 3 and 4.
+ // At this point, we know ix4 - 7 < source_width - 1 and ix4 + 7 > 0.
+ // It follows that -6 <= ix4 <= source_width + 5. This inequality is
+ // used below.
+
+ // In general, for y in [-7, 8), the row number iy4 + y is clipped:
+ // const int row = Clip3(iy4 + y, 0, source_height - 1);
+ // In two special cases, iy4 + y is clipped to either 0 or
+ // source_height - 1 for all y. In the rest of the cases, iy4 + y is
+ // bounded and we can avoid clipping iy4 + y by relying on a reference
+ // frame's boundary extension on the top and bottom.
+ if (iy4 - 7 >= source_height - 1 || iy4 + 7 <= 0) {
+ // Region 3.
+ // Horizontal filter.
+ const int row = (iy4 + 7 <= 0) ? 0 : source_height - 1;
+ const Pixel* const src_row = src + row * source_stride;
+ int sx4 = (x4 & ((1 << kWarpedModelPrecisionBits) - 1)) - beta * 7;
+ for (int y = -7; y < 8; ++y) {
+ int sx = sx4 - MultiplyBy4(alpha);
+ for (int x = -4; x < 4; ++x) {
+ const int offset =
+ RightShiftWithRounding(sx, kWarpedDiffPrecisionBits) +
+ kWarpedPixelPrecisionShifts;
+ // Since alpha and beta have been validated by SetupShear(), one
+ // can prove that 0 <= offset <= 3 * 2^6.
+ assert(offset >= 0);
+ assert(offset < 3 * kWarpedPixelPrecisionShifts + 1);
+ // For SIMD optimization:
+ // |first_pass_offset| guarantees the sum fits in uint16_t for 8bpp.
+ // For 10/12 bit, the range of sum requires 32 bits.
+ int sum = first_pass_offset;
+ for (int k = 0; k < 8; ++k) {
+ // We assume the source frame has left and right borders of at
+ // least 13 pixels that extend the frame boundary pixels.
+ //
+ // Since -4 <= x <= 3 and 0 <= k <= 7, using the inequality on
+ // ix4 above, we have
+ // -13 <= ix4 + x + k - 3 <= source_width + 12,
+ // or
+ // -13 <= column <= (source_width - 1) + 13.
+ // Therefore we may over-read up to 13 pixels before the source
+ // row, or up to 13 pixels after the source row.
+ const int column = ix4 + x + k - 3;
+ sum += kWarpedFilters[offset][k] * src_row[column];
+ }
+ intermediate_result[y + 7][x + 4] =
+ RightShiftWithRounding(sum, kRoundBitsHorizontal);
+ sx += alpha;
+ }
+ sx4 += beta;
+ }
+ } else {
+ // Region 4.
+ // Horizontal filter.
+ // At this point, we know iy4 - 7 < source_height - 1 and iy4 + 7 > 0.
+ // It follows that -6 <= iy4 <= source_height + 5. This inequality is
+ // used below.
+ int sx4 = (x4 & ((1 << kWarpedModelPrecisionBits) - 1)) - beta * 7;
+ for (int y = -7; y < 8; ++y) {
+ // We assume the source frame has top and bottom borders of at least
+ // 13 pixels that extend the frame boundary pixels.
+ //
+ // Since -7 <= y <= 7, using the inequality on iy4 above, we have
+ // -13 <= iy4 + y <= source_height + 12,
+ // or
+ // -13 <= row <= (source_height - 1) + 13.
+ // Therefore we may over-read up to 13 pixels above the top source
+ // row, or up to 13 pixels below the bottom source row.
+ const int row = iy4 + y;
+ const Pixel* const src_row = src + row * source_stride;
+ int sx = sx4 - MultiplyBy4(alpha);
+ for (int x = -4; x < 4; ++x) {
+ const int offset =
+ RightShiftWithRounding(sx, kWarpedDiffPrecisionBits) +
+ kWarpedPixelPrecisionShifts;
+ // Since alpha and beta have been validated by SetupShear(), one
+ // can prove that 0 <= offset <= 3 * 2^6.
+ assert(offset >= 0);
+ assert(offset < 3 * kWarpedPixelPrecisionShifts + 1);
+ // For SIMD optimization:
+ // |first_pass_offset| guarantees the sum fits in uint16_t for 8bpp.
+ // For 10/12 bit, the range of sum requires 32 bits.
+ int sum = first_pass_offset;
+ for (int k = 0; k < 8; ++k) {
+ // We assume the source frame has left and right borders of at
+ // least 13 pixels that extend the frame boundary pixels.
+ //
+ // Since -4 <= x <= 3 and 0 <= k <= 7, using the inequality on
+ // ix4 above, we have
+ // -13 <= ix4 + x + k - 3 <= source_width + 12,
+ // or
+ // -13 <= column <= (source_width - 1) + 13.
+ // Therefore we may over-read up to 13 pixels before the source
+ // row, or up to 13 pixels after the source row.
+ const int column = ix4 + x + k - 3;
+ sum += kWarpedFilters[offset][k] * src_row[column];
+ }
+ intermediate_result[y + 7][x + 4] =
+ RightShiftWithRounding(sum, kRoundBitsHorizontal) -
+ offset_removal;
+ sx += alpha;
+ }
+ sx4 += beta;
+ }
+ }
+
+ // Regions 3 and 4.
+ // Vertical filter.
+ DestType* dst_row = dst + start_x - block_start_x;
+ int sy4 =
+ (y4 & ((1 << kWarpedModelPrecisionBits) - 1)) - MultiplyBy4(delta);
+ // The spec says we should use the following loop condition:
+ // y < std::min(4, block_start_y + block_height - start_y - 4);
+ // We can prove that block_start_y + block_height - start_y >= 8, which
+ // implies std::min(4, block_start_y + block_height - start_y - 4) = 4.
+ // So the loop condition is simply y < 4.
+ //
+ // Proof:
+ // start_y < block_start_y + block_height
+ // => block_start_y + block_height - start_y > 0
+ // => block_height - (start_y - block_start_y) > 0
+ //
+ // Since block_height >= 8 and is a power of 2, it follows that
+ // block_height is a multiple of 8. start_y - block_start_y is also a
+ // multiple of 8. Therefore their difference is a multiple of 8. Since
+ // their difference is > 0, their difference must be >= 8.
+ //
+ // We then add an offset of 4 to y so that the loop starts with y = 0
+ // and continues if y < 8.
+ for (int y = 0; y < 8; ++y) {
+ int sy = sy4 - MultiplyBy4(gamma);
+ // The spec says we should use the following loop condition:
+ // x < std::min(4, block_start_x + block_width - start_x - 4);
+ // Similar to the above, we can prove that the loop condition can be
+ // simplified to x < 4.
+ //
+ // We then add an offset of 4 to x so that the loop starts with x = 0
+ // and continues if x < 8.
+ for (int x = 0; x < 8; ++x) {
+ const int offset =
+ RightShiftWithRounding(sy, kWarpedDiffPrecisionBits) +
+ kWarpedPixelPrecisionShifts;
+ // Since gamma and delta have been validated by SetupShear(), one can
+ // prove that 0 <= offset <= 3 * 2^6.
+ assert(offset >= 0);
+ assert(offset < 3 * kWarpedPixelPrecisionShifts + 1);
+ int sum = 0;
+ for (int k = 0; k < 8; ++k) {
+ sum += kWarpedFilters[offset][k] * intermediate_result[y + k][x];
+ }
+ sum -= offset_removal;
+ sum = RightShiftWithRounding(sum, kRoundBitsVertical);
+ if (is_compound) {
+ sum += (bitdepth == 8) ? 0 : kCompoundOffset;
+ dst_row[x] = static_cast<DestType>(sum);
+ } else {
+ dst_row[x] = static_cast<DestType>(Clip3(sum, 0, kMaxPixel));
+ }
+ sy += gamma;
+ }
+ dst_row += dest_stride;
+ sy4 += delta;
+ }
+ }
+ dst += 8 * dest_stride;
+ }
+}
+
+void Init8bpp() {
+ Dsp* const dsp = dsp_internal::GetWritableDspTable(8);
+ assert(dsp != nullptr);
+#if LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
+ dsp->warp = Warp_C</*is_compound=*/false, 8, uint8_t>;
+ dsp->warp_compound = Warp_C</*is_compound=*/true, 8, uint8_t>;
+#else // !LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
+ static_cast<void>(dsp);
+#ifndef LIBGAV1_Dsp8bpp_Warp
+ dsp->warp = Warp_C</*is_compound=*/false, 8, uint8_t>;
+#endif
+#ifndef LIBGAV1_Dsp8bpp_WarpCompound
+ dsp->warp_compound = Warp_C</*is_compound=*/true, 8, uint8_t>;
+#endif
+#endif // LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
+}
+
+#if LIBGAV1_MAX_BITDEPTH >= 10
+void Init10bpp() {
+ Dsp* const dsp = dsp_internal::GetWritableDspTable(10);
+ assert(dsp != nullptr);
+#if LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
+ dsp->warp = Warp_C</*is_compound=*/false, 10, uint16_t>;
+ dsp->warp_compound = Warp_C</*is_compound=*/true, 10, uint16_t>;
+#else // !LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
+ static_cast<void>(dsp);
+#ifndef LIBGAV1_Dsp10bpp_Warp
+ dsp->warp = Warp_C</*is_compound=*/false, 10, uint16_t>;
+#endif
+#ifndef LIBGAV1_Dsp10bpp_WarpCompound
+ dsp->warp_compound = Warp_C</*is_compound=*/true, 10, uint16_t>;
+#endif
+#endif // LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
+}
+#endif
+
+} // namespace
+
+void WarpInit_C() {
+ Init8bpp();
+#if LIBGAV1_MAX_BITDEPTH >= 10
+ Init10bpp();
+#endif
+}
+
+} // namespace dsp
+} // namespace libgav1