aboutsummaryrefslogtreecommitdiff
path: root/src/dsp/x86/cdef_sse4.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/dsp/x86/cdef_sse4.cc')
-rw-r--r--src/dsp/x86/cdef_sse4.cc728
1 files changed, 728 insertions, 0 deletions
diff --git a/src/dsp/x86/cdef_sse4.cc b/src/dsp/x86/cdef_sse4.cc
new file mode 100644
index 0000000..3211a2d
--- /dev/null
+++ b/src/dsp/x86/cdef_sse4.cc
@@ -0,0 +1,728 @@
+// Copyright 2020 The libgav1 Authors
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "src/dsp/cdef.h"
+#include "src/utils/cpu.h"
+
+#if LIBGAV1_TARGETING_SSE4_1
+
+#include <emmintrin.h>
+#include <tmmintrin.h>
+
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <cstdlib>
+
+#include "src/dsp/constants.h"
+#include "src/dsp/dsp.h"
+#include "src/dsp/x86/common_sse4.h"
+#include "src/dsp/x86/transpose_sse4.h"
+#include "src/utils/common.h"
+#include "src/utils/constants.h"
+
+namespace libgav1 {
+namespace dsp {
+namespace low_bitdepth {
+namespace {
+
+#include "src/dsp/cdef.inc"
+
+// Used when calculating odd |cost[x]| values.
+// Holds elements 1 3 5 7 7 7 7 7
+alignas(16) constexpr uint32_t kCdefDivisionTableOddPadded[] = {
+ 420, 210, 140, 105, 105, 105, 105, 105};
+
+// ----------------------------------------------------------------------------
+// Refer to CdefDirection_C().
+//
+// int32_t partial[8][15] = {};
+// for (int i = 0; i < 8; ++i) {
+// for (int j = 0; j < 8; ++j) {
+// const int x = 1;
+// partial[0][i + j] += x;
+// partial[1][i + j / 2] += x;
+// partial[2][i] += x;
+// partial[3][3 + i - j / 2] += x;
+// partial[4][7 + i - j] += x;
+// partial[5][3 - i / 2 + j] += x;
+// partial[6][j] += x;
+// partial[7][i / 2 + j] += x;
+// }
+// }
+//
+// Using the code above, generate the position count for partial[8][15].
+//
+// partial[0]: 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
+// partial[1]: 2 4 6 8 8 8 8 8 6 4 2 0 0 0 0
+// partial[2]: 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0
+// partial[3]: 2 4 6 8 8 8 8 8 6 4 2 0 0 0 0
+// partial[4]: 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
+// partial[5]: 2 4 6 8 8 8 8 8 6 4 2 0 0 0 0
+// partial[6]: 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0
+// partial[7]: 2 4 6 8 8 8 8 8 6 4 2 0 0 0 0
+//
+// The SIMD code shifts the input horizontally, then adds vertically to get the
+// correct partial value for the given position.
+// ----------------------------------------------------------------------------
+
+// ----------------------------------------------------------------------------
+// partial[0][i + j] += x;
+//
+// 00 01 02 03 04 05 06 07 00 00 00 00 00 00 00
+// 00 10 11 12 13 14 15 16 17 00 00 00 00 00 00
+// 00 00 20 21 22 23 24 25 26 27 00 00 00 00 00
+// 00 00 00 30 31 32 33 34 35 36 37 00 00 00 00
+// 00 00 00 00 40 41 42 43 44 45 46 47 00 00 00
+// 00 00 00 00 00 50 51 52 53 54 55 56 57 00 00
+// 00 00 00 00 00 00 60 61 62 63 64 65 66 67 00
+// 00 00 00 00 00 00 00 70 71 72 73 74 75 76 77
+//
+// partial[4] is the same except the source is reversed.
+LIBGAV1_ALWAYS_INLINE void AddPartial_D0_D4(__m128i* v_src_16,
+ __m128i* partial_lo,
+ __m128i* partial_hi) {
+ // 00 01 02 03 04 05 06 07
+ *partial_lo = v_src_16[0];
+ // 00 00 00 00 00 00 00 00
+ *partial_hi = _mm_setzero_si128();
+
+ // 00 10 11 12 13 14 15 16
+ *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_src_16[1], 2));
+ // 17 00 00 00 00 00 00 00
+ *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_src_16[1], 14));
+
+ // 00 00 20 21 22 23 24 25
+ *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_src_16[2], 4));
+ // 26 27 00 00 00 00 00 00
+ *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_src_16[2], 12));
+
+ // 00 00 00 30 31 32 33 34
+ *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_src_16[3], 6));
+ // 35 36 37 00 00 00 00 00
+ *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_src_16[3], 10));
+
+ // 00 00 00 00 40 41 42 43
+ *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_src_16[4], 8));
+ // 44 45 46 47 00 00 00 00
+ *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_src_16[4], 8));
+
+ // 00 00 00 00 00 50 51 52
+ *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_src_16[5], 10));
+ // 53 54 55 56 57 00 00 00
+ *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_src_16[5], 6));
+
+ // 00 00 00 00 00 00 60 61
+ *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_src_16[6], 12));
+ // 62 63 64 65 66 67 00 00
+ *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_src_16[6], 4));
+
+ // 00 00 00 00 00 00 00 70
+ *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_src_16[7], 14));
+ // 71 72 73 74 75 76 77 00
+ *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_src_16[7], 2));
+}
+
+// ----------------------------------------------------------------------------
+// partial[1][i + j / 2] += x;
+//
+// A0 = src[0] + src[1], A1 = src[2] + src[3], ...
+//
+// A0 A1 A2 A3 00 00 00 00 00 00 00 00 00 00 00
+// 00 B0 B1 B2 B3 00 00 00 00 00 00 00 00 00 00
+// 00 00 C0 C1 C2 C3 00 00 00 00 00 00 00 00 00
+// 00 00 00 D0 D1 D2 D3 00 00 00 00 00 00 00 00
+// 00 00 00 00 E0 E1 E2 E3 00 00 00 00 00 00 00
+// 00 00 00 00 00 F0 F1 F2 F3 00 00 00 00 00 00
+// 00 00 00 00 00 00 G0 G1 G2 G3 00 00 00 00 00
+// 00 00 00 00 00 00 00 H0 H1 H2 H3 00 00 00 00
+//
+// partial[3] is the same except the source is reversed.
+LIBGAV1_ALWAYS_INLINE void AddPartial_D1_D3(__m128i* v_src_16,
+ __m128i* partial_lo,
+ __m128i* partial_hi) {
+ __m128i v_d1_temp[8];
+ const __m128i v_zero = _mm_setzero_si128();
+
+ for (int i = 0; i < 8; ++i) {
+ v_d1_temp[i] = _mm_hadd_epi16(v_src_16[i], v_zero);
+ }
+
+ *partial_lo = *partial_hi = v_zero;
+ // A0 A1 A2 A3 00 00 00 00
+ *partial_lo = _mm_add_epi16(*partial_lo, v_d1_temp[0]);
+
+ // 00 B0 B1 B2 B3 00 00 00
+ *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_d1_temp[1], 2));
+
+ // 00 00 C0 C1 C2 C3 00 00
+ *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_d1_temp[2], 4));
+ // 00 00 00 D0 D1 D2 D3 00
+ *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_d1_temp[3], 6));
+ // 00 00 00 00 E0 E1 E2 E3
+ *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_d1_temp[4], 8));
+
+ // 00 00 00 00 00 F0 F1 F2
+ *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_d1_temp[5], 10));
+ // F3 00 00 00 00 00 00 00
+ *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_d1_temp[5], 6));
+
+ // 00 00 00 00 00 00 G0 G1
+ *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_d1_temp[6], 12));
+ // G2 G3 00 00 00 00 00 00
+ *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_d1_temp[6], 4));
+
+ // 00 00 00 00 00 00 00 H0
+ *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_d1_temp[7], 14));
+ // H1 H2 H3 00 00 00 00 00
+ *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_d1_temp[7], 2));
+}
+
+// ----------------------------------------------------------------------------
+// partial[7][i / 2 + j] += x;
+//
+// 00 01 02 03 04 05 06 07 00 00 00 00 00 00 00
+// 10 11 12 13 14 15 16 17 00 00 00 00 00 00 00
+// 00 20 21 22 23 24 25 26 27 00 00 00 00 00 00
+// 00 30 31 32 33 34 35 36 37 00 00 00 00 00 00
+// 00 00 40 41 42 43 44 45 46 47 00 00 00 00 00
+// 00 00 50 51 52 53 54 55 56 57 00 00 00 00 00
+// 00 00 00 60 61 62 63 64 65 66 67 00 00 00 00
+// 00 00 00 70 71 72 73 74 75 76 77 00 00 00 00
+//
+// partial[5] is the same except the source is reversed.
+LIBGAV1_ALWAYS_INLINE void AddPartial_D5_D7(__m128i* v_src, __m128i* partial_lo,
+ __m128i* partial_hi) {
+ __m128i v_pair_add[4];
+ // Add vertical source pairs.
+ v_pair_add[0] = _mm_add_epi16(v_src[0], v_src[1]);
+ v_pair_add[1] = _mm_add_epi16(v_src[2], v_src[3]);
+ v_pair_add[2] = _mm_add_epi16(v_src[4], v_src[5]);
+ v_pair_add[3] = _mm_add_epi16(v_src[6], v_src[7]);
+
+ // 00 01 02 03 04 05 06 07
+ // 10 11 12 13 14 15 16 17
+ *partial_lo = v_pair_add[0];
+ // 00 00 00 00 00 00 00 00
+ // 00 00 00 00 00 00 00 00
+ *partial_hi = _mm_setzero_si128();
+
+ // 00 20 21 22 23 24 25 26
+ // 00 30 31 32 33 34 35 36
+ *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_pair_add[1], 2));
+ // 27 00 00 00 00 00 00 00
+ // 37 00 00 00 00 00 00 00
+ *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_pair_add[1], 14));
+
+ // 00 00 40 41 42 43 44 45
+ // 00 00 50 51 52 53 54 55
+ *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_pair_add[2], 4));
+ // 46 47 00 00 00 00 00 00
+ // 56 57 00 00 00 00 00 00
+ *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_pair_add[2], 12));
+
+ // 00 00 00 60 61 62 63 64
+ // 00 00 00 70 71 72 73 74
+ *partial_lo = _mm_add_epi16(*partial_lo, _mm_slli_si128(v_pair_add[3], 6));
+ // 65 66 67 00 00 00 00 00
+ // 75 76 77 00 00 00 00 00
+ *partial_hi = _mm_add_epi16(*partial_hi, _mm_srli_si128(v_pair_add[3], 10));
+}
+
+LIBGAV1_ALWAYS_INLINE void AddPartial(const uint8_t* src, ptrdiff_t stride,
+ __m128i* partial_lo,
+ __m128i* partial_hi) {
+ // 8x8 input
+ // 00 01 02 03 04 05 06 07
+ // 10 11 12 13 14 15 16 17
+ // 20 21 22 23 24 25 26 27
+ // 30 31 32 33 34 35 36 37
+ // 40 41 42 43 44 45 46 47
+ // 50 51 52 53 54 55 56 57
+ // 60 61 62 63 64 65 66 67
+ // 70 71 72 73 74 75 76 77
+ __m128i v_src[8];
+ for (auto& i : v_src) {
+ i = LoadLo8(src);
+ src += stride;
+ }
+
+ const __m128i v_zero = _mm_setzero_si128();
+ // partial for direction 2
+ // --------------------------------------------------------------------------
+ // partial[2][i] += x;
+ // 00 10 20 30 40 50 60 70 00 00 00 00 00 00 00 00
+ // 01 11 21 33 41 51 61 71 00 00 00 00 00 00 00 00
+ // 02 12 22 33 42 52 62 72 00 00 00 00 00 00 00 00
+ // 03 13 23 33 43 53 63 73 00 00 00 00 00 00 00 00
+ // 04 14 24 34 44 54 64 74 00 00 00 00 00 00 00 00
+ // 05 15 25 35 45 55 65 75 00 00 00 00 00 00 00 00
+ // 06 16 26 36 46 56 66 76 00 00 00 00 00 00 00 00
+ // 07 17 27 37 47 57 67 77 00 00 00 00 00 00 00 00
+ const __m128i v_src_4_0 = _mm_unpacklo_epi64(v_src[0], v_src[4]);
+ const __m128i v_src_5_1 = _mm_unpacklo_epi64(v_src[1], v_src[5]);
+ const __m128i v_src_6_2 = _mm_unpacklo_epi64(v_src[2], v_src[6]);
+ const __m128i v_src_7_3 = _mm_unpacklo_epi64(v_src[3], v_src[7]);
+ const __m128i v_hsum_4_0 = _mm_sad_epu8(v_src_4_0, v_zero);
+ const __m128i v_hsum_5_1 = _mm_sad_epu8(v_src_5_1, v_zero);
+ const __m128i v_hsum_6_2 = _mm_sad_epu8(v_src_6_2, v_zero);
+ const __m128i v_hsum_7_3 = _mm_sad_epu8(v_src_7_3, v_zero);
+ const __m128i v_hsum_1_0 = _mm_unpacklo_epi16(v_hsum_4_0, v_hsum_5_1);
+ const __m128i v_hsum_3_2 = _mm_unpacklo_epi16(v_hsum_6_2, v_hsum_7_3);
+ const __m128i v_hsum_5_4 = _mm_unpackhi_epi16(v_hsum_4_0, v_hsum_5_1);
+ const __m128i v_hsum_7_6 = _mm_unpackhi_epi16(v_hsum_6_2, v_hsum_7_3);
+ partial_lo[2] =
+ _mm_unpacklo_epi64(_mm_unpacklo_epi32(v_hsum_1_0, v_hsum_3_2),
+ _mm_unpacklo_epi32(v_hsum_5_4, v_hsum_7_6));
+
+ __m128i v_src_16[8];
+ for (int i = 0; i < 8; ++i) {
+ v_src_16[i] = _mm_cvtepu8_epi16(v_src[i]);
+ }
+
+ // partial for direction 6
+ // --------------------------------------------------------------------------
+ // partial[6][j] += x;
+ // 00 01 02 03 04 05 06 07 00 00 00 00 00 00 00 00
+ // 10 11 12 13 14 15 16 17 00 00 00 00 00 00 00 00
+ // 20 21 22 23 24 25 26 27 00 00 00 00 00 00 00 00
+ // 30 31 32 33 34 35 36 37 00 00 00 00 00 00 00 00
+ // 40 41 42 43 44 45 46 47 00 00 00 00 00 00 00 00
+ // 50 51 52 53 54 55 56 57 00 00 00 00 00 00 00 00
+ // 60 61 62 63 64 65 66 67 00 00 00 00 00 00 00 00
+ // 70 71 72 73 74 75 76 77 00 00 00 00 00 00 00 00
+ partial_lo[6] = v_src_16[0];
+ for (int i = 1; i < 8; ++i) {
+ partial_lo[6] = _mm_add_epi16(partial_lo[6], v_src_16[i]);
+ }
+
+ // partial for direction 0
+ AddPartial_D0_D4(v_src_16, &partial_lo[0], &partial_hi[0]);
+
+ // partial for direction 1
+ AddPartial_D1_D3(v_src_16, &partial_lo[1], &partial_hi[1]);
+
+ // partial for direction 7
+ AddPartial_D5_D7(v_src_16, &partial_lo[7], &partial_hi[7]);
+
+ __m128i v_src_reverse[8];
+ const __m128i reverser =
+ _mm_set_epi32(0x01000302, 0x05040706, 0x09080b0a, 0x0d0c0f0e);
+ for (int i = 0; i < 8; ++i) {
+ v_src_reverse[i] = _mm_shuffle_epi8(v_src_16[i], reverser);
+ }
+
+ // partial for direction 4
+ AddPartial_D0_D4(v_src_reverse, &partial_lo[4], &partial_hi[4]);
+
+ // partial for direction 3
+ AddPartial_D1_D3(v_src_reverse, &partial_lo[3], &partial_hi[3]);
+
+ // partial for direction 5
+ AddPartial_D5_D7(v_src_reverse, &partial_lo[5], &partial_hi[5]);
+}
+
+inline uint32_t SumVector_S32(__m128i a) {
+ a = _mm_hadd_epi32(a, a);
+ a = _mm_add_epi32(a, _mm_srli_si128(a, 4));
+ return _mm_cvtsi128_si32(a);
+}
+
+// |cost[0]| and |cost[4]| square the input and sum with the corresponding
+// element from the other end of the vector:
+// |kCdefDivisionTable[]| element:
+// cost[0] += (Square(partial[0][i]) + Square(partial[0][14 - i])) *
+// kCdefDivisionTable[i + 1];
+// cost[0] += Square(partial[0][7]) * kCdefDivisionTable[8];
+inline uint32_t Cost0Or4(const __m128i a, const __m128i b,
+ const __m128i division_table[2]) {
+ // Reverse and clear upper 2 bytes.
+ const __m128i reverser =
+ _mm_set_epi32(0x80800100, 0x03020504, 0x07060908, 0x0b0a0d0c);
+ // 14 13 12 11 10 09 08 ZZ
+ const __m128i b_reversed = _mm_shuffle_epi8(b, reverser);
+ // 00 14 01 13 02 12 03 11
+ const __m128i ab_lo = _mm_unpacklo_epi16(a, b_reversed);
+ // 04 10 05 09 06 08 07 ZZ
+ const __m128i ab_hi = _mm_unpackhi_epi16(a, b_reversed);
+
+ // Square(partial[0][i]) + Square(partial[0][14 - i])
+ const __m128i square_lo = _mm_madd_epi16(ab_lo, ab_lo);
+ const __m128i square_hi = _mm_madd_epi16(ab_hi, ab_hi);
+
+ const __m128i c = _mm_mullo_epi32(square_lo, division_table[0]);
+ const __m128i d = _mm_mullo_epi32(square_hi, division_table[1]);
+ return SumVector_S32(_mm_add_epi32(c, d));
+}
+
+inline uint32_t CostOdd(const __m128i a, const __m128i b,
+ const __m128i division_table[2]) {
+ // Reverse and clear upper 10 bytes.
+ const __m128i reverser =
+ _mm_set_epi32(0x80808080, 0x80808080, 0x80800100, 0x03020504);
+ // 10 09 08 ZZ ZZ ZZ ZZ ZZ
+ const __m128i b_reversed = _mm_shuffle_epi8(b, reverser);
+ // 00 10 01 09 02 08 03 ZZ
+ const __m128i ab_lo = _mm_unpacklo_epi16(a, b_reversed);
+ // 04 ZZ 05 ZZ 06 ZZ 07 ZZ
+ const __m128i ab_hi = _mm_unpackhi_epi16(a, b_reversed);
+
+ // Square(partial[0][i]) + Square(partial[0][10 - i])
+ const __m128i square_lo = _mm_madd_epi16(ab_lo, ab_lo);
+ const __m128i square_hi = _mm_madd_epi16(ab_hi, ab_hi);
+
+ const __m128i c = _mm_mullo_epi32(square_lo, division_table[0]);
+ const __m128i d = _mm_mullo_epi32(square_hi, division_table[1]);
+ return SumVector_S32(_mm_add_epi32(c, d));
+}
+
+// Sum of squared elements.
+inline uint32_t SquareSum_S16(const __m128i a) {
+ const __m128i square = _mm_madd_epi16(a, a);
+ return SumVector_S32(square);
+}
+
+void CdefDirection_SSE4_1(const void* const source, ptrdiff_t stride,
+ uint8_t* const direction, int* const variance) {
+ assert(direction != nullptr);
+ assert(variance != nullptr);
+ const auto* src = static_cast<const uint8_t*>(source);
+ uint32_t cost[8];
+ __m128i partial_lo[8], partial_hi[8];
+
+ AddPartial(src, stride, partial_lo, partial_hi);
+
+ cost[2] = kCdefDivisionTable[7] * SquareSum_S16(partial_lo[2]);
+ cost[6] = kCdefDivisionTable[7] * SquareSum_S16(partial_lo[6]);
+
+ const __m128i division_table[2] = {LoadUnaligned16(kCdefDivisionTable),
+ LoadUnaligned16(kCdefDivisionTable + 4)};
+
+ cost[0] = Cost0Or4(partial_lo[0], partial_hi[0], division_table);
+ cost[4] = Cost0Or4(partial_lo[4], partial_hi[4], division_table);
+
+ const __m128i division_table_odd[2] = {
+ LoadAligned16(kCdefDivisionTableOddPadded),
+ LoadAligned16(kCdefDivisionTableOddPadded + 4)};
+
+ cost[1] = CostOdd(partial_lo[1], partial_hi[1], division_table_odd);
+ cost[3] = CostOdd(partial_lo[3], partial_hi[3], division_table_odd);
+ cost[5] = CostOdd(partial_lo[5], partial_hi[5], division_table_odd);
+ cost[7] = CostOdd(partial_lo[7], partial_hi[7], division_table_odd);
+
+ uint32_t best_cost = 0;
+ *direction = 0;
+ for (int i = 0; i < 8; ++i) {
+ if (cost[i] > best_cost) {
+ best_cost = cost[i];
+ *direction = i;
+ }
+ }
+ *variance = (best_cost - cost[(*direction + 4) & 7]) >> 10;
+}
+
+// -------------------------------------------------------------------------
+// CdefFilter
+
+// Load 4 vectors based on the given |direction|.
+inline void LoadDirection(const uint16_t* const src, const ptrdiff_t stride,
+ __m128i* output, const int direction) {
+ // Each |direction| describes a different set of source values. Expand this
+ // set by negating each set. For |direction| == 0 this gives a diagonal line
+ // from top right to bottom left. The first value is y, the second x. Negative
+ // y values move up.
+ // a b c d
+ // {-1, 1}, {1, -1}, {-2, 2}, {2, -2}
+ // c
+ // a
+ // 0
+ // b
+ // d
+ const int y_0 = kCdefDirections[direction][0][0];
+ const int x_0 = kCdefDirections[direction][0][1];
+ const int y_1 = kCdefDirections[direction][1][0];
+ const int x_1 = kCdefDirections[direction][1][1];
+ output[0] = LoadUnaligned16(src - y_0 * stride - x_0);
+ output[1] = LoadUnaligned16(src + y_0 * stride + x_0);
+ output[2] = LoadUnaligned16(src - y_1 * stride - x_1);
+ output[3] = LoadUnaligned16(src + y_1 * stride + x_1);
+}
+
+// Load 4 vectors based on the given |direction|. Use when |block_width| == 4 to
+// do 2 rows at a time.
+void LoadDirection4(const uint16_t* const src, const ptrdiff_t stride,
+ __m128i* output, const int direction) {
+ const int y_0 = kCdefDirections[direction][0][0];
+ const int x_0 = kCdefDirections[direction][0][1];
+ const int y_1 = kCdefDirections[direction][1][0];
+ const int x_1 = kCdefDirections[direction][1][1];
+ output[0] = LoadHi8(LoadLo8(src - y_0 * stride - x_0),
+ src - y_0 * stride + stride - x_0);
+ output[1] = LoadHi8(LoadLo8(src + y_0 * stride + x_0),
+ src + y_0 * stride + stride + x_0);
+ output[2] = LoadHi8(LoadLo8(src - y_1 * stride - x_1),
+ src - y_1 * stride + stride - x_1);
+ output[3] = LoadHi8(LoadLo8(src + y_1 * stride + x_1),
+ src + y_1 * stride + stride + x_1);
+}
+
+inline __m128i Constrain(const __m128i& pixel, const __m128i& reference,
+ const __m128i& damping, const __m128i& threshold) {
+ const __m128i diff = _mm_sub_epi16(pixel, reference);
+ const __m128i abs_diff = _mm_abs_epi16(diff);
+ // sign(diff) * Clip3(threshold - (std::abs(diff) >> damping),
+ // 0, std::abs(diff))
+ const __m128i shifted_diff = _mm_srl_epi16(abs_diff, damping);
+ // For bitdepth == 8, the threshold range is [0, 15] and the damping range is
+ // [3, 6]. If pixel == kCdefLargeValue(0x4000), shifted_diff will always be
+ // larger than threshold. Subtract using saturation will return 0 when pixel
+ // == kCdefLargeValue.
+ static_assert(kCdefLargeValue == 0x4000, "Invalid kCdefLargeValue");
+ const __m128i thresh_minus_shifted_diff =
+ _mm_subs_epu16(threshold, shifted_diff);
+ const __m128i clamp_abs_diff =
+ _mm_min_epi16(thresh_minus_shifted_diff, abs_diff);
+ // Restore the sign.
+ return _mm_sign_epi16(clamp_abs_diff, diff);
+}
+
+inline __m128i ApplyConstrainAndTap(const __m128i& pixel, const __m128i& val,
+ const __m128i& tap, const __m128i& damping,
+ const __m128i& threshold) {
+ const __m128i constrained = Constrain(val, pixel, damping, threshold);
+ return _mm_mullo_epi16(constrained, tap);
+}
+
+template <int width, bool enable_primary = true, bool enable_secondary = true>
+void CdefFilter_SSE4_1(const uint16_t* src, const ptrdiff_t src_stride,
+ const int height, const int primary_strength,
+ const int secondary_strength, const int damping,
+ const int direction, void* dest,
+ const ptrdiff_t dst_stride) {
+ static_assert(width == 8 || width == 4, "Invalid CDEF width.");
+ static_assert(enable_primary || enable_secondary, "");
+ constexpr bool clipping_required = enable_primary && enable_secondary;
+ auto* dst = static_cast<uint8_t*>(dest);
+ __m128i primary_damping_shift, secondary_damping_shift;
+
+ // FloorLog2() requires input to be > 0.
+ // 8-bit damping range: Y: [3, 6], UV: [2, 5].
+ if (enable_primary) {
+ // primary_strength: [0, 15] -> FloorLog2: [0, 3] so a clamp is necessary
+ // for UV filtering.
+ primary_damping_shift =
+ _mm_cvtsi32_si128(std::max(0, damping - FloorLog2(primary_strength)));
+ }
+ if (enable_secondary) {
+ // secondary_strength: [0, 4] -> FloorLog2: [0, 2] so no clamp to 0 is
+ // necessary.
+ assert(damping - FloorLog2(secondary_strength) >= 0);
+ secondary_damping_shift =
+ _mm_cvtsi32_si128(damping - FloorLog2(secondary_strength));
+ }
+
+ const __m128i primary_tap_0 =
+ _mm_set1_epi16(kCdefPrimaryTaps[primary_strength & 1][0]);
+ const __m128i primary_tap_1 =
+ _mm_set1_epi16(kCdefPrimaryTaps[primary_strength & 1][1]);
+ const __m128i secondary_tap_0 = _mm_set1_epi16(kCdefSecondaryTap0);
+ const __m128i secondary_tap_1 = _mm_set1_epi16(kCdefSecondaryTap1);
+ const __m128i cdef_large_value_mask =
+ _mm_set1_epi16(static_cast<int16_t>(~kCdefLargeValue));
+ const __m128i primary_threshold = _mm_set1_epi16(primary_strength);
+ const __m128i secondary_threshold = _mm_set1_epi16(secondary_strength);
+
+ int y = height;
+ do {
+ __m128i pixel;
+ if (width == 8) {
+ pixel = LoadUnaligned16(src);
+ } else {
+ pixel = LoadHi8(LoadLo8(src), src + src_stride);
+ }
+
+ __m128i min = pixel;
+ __m128i max = pixel;
+ __m128i sum;
+
+ if (enable_primary) {
+ // Primary |direction|.
+ __m128i primary_val[4];
+ if (width == 8) {
+ LoadDirection(src, src_stride, primary_val, direction);
+ } else {
+ LoadDirection4(src, src_stride, primary_val, direction);
+ }
+
+ if (clipping_required) {
+ min = _mm_min_epu16(min, primary_val[0]);
+ min = _mm_min_epu16(min, primary_val[1]);
+ min = _mm_min_epu16(min, primary_val[2]);
+ min = _mm_min_epu16(min, primary_val[3]);
+
+ // The source is 16 bits, however, we only really care about the lower
+ // 8 bits. The upper 8 bits contain the "large" flag. After the final
+ // primary max has been calculated, zero out the upper 8 bits. Use this
+ // to find the "16 bit" max.
+ const __m128i max_p01 = _mm_max_epu8(primary_val[0], primary_val[1]);
+ const __m128i max_p23 = _mm_max_epu8(primary_val[2], primary_val[3]);
+ const __m128i max_p = _mm_max_epu8(max_p01, max_p23);
+ max = _mm_max_epu16(max, _mm_and_si128(max_p, cdef_large_value_mask));
+ }
+
+ sum = ApplyConstrainAndTap(pixel, primary_val[0], primary_tap_0,
+ primary_damping_shift, primary_threshold);
+ sum = _mm_add_epi16(
+ sum, ApplyConstrainAndTap(pixel, primary_val[1], primary_tap_0,
+ primary_damping_shift, primary_threshold));
+ sum = _mm_add_epi16(
+ sum, ApplyConstrainAndTap(pixel, primary_val[2], primary_tap_1,
+ primary_damping_shift, primary_threshold));
+ sum = _mm_add_epi16(
+ sum, ApplyConstrainAndTap(pixel, primary_val[3], primary_tap_1,
+ primary_damping_shift, primary_threshold));
+ } else {
+ sum = _mm_setzero_si128();
+ }
+
+ if (enable_secondary) {
+ // Secondary |direction| values (+/- 2). Clamp |direction|.
+ __m128i secondary_val[8];
+ if (width == 8) {
+ LoadDirection(src, src_stride, secondary_val, direction + 2);
+ LoadDirection(src, src_stride, secondary_val + 4, direction - 2);
+ } else {
+ LoadDirection4(src, src_stride, secondary_val, direction + 2);
+ LoadDirection4(src, src_stride, secondary_val + 4, direction - 2);
+ }
+
+ if (clipping_required) {
+ min = _mm_min_epu16(min, secondary_val[0]);
+ min = _mm_min_epu16(min, secondary_val[1]);
+ min = _mm_min_epu16(min, secondary_val[2]);
+ min = _mm_min_epu16(min, secondary_val[3]);
+ min = _mm_min_epu16(min, secondary_val[4]);
+ min = _mm_min_epu16(min, secondary_val[5]);
+ min = _mm_min_epu16(min, secondary_val[6]);
+ min = _mm_min_epu16(min, secondary_val[7]);
+
+ const __m128i max_s01 =
+ _mm_max_epu8(secondary_val[0], secondary_val[1]);
+ const __m128i max_s23 =
+ _mm_max_epu8(secondary_val[2], secondary_val[3]);
+ const __m128i max_s45 =
+ _mm_max_epu8(secondary_val[4], secondary_val[5]);
+ const __m128i max_s67 =
+ _mm_max_epu8(secondary_val[6], secondary_val[7]);
+ const __m128i max_s = _mm_max_epu8(_mm_max_epu8(max_s01, max_s23),
+ _mm_max_epu8(max_s45, max_s67));
+ max = _mm_max_epu16(max, _mm_and_si128(max_s, cdef_large_value_mask));
+ }
+
+ sum = _mm_add_epi16(
+ sum,
+ ApplyConstrainAndTap(pixel, secondary_val[0], secondary_tap_0,
+ secondary_damping_shift, secondary_threshold));
+ sum = _mm_add_epi16(
+ sum,
+ ApplyConstrainAndTap(pixel, secondary_val[1], secondary_tap_0,
+ secondary_damping_shift, secondary_threshold));
+ sum = _mm_add_epi16(
+ sum,
+ ApplyConstrainAndTap(pixel, secondary_val[2], secondary_tap_1,
+ secondary_damping_shift, secondary_threshold));
+ sum = _mm_add_epi16(
+ sum,
+ ApplyConstrainAndTap(pixel, secondary_val[3], secondary_tap_1,
+ secondary_damping_shift, secondary_threshold));
+ sum = _mm_add_epi16(
+ sum,
+ ApplyConstrainAndTap(pixel, secondary_val[4], secondary_tap_0,
+ secondary_damping_shift, secondary_threshold));
+ sum = _mm_add_epi16(
+ sum,
+ ApplyConstrainAndTap(pixel, secondary_val[5], secondary_tap_0,
+ secondary_damping_shift, secondary_threshold));
+ sum = _mm_add_epi16(
+ sum,
+ ApplyConstrainAndTap(pixel, secondary_val[6], secondary_tap_1,
+ secondary_damping_shift, secondary_threshold));
+ sum = _mm_add_epi16(
+ sum,
+ ApplyConstrainAndTap(pixel, secondary_val[7], secondary_tap_1,
+ secondary_damping_shift, secondary_threshold));
+ }
+ // Clip3(pixel + ((8 + sum - (sum < 0)) >> 4), min, max))
+ const __m128i sum_lt_0 = _mm_srai_epi16(sum, 15);
+ // 8 + sum
+ sum = _mm_add_epi16(sum, _mm_set1_epi16(8));
+ // (... - (sum < 0)) >> 4
+ sum = _mm_add_epi16(sum, sum_lt_0);
+ sum = _mm_srai_epi16(sum, 4);
+ // pixel + ...
+ sum = _mm_add_epi16(sum, pixel);
+ if (clipping_required) {
+ // Clip3
+ sum = _mm_min_epi16(sum, max);
+ sum = _mm_max_epi16(sum, min);
+ }
+
+ const __m128i result = _mm_packus_epi16(sum, sum);
+ if (width == 8) {
+ src += src_stride;
+ StoreLo8(dst, result);
+ dst += dst_stride;
+ --y;
+ } else {
+ src += src_stride << 1;
+ Store4(dst, result);
+ dst += dst_stride;
+ Store4(dst, _mm_srli_si128(result, 4));
+ dst += dst_stride;
+ y -= 2;
+ }
+ } while (y != 0);
+}
+
+void Init8bpp() {
+ Dsp* const dsp = dsp_internal::GetWritableDspTable(8);
+ assert(dsp != nullptr);
+ dsp->cdef_direction = CdefDirection_SSE4_1;
+ dsp->cdef_filters[0][0] = CdefFilter_SSE4_1<4>;
+ dsp->cdef_filters[0][1] =
+ CdefFilter_SSE4_1<4, /*enable_primary=*/true, /*enable_secondary=*/false>;
+ dsp->cdef_filters[0][2] = CdefFilter_SSE4_1<4, /*enable_primary=*/false>;
+ dsp->cdef_filters[1][0] = CdefFilter_SSE4_1<8>;
+ dsp->cdef_filters[1][1] =
+ CdefFilter_SSE4_1<8, /*enable_primary=*/true, /*enable_secondary=*/false>;
+ dsp->cdef_filters[1][2] = CdefFilter_SSE4_1<8, /*enable_primary=*/false>;
+}
+
+} // namespace
+} // namespace low_bitdepth
+
+void CdefInit_SSE4_1() { low_bitdepth::Init8bpp(); }
+
+} // namespace dsp
+} // namespace libgav1
+#else // !LIBGAV1_TARGETING_SSE4_1
+namespace libgav1 {
+namespace dsp {
+
+void CdefInit_SSE4_1() {}
+
+} // namespace dsp
+} // namespace libgav1
+#endif // LIBGAV1_TARGETING_SSE4_1