diff options
Diffstat (limited to 'src/dsp/x86/intrapred_cfl_sse4.cc')
-rw-r--r-- | src/dsp/x86/intrapred_cfl_sse4.cc | 976 |
1 files changed, 976 insertions, 0 deletions
diff --git a/src/dsp/x86/intrapred_cfl_sse4.cc b/src/dsp/x86/intrapred_cfl_sse4.cc new file mode 100644 index 0000000..fac1556 --- /dev/null +++ b/src/dsp/x86/intrapred_cfl_sse4.cc @@ -0,0 +1,976 @@ +// Copyright 2019 The libgav1 Authors +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "src/dsp/intrapred.h" +#include "src/utils/cpu.h" + +#if LIBGAV1_TARGETING_SSE4_1 + +#include <smmintrin.h> + +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> + +#include "src/dsp/constants.h" +#include "src/dsp/dsp.h" +#include "src/dsp/x86/common_sse4.h" +#include "src/utils/common.h" +#include "src/utils/compiler_attributes.h" + +namespace libgav1 { +namespace dsp { +namespace low_bitdepth { +namespace { + +//------------------------------------------------------------------------------ +// CflIntraPredictor_SSE4_1 + +inline __m128i CflPredictUnclipped(const __m128i* input, __m128i alpha_q12, + __m128i alpha_sign, __m128i dc_q0) { + __m128i ac_q3 = LoadUnaligned16(input); + __m128i ac_sign = _mm_sign_epi16(alpha_sign, ac_q3); + __m128i scaled_luma_q0 = _mm_mulhrs_epi16(_mm_abs_epi16(ac_q3), alpha_q12); + scaled_luma_q0 = _mm_sign_epi16(scaled_luma_q0, ac_sign); + return _mm_add_epi16(scaled_luma_q0, dc_q0); +} + +template <int width, int height> +void CflIntraPredictor_SSE4_1( + void* const dest, ptrdiff_t stride, + const int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride], + const int alpha) { + auto* dst = static_cast<uint8_t*>(dest); + const __m128i alpha_sign = _mm_set1_epi16(alpha); + const __m128i alpha_q12 = _mm_slli_epi16(_mm_abs_epi16(alpha_sign), 9); + auto* row = reinterpret_cast<const __m128i*>(luma); + const int kCflLumaBufferStrideLog2_16i = 5; + const int kCflLumaBufferStrideLog2_128i = kCflLumaBufferStrideLog2_16i - 3; + const __m128i* row_end = row + (height << kCflLumaBufferStrideLog2_128i); + const __m128i dc_val = _mm_set1_epi16(dst[0]); + do { + __m128i res = CflPredictUnclipped(row, alpha_q12, alpha_sign, dc_val); + if (width < 16) { + res = _mm_packus_epi16(res, res); + if (width == 4) { + Store4(dst, res); + } else { + StoreLo8(dst, res); + } + } else { + __m128i next = + CflPredictUnclipped(row + 1, alpha_q12, alpha_sign, dc_val); + res = _mm_packus_epi16(res, next); + StoreUnaligned16(dst, res); + if (width == 32) { + res = CflPredictUnclipped(row + 2, alpha_q12, alpha_sign, dc_val); + next = CflPredictUnclipped(row + 3, alpha_q12, alpha_sign, dc_val); + res = _mm_packus_epi16(res, next); + StoreUnaligned16(dst + 16, res); + } + } + dst += stride; + } while ((row += (1 << kCflLumaBufferStrideLog2_128i)) < row_end); +} + +template <int block_height_log2, bool is_inside> +void CflSubsampler444_4xH_SSE4_1( + int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride], + const int /*max_luma_width*/, const int max_luma_height, + const void* const source, ptrdiff_t stride) { + static_assert(block_height_log2 <= 4, ""); + const int block_height = 1 << block_height_log2; + const int visible_height = max_luma_height; + const auto* src = static_cast<const uint8_t*>(source); + __m128i sum = _mm_setzero_si128(); + int16_t* luma_ptr = luma[0]; + const __m128i zero = _mm_setzero_si128(); + __m128i samples; + int y = 0; + do { + samples = Load4(src); + src += stride; + int src_bytes; + memcpy(&src_bytes, src, 4); + samples = _mm_insert_epi32(samples, src_bytes, 1); + src += stride; + samples = _mm_slli_epi16(_mm_cvtepu8_epi16(samples), 3); + StoreLo8(luma_ptr, samples); + luma_ptr += kCflLumaBufferStride; + StoreHi8(luma_ptr, samples); + luma_ptr += kCflLumaBufferStride; + + // The maximum value here is 2**bd * H * 2**shift. Since the maximum H for + // 4XH is 16 = 2**4, we have 2**(8 + 4 + 3) = 2**15, which fits in 16 bits. + sum = _mm_add_epi16(sum, samples); + y += 2; + } while (y < visible_height); + + if (!is_inside) { + int y = visible_height; + do { + StoreHi8(luma_ptr, samples); + luma_ptr += kCflLumaBufferStride; + sum = _mm_add_epi16(sum, samples); + ++y; + } while (y < block_height); + } + + __m128i sum_tmp = _mm_unpackhi_epi16(sum, zero); + sum = _mm_cvtepu16_epi32(sum); + sum = _mm_add_epi32(sum, sum_tmp); + sum = _mm_add_epi32(sum, _mm_srli_si128(sum, 8)); + sum = _mm_add_epi32(sum, _mm_srli_si128(sum, 4)); + + __m128i averages = RightShiftWithRounding_U32( + sum, block_height_log2 + 2 /* log2 of width 4 */); + averages = _mm_shufflelo_epi16(averages, 0); + luma_ptr = luma[0]; + for (int y = 0; y < block_height; ++y, luma_ptr += kCflLumaBufferStride) { + const __m128i samples = LoadLo8(luma_ptr); + StoreLo8(luma_ptr, _mm_sub_epi16(samples, averages)); + } +} + +template <int block_height_log2> +void CflSubsampler444_4xH_SSE4_1( + int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride], + const int max_luma_width, const int max_luma_height, + const void* const source, ptrdiff_t stride) { + static_assert(block_height_log2 <= 4, ""); + assert(max_luma_width >= 4); + assert(max_luma_height >= 4); + const int block_height = 1 << block_height_log2; + const int block_width = 4; + + if (block_height <= max_luma_height && block_width <= max_luma_width) { + CflSubsampler444_4xH_SSE4_1<block_height_log2, true>( + luma, max_luma_width, max_luma_height, source, stride); + } else { + CflSubsampler444_4xH_SSE4_1<block_height_log2, false>( + luma, max_luma_width, max_luma_height, source, stride); + } +} + +template <int block_height_log2, bool inside> +void CflSubsampler444_8xH_SSE4_1( + int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride], + const int max_luma_width, const int max_luma_height, + const void* const source, ptrdiff_t stride) { + static_assert(block_height_log2 <= 5, ""); + const int block_height = 1 << block_height_log2, block_width = 8; + const int visible_height = max_luma_height; + const int invisible_width = inside ? 0 : block_width - max_luma_width; + const int visible_width = max_luma_width; + const __m128i blend_mask = + inside ? _mm_setzero_si128() : MaskHighNBytes(8 + invisible_width); + const __m128i dup16 = _mm_set1_epi32(0x01000100); + const auto* src = static_cast<const uint8_t*>(source); + int16_t* luma_ptr = luma[0]; + const __m128i zero = _mm_setzero_si128(); + // Since the maximum height is 32, if we split them by parity, each one only + // needs to accumulate 16 rows. Just like the calculation done in 4XH, we can + // store them in 16 bits without casting to 32 bits. + __m128i sum_even = _mm_setzero_si128(), sum_odd = _mm_setzero_si128(); + __m128i sum; + __m128i samples1; + + int y = 0; + do { + __m128i samples0 = LoadLo8(src); + if (!inside) { + const __m128i border0 = + _mm_set1_epi8(static_cast<int8_t>(src[visible_width - 1])); + samples0 = _mm_blendv_epi8(samples0, border0, blend_mask); + } + src += stride; + samples0 = _mm_slli_epi16(_mm_cvtepu8_epi16(samples0), 3); + StoreUnaligned16(luma_ptr, samples0); + luma_ptr += kCflLumaBufferStride; + + sum_even = _mm_add_epi16(sum_even, samples0); + + samples1 = LoadLo8(src); + if (!inside) { + const __m128i border1 = + _mm_set1_epi8(static_cast<int8_t>(src[visible_width - 1])); + samples1 = _mm_blendv_epi8(samples1, border1, blend_mask); + } + src += stride; + samples1 = _mm_slli_epi16(_mm_cvtepu8_epi16(samples1), 3); + StoreUnaligned16(luma_ptr, samples1); + luma_ptr += kCflLumaBufferStride; + + sum_odd = _mm_add_epi16(sum_odd, samples1); + y += 2; + } while (y < visible_height); + + if (!inside) { + for (int y = visible_height; y < block_height; y += 2) { + sum_even = _mm_add_epi16(sum_even, samples1); + StoreUnaligned16(luma_ptr, samples1); + luma_ptr += kCflLumaBufferStride; + + sum_odd = _mm_add_epi16(sum_odd, samples1); + StoreUnaligned16(luma_ptr, samples1); + luma_ptr += kCflLumaBufferStride; + } + } + + sum = _mm_add_epi32(_mm_unpackhi_epi16(sum_even, zero), + _mm_cvtepu16_epi32(sum_even)); + sum = _mm_add_epi32(sum, _mm_unpackhi_epi16(sum_odd, zero)); + sum = _mm_add_epi32(sum, _mm_cvtepu16_epi32(sum_odd)); + + sum = _mm_add_epi32(sum, _mm_srli_si128(sum, 8)); + sum = _mm_add_epi32(sum, _mm_srli_si128(sum, 4)); + + __m128i averages = RightShiftWithRounding_U32( + sum, block_height_log2 + 3 /* log2 of width 8 */); + averages = _mm_shuffle_epi8(averages, dup16); + luma_ptr = luma[0]; + for (int y = 0; y < block_height; ++y, luma_ptr += kCflLumaBufferStride) { + const __m128i samples = LoadUnaligned16(luma_ptr); + StoreUnaligned16(luma_ptr, _mm_sub_epi16(samples, averages)); + } +} + +template <int block_height_log2> +void CflSubsampler444_8xH_SSE4_1( + int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride], + const int max_luma_width, const int max_luma_height, + const void* const source, ptrdiff_t stride) { + static_assert(block_height_log2 <= 5, ""); + assert(max_luma_width >= 4); + assert(max_luma_height >= 4); + const int block_height = 1 << block_height_log2; + const int block_width = 8; + + const int horz_inside = block_width <= max_luma_width; + const int vert_inside = block_height <= max_luma_height; + if (horz_inside && vert_inside) { + CflSubsampler444_8xH_SSE4_1<block_height_log2, true>( + luma, max_luma_width, max_luma_height, source, stride); + } else { + CflSubsampler444_8xH_SSE4_1<block_height_log2, false>( + luma, max_luma_width, max_luma_height, source, stride); + } +} + +// This function will only work for block_width 16 and 32. +template <int block_width_log2, int block_height_log2, bool inside> +void CflSubsampler444_SSE4_1( + int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride], + const int max_luma_width, const int max_luma_height, + const void* const source, ptrdiff_t stride) { + static_assert(block_width_log2 == 4 || block_width_log2 == 5, ""); + static_assert(block_height_log2 <= 5, ""); + assert(max_luma_width >= 4); + assert(max_luma_height >= 4); + const int block_height = 1 << block_height_log2; + const int block_width = 1 << block_width_log2; + + const int visible_height = max_luma_height; + const int visible_width_16 = inside ? 16 : std::min(16, max_luma_width); + const int invisible_width_16 = 16 - visible_width_16; + const __m128i blend_mask_16 = MaskHighNBytes(invisible_width_16); + const int visible_width_32 = inside ? 32 : max_luma_width; + const int invisible_width_32 = 32 - visible_width_32; + const __m128i blend_mask_32 = + MaskHighNBytes(std::min(16, invisible_width_32)); + + const __m128i dup16 = _mm_set1_epi32(0x01000100); + const __m128i zero = _mm_setzero_si128(); + const auto* src = static_cast<const uint8_t*>(source); + int16_t* luma_ptr = luma[0]; + __m128i sum = _mm_setzero_si128(); + + __m128i samples0, samples1; + __m128i samples2, samples3; + __m128i inner_sum_lo, inner_sum_hi; + int y = 0; + do { +#if LIBGAV1_MSAN // We can load uninitialized values here. Even though they are + // then masked off by blendv, MSAN isn't smart enough to + // understand that. So we switch to a C implementation here. + uint16_t c_arr[16]; + for (int x = 0; x < 16; x++) { + const int x_index = std::min(x, visible_width_16 - 1); + c_arr[x] = src[x_index] << 3; + } + samples0 = LoadUnaligned16(c_arr); + samples1 = LoadUnaligned16(c_arr + 8); + static_cast<void>(blend_mask_16); +#else + __m128i samples01 = LoadUnaligned16(src); + + if (!inside) { + const __m128i border16 = + _mm_set1_epi8(static_cast<int8_t>(src[visible_width_16 - 1])); + samples01 = _mm_blendv_epi8(samples01, border16, blend_mask_16); + } + samples0 = _mm_slli_epi16(_mm_cvtepu8_epi16(samples01), 3); + samples1 = _mm_slli_epi16(_mm_unpackhi_epi8(samples01, zero), 3); +#endif // LIBGAV1_MSAN + + StoreUnaligned16(luma_ptr, samples0); + StoreUnaligned16(luma_ptr + 8, samples1); + __m128i inner_sum = _mm_add_epi16(samples0, samples1); + + if (block_width == 32) { +#if LIBGAV1_MSAN // We can load uninitialized values here. Even though they are + // then masked off by blendv, MSAN isn't smart enough to + // understand that. So we switch to a C implementation here. + uint16_t c_arr[16]; + for (int x = 16; x < 32; x++) { + const int x_index = std::min(x, visible_width_32 - 1); + c_arr[x - 16] = src[x_index] << 3; + } + samples2 = LoadUnaligned16(c_arr); + samples3 = LoadUnaligned16(c_arr + 8); + static_cast<void>(blend_mask_32); +#else + __m128i samples23 = LoadUnaligned16(src + 16); + if (!inside) { + const __m128i border32 = + _mm_set1_epi8(static_cast<int8_t>(src[visible_width_32 - 1])); + samples23 = _mm_blendv_epi8(samples23, border32, blend_mask_32); + } + samples2 = _mm_slli_epi16(_mm_cvtepu8_epi16(samples23), 3); + samples3 = _mm_slli_epi16(_mm_unpackhi_epi8(samples23, zero), 3); +#endif // LIBGAV1_MSAN + + StoreUnaligned16(luma_ptr + 16, samples2); + StoreUnaligned16(luma_ptr + 24, samples3); + inner_sum = _mm_add_epi16(samples2, inner_sum); + inner_sum = _mm_add_epi16(samples3, inner_sum); + } + + inner_sum_lo = _mm_cvtepu16_epi32(inner_sum); + inner_sum_hi = _mm_unpackhi_epi16(inner_sum, zero); + sum = _mm_add_epi32(sum, inner_sum_lo); + sum = _mm_add_epi32(sum, inner_sum_hi); + luma_ptr += kCflLumaBufferStride; + src += stride; + } while (++y < visible_height); + + if (!inside) { + for (int y = visible_height; y < block_height; + luma_ptr += kCflLumaBufferStride, ++y) { + sum = _mm_add_epi32(sum, inner_sum_lo); + StoreUnaligned16(luma_ptr, samples0); + sum = _mm_add_epi32(sum, inner_sum_hi); + StoreUnaligned16(luma_ptr + 8, samples1); + if (block_width == 32) { + StoreUnaligned16(luma_ptr + 16, samples2); + StoreUnaligned16(luma_ptr + 24, samples3); + } + } + } + + sum = _mm_add_epi32(sum, _mm_srli_si128(sum, 8)); + sum = _mm_add_epi32(sum, _mm_srli_si128(sum, 4)); + + __m128i averages = + RightShiftWithRounding_U32(sum, block_width_log2 + block_height_log2); + averages = _mm_shuffle_epi8(averages, dup16); + luma_ptr = luma[0]; + for (int y = 0; y < block_height; ++y, luma_ptr += kCflLumaBufferStride) { + for (int x = 0; x < block_width; x += 8) { + __m128i samples = LoadUnaligned16(&luma_ptr[x]); + StoreUnaligned16(&luma_ptr[x], _mm_sub_epi16(samples, averages)); + } + } +} + +template <int block_width_log2, int block_height_log2> +void CflSubsampler444_SSE4_1( + int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride], + const int max_luma_width, const int max_luma_height, + const void* const source, ptrdiff_t stride) { + static_assert(block_width_log2 == 4 || block_width_log2 == 5, ""); + static_assert(block_height_log2 <= 5, ""); + assert(max_luma_width >= 4); + assert(max_luma_height >= 4); + + const int block_height = 1 << block_height_log2; + const int block_width = 1 << block_width_log2; + const int horz_inside = block_width <= max_luma_width; + const int vert_inside = block_height <= max_luma_height; + if (horz_inside && vert_inside) { + CflSubsampler444_SSE4_1<block_width_log2, block_height_log2, true>( + luma, max_luma_width, max_luma_height, source, stride); + } else { + CflSubsampler444_SSE4_1<block_width_log2, block_height_log2, false>( + luma, max_luma_width, max_luma_height, source, stride); + } +} + +// Takes in two sums of input row pairs, and completes the computation for two +// output rows. +inline __m128i StoreLumaResults4_420(const __m128i vertical_sum0, + const __m128i vertical_sum1, + int16_t* luma_ptr) { + __m128i result = _mm_hadd_epi16(vertical_sum0, vertical_sum1); + result = _mm_slli_epi16(result, 1); + StoreLo8(luma_ptr, result); + StoreHi8(luma_ptr + kCflLumaBufferStride, result); + return result; +} + +// Takes two halves of a vertically added pair of rows and completes the +// computation for one output row. +inline __m128i StoreLumaResults8_420(const __m128i vertical_sum0, + const __m128i vertical_sum1, + int16_t* luma_ptr) { + __m128i result = _mm_hadd_epi16(vertical_sum0, vertical_sum1); + result = _mm_slli_epi16(result, 1); + StoreUnaligned16(luma_ptr, result); + return result; +} + +template <int block_height_log2> +void CflSubsampler420_4xH_SSE4_1( + int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride], + const int /*max_luma_width*/, const int max_luma_height, + const void* const source, ptrdiff_t stride) { + const int block_height = 1 << block_height_log2; + const auto* src = static_cast<const uint8_t*>(source); + int16_t* luma_ptr = luma[0]; + const __m128i zero = _mm_setzero_si128(); + __m128i final_sum = zero; + const int luma_height = std::min(block_height, max_luma_height >> 1); + int y = 0; + do { + // Note that double sampling and converting to 16bit makes a row fill the + // vector. + const __m128i samples_row0 = _mm_cvtepu8_epi16(LoadLo8(src)); + src += stride; + const __m128i samples_row1 = _mm_cvtepu8_epi16(LoadLo8(src)); + src += stride; + const __m128i luma_sum01 = _mm_add_epi16(samples_row0, samples_row1); + + const __m128i samples_row2 = _mm_cvtepu8_epi16(LoadLo8(src)); + src += stride; + const __m128i samples_row3 = _mm_cvtepu8_epi16(LoadLo8(src)); + src += stride; + const __m128i luma_sum23 = _mm_add_epi16(samples_row2, samples_row3); + __m128i sum = StoreLumaResults4_420(luma_sum01, luma_sum23, luma_ptr); + luma_ptr += kCflLumaBufferStride << 1; + + const __m128i samples_row4 = _mm_cvtepu8_epi16(LoadLo8(src)); + src += stride; + const __m128i samples_row5 = _mm_cvtepu8_epi16(LoadLo8(src)); + src += stride; + const __m128i luma_sum45 = _mm_add_epi16(samples_row4, samples_row5); + + const __m128i samples_row6 = _mm_cvtepu8_epi16(LoadLo8(src)); + src += stride; + const __m128i samples_row7 = _mm_cvtepu8_epi16(LoadLo8(src)); + src += stride; + const __m128i luma_sum67 = _mm_add_epi16(samples_row6, samples_row7); + sum = _mm_add_epi16( + sum, StoreLumaResults4_420(luma_sum45, luma_sum67, luma_ptr)); + luma_ptr += kCflLumaBufferStride << 1; + + final_sum = _mm_add_epi32(final_sum, _mm_cvtepu16_epi32(sum)); + final_sum = _mm_add_epi32(final_sum, _mm_unpackhi_epi16(sum, zero)); + y += 4; + } while (y < luma_height); + const __m128i final_fill = LoadLo8(luma_ptr - kCflLumaBufferStride); + const __m128i final_fill_to_sum = _mm_cvtepu16_epi32(final_fill); + for (; y < block_height; ++y) { + StoreLo8(luma_ptr, final_fill); + luma_ptr += kCflLumaBufferStride; + + final_sum = _mm_add_epi32(final_sum, final_fill_to_sum); + } + final_sum = _mm_add_epi32(final_sum, _mm_srli_si128(final_sum, 8)); + final_sum = _mm_add_epi32(final_sum, _mm_srli_si128(final_sum, 4)); + + __m128i averages = RightShiftWithRounding_U32( + final_sum, block_height_log2 + 2 /*log2 of width 4*/); + + averages = _mm_shufflelo_epi16(averages, 0); + luma_ptr = luma[0]; + for (int y = 0; y < block_height; ++y, luma_ptr += kCflLumaBufferStride) { + const __m128i samples = LoadLo8(luma_ptr); + StoreLo8(luma_ptr, _mm_sub_epi16(samples, averages)); + } +} + +// This duplicates the last two 16-bit values in |row|. +inline __m128i LastRowSamples(const __m128i row) { + return _mm_shuffle_epi32(row, 0xFF); +} + +// This duplicates the last 16-bit value in |row|. +inline __m128i LastRowResult(const __m128i row) { + const __m128i dup_row = _mm_shufflehi_epi16(row, 0xFF); + return _mm_shuffle_epi32(dup_row, 0xFF); +} + +template <int block_height_log2, int max_luma_width> +inline void CflSubsampler420Impl_8xH_SSE4_1( + int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride], + const int /*max_luma_width*/, const int max_luma_height, + const void* const source, ptrdiff_t stride) { + const int block_height = 1 << block_height_log2; + const auto* src = static_cast<const uint8_t*>(source); + const __m128i zero = _mm_setzero_si128(); + __m128i final_sum = zero; + int16_t* luma_ptr = luma[0]; + const int luma_height = std::min(block_height, max_luma_height >> 1); + int y = 0; + + do { + const __m128i samples_row00 = _mm_cvtepu8_epi16(LoadLo8(src)); + const __m128i samples_row01 = (max_luma_width == 16) + ? _mm_cvtepu8_epi16(LoadLo8(src + 8)) + : LastRowSamples(samples_row00); + src += stride; + const __m128i samples_row10 = _mm_cvtepu8_epi16(LoadLo8(src)); + const __m128i samples_row11 = (max_luma_width == 16) + ? _mm_cvtepu8_epi16(LoadLo8(src + 8)) + : LastRowSamples(samples_row10); + src += stride; + const __m128i luma_sum00 = _mm_add_epi16(samples_row00, samples_row10); + const __m128i luma_sum01 = _mm_add_epi16(samples_row01, samples_row11); + __m128i sum = StoreLumaResults8_420(luma_sum00, luma_sum01, luma_ptr); + luma_ptr += kCflLumaBufferStride; + + const __m128i samples_row20 = _mm_cvtepu8_epi16(LoadLo8(src)); + const __m128i samples_row21 = (max_luma_width == 16) + ? _mm_cvtepu8_epi16(LoadLo8(src + 8)) + : LastRowSamples(samples_row20); + src += stride; + const __m128i samples_row30 = _mm_cvtepu8_epi16(LoadLo8(src)); + const __m128i samples_row31 = (max_luma_width == 16) + ? _mm_cvtepu8_epi16(LoadLo8(src + 8)) + : LastRowSamples(samples_row30); + src += stride; + const __m128i luma_sum10 = _mm_add_epi16(samples_row20, samples_row30); + const __m128i luma_sum11 = _mm_add_epi16(samples_row21, samples_row31); + sum = _mm_add_epi16( + sum, StoreLumaResults8_420(luma_sum10, luma_sum11, luma_ptr)); + luma_ptr += kCflLumaBufferStride; + + const __m128i samples_row40 = _mm_cvtepu8_epi16(LoadLo8(src)); + const __m128i samples_row41 = (max_luma_width == 16) + ? _mm_cvtepu8_epi16(LoadLo8(src + 8)) + : LastRowSamples(samples_row40); + src += stride; + const __m128i samples_row50 = _mm_cvtepu8_epi16(LoadLo8(src)); + const __m128i samples_row51 = (max_luma_width == 16) + ? _mm_cvtepu8_epi16(LoadLo8(src + 8)) + : LastRowSamples(samples_row50); + src += stride; + const __m128i luma_sum20 = _mm_add_epi16(samples_row40, samples_row50); + const __m128i luma_sum21 = _mm_add_epi16(samples_row41, samples_row51); + sum = _mm_add_epi16( + sum, StoreLumaResults8_420(luma_sum20, luma_sum21, luma_ptr)); + luma_ptr += kCflLumaBufferStride; + + const __m128i samples_row60 = _mm_cvtepu8_epi16(LoadLo8(src)); + const __m128i samples_row61 = (max_luma_width == 16) + ? _mm_cvtepu8_epi16(LoadLo8(src + 8)) + : LastRowSamples(samples_row60); + src += stride; + const __m128i samples_row70 = _mm_cvtepu8_epi16(LoadLo8(src)); + const __m128i samples_row71 = (max_luma_width == 16) + ? _mm_cvtepu8_epi16(LoadLo8(src + 8)) + : LastRowSamples(samples_row70); + src += stride; + const __m128i luma_sum30 = _mm_add_epi16(samples_row60, samples_row70); + const __m128i luma_sum31 = _mm_add_epi16(samples_row61, samples_row71); + sum = _mm_add_epi16( + sum, StoreLumaResults8_420(luma_sum30, luma_sum31, luma_ptr)); + luma_ptr += kCflLumaBufferStride; + + final_sum = _mm_add_epi32(final_sum, _mm_cvtepu16_epi32(sum)); + final_sum = _mm_add_epi32(final_sum, _mm_unpackhi_epi16(sum, zero)); + y += 4; + } while (y < luma_height); + // Duplicate the final row downward to the end after max_luma_height. + const __m128i final_fill = LoadUnaligned16(luma_ptr - kCflLumaBufferStride); + const __m128i final_fill_to_sum0 = _mm_cvtepi16_epi32(final_fill); + const __m128i final_fill_to_sum1 = + _mm_cvtepi16_epi32(_mm_srli_si128(final_fill, 8)); + const __m128i final_fill_to_sum = + _mm_add_epi32(final_fill_to_sum0, final_fill_to_sum1); + for (; y < block_height; ++y) { + StoreUnaligned16(luma_ptr, final_fill); + luma_ptr += kCflLumaBufferStride; + + final_sum = _mm_add_epi32(final_sum, final_fill_to_sum); + } + final_sum = _mm_add_epi32(final_sum, _mm_srli_si128(final_sum, 8)); + final_sum = _mm_add_epi32(final_sum, _mm_srli_si128(final_sum, 4)); + + __m128i averages = RightShiftWithRounding_S32( + final_sum, block_height_log2 + 3 /*log2 of width 8*/); + + averages = _mm_shufflelo_epi16(averages, 0); + averages = _mm_shuffle_epi32(averages, 0); + luma_ptr = luma[0]; + for (int y = 0; y < block_height; ++y, luma_ptr += kCflLumaBufferStride) { + const __m128i samples = LoadUnaligned16(luma_ptr); + StoreUnaligned16(luma_ptr, _mm_sub_epi16(samples, averages)); + } +} + +template <int block_height_log2> +void CflSubsampler420_8xH_SSE4_1( + int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride], + const int max_luma_width, const int max_luma_height, + const void* const source, ptrdiff_t stride) { + if (max_luma_width == 8) { + CflSubsampler420Impl_8xH_SSE4_1<block_height_log2, 8>( + luma, max_luma_width, max_luma_height, source, stride); + } else { + CflSubsampler420Impl_8xH_SSE4_1<block_height_log2, 16>( + luma, max_luma_width, max_luma_height, source, stride); + } +} + +template <int block_width_log2, int block_height_log2, int max_luma_width> +inline void CflSubsampler420Impl_WxH_SSE4_1( + int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride], + const int /*max_luma_width*/, const int max_luma_height, + const void* const source, ptrdiff_t stride) { + const auto* src = static_cast<const uint8_t*>(source); + const __m128i zero = _mm_setzero_si128(); + __m128i final_sum = zero; + const int block_height = 1 << block_height_log2; + const int luma_height = std::min(block_height, max_luma_height >> 1); + + int16_t* luma_ptr = luma[0]; + __m128i final_row_result; + // Begin first y section, covering width up to 16. + int y = 0; + do { + const uint8_t* src_next = src + stride; + const __m128i samples_row0_lo = LoadUnaligned16(src); + const __m128i samples_row00 = _mm_cvtepu8_epi16(samples_row0_lo); + const __m128i samples_row01 = (max_luma_width >= 16) + ? _mm_unpackhi_epi8(samples_row0_lo, zero) + : LastRowSamples(samples_row00); + const __m128i samples_row0_hi = LoadUnaligned16(src + 16); + const __m128i samples_row02 = (max_luma_width >= 24) + ? _mm_cvtepu8_epi16(samples_row0_hi) + : LastRowSamples(samples_row01); + const __m128i samples_row03 = (max_luma_width == 32) + ? _mm_unpackhi_epi8(samples_row0_hi, zero) + : LastRowSamples(samples_row02); + const __m128i samples_row1_lo = LoadUnaligned16(src_next); + const __m128i samples_row10 = _mm_cvtepu8_epi16(samples_row1_lo); + const __m128i samples_row11 = (max_luma_width >= 16) + ? _mm_unpackhi_epi8(samples_row1_lo, zero) + : LastRowSamples(samples_row10); + const __m128i samples_row1_hi = LoadUnaligned16(src_next + 16); + const __m128i samples_row12 = (max_luma_width >= 24) + ? _mm_cvtepu8_epi16(samples_row1_hi) + : LastRowSamples(samples_row11); + const __m128i samples_row13 = (max_luma_width == 32) + ? _mm_unpackhi_epi8(samples_row1_hi, zero) + : LastRowSamples(samples_row12); + const __m128i luma_sum0 = _mm_add_epi16(samples_row00, samples_row10); + const __m128i luma_sum1 = _mm_add_epi16(samples_row01, samples_row11); + const __m128i luma_sum2 = _mm_add_epi16(samples_row02, samples_row12); + const __m128i luma_sum3 = _mm_add_epi16(samples_row03, samples_row13); + __m128i sum = StoreLumaResults8_420(luma_sum0, luma_sum1, luma_ptr); + final_row_result = + StoreLumaResults8_420(luma_sum2, luma_sum3, luma_ptr + 8); + sum = _mm_add_epi16(sum, final_row_result); + final_sum = _mm_add_epi32(final_sum, _mm_cvtepu16_epi32(sum)); + final_sum = _mm_add_epi32(final_sum, _mm_unpackhi_epi16(sum, zero)); + src += stride << 1; + luma_ptr += kCflLumaBufferStride; + } while (++y < luma_height); + + // Because max_luma_width is at most 32, any values beyond x=16 will + // necessarily be duplicated. + if (block_width_log2 == 5) { + const __m128i wide_fill = LastRowResult(final_row_result); + // Multiply duplicated value by number of occurrences, height * 4, since + // there are 16 in each row and the value appears in the vector 4 times. + final_sum = _mm_add_epi32( + final_sum, + _mm_slli_epi32(_mm_cvtepi16_epi32(wide_fill), block_height_log2 + 2)); + } + + // Begin second y section. + if (y < block_height) { + const __m128i final_fill0 = + LoadUnaligned16(luma_ptr - kCflLumaBufferStride); + const __m128i final_fill1 = + LoadUnaligned16(luma_ptr - kCflLumaBufferStride + 8); + const __m128i final_inner_sum = _mm_add_epi16(final_fill0, final_fill1); + const __m128i final_inner_sum0 = _mm_cvtepu16_epi32(final_inner_sum); + const __m128i final_inner_sum1 = _mm_unpackhi_epi16(final_inner_sum, zero); + const __m128i final_fill_to_sum = + _mm_add_epi32(final_inner_sum0, final_inner_sum1); + + do { + StoreUnaligned16(luma_ptr, final_fill0); + StoreUnaligned16(luma_ptr + 8, final_fill1); + luma_ptr += kCflLumaBufferStride; + + final_sum = _mm_add_epi32(final_sum, final_fill_to_sum); + } while (++y < block_height); + } // End second y section. + + final_sum = _mm_add_epi32(final_sum, _mm_srli_si128(final_sum, 8)); + final_sum = _mm_add_epi32(final_sum, _mm_srli_si128(final_sum, 4)); + + __m128i averages = RightShiftWithRounding_S32( + final_sum, block_width_log2 + block_height_log2); + averages = _mm_shufflelo_epi16(averages, 0); + averages = _mm_shuffle_epi32(averages, 0); + + luma_ptr = luma[0]; + for (int y = 0; y < block_height; ++y, luma_ptr += kCflLumaBufferStride) { + const __m128i samples0 = LoadUnaligned16(luma_ptr); + StoreUnaligned16(luma_ptr, _mm_sub_epi16(samples0, averages)); + const __m128i samples1 = LoadUnaligned16(luma_ptr + 8); + final_row_result = _mm_sub_epi16(samples1, averages); + StoreUnaligned16(luma_ptr + 8, final_row_result); + } + if (block_width_log2 == 5) { + int16_t* wide_luma_ptr = luma[0] + 16; + const __m128i wide_fill = LastRowResult(final_row_result); + for (int i = 0; i < block_height; + ++i, wide_luma_ptr += kCflLumaBufferStride) { + StoreUnaligned16(wide_luma_ptr, wide_fill); + StoreUnaligned16(wide_luma_ptr + 8, wide_fill); + } + } +} + +template <int block_width_log2, int block_height_log2> +void CflSubsampler420_WxH_SSE4_1( + int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride], + const int max_luma_width, const int max_luma_height, + const void* const source, ptrdiff_t stride) { + switch (max_luma_width) { + case 8: + CflSubsampler420Impl_WxH_SSE4_1<block_width_log2, block_height_log2, 8>( + luma, max_luma_width, max_luma_height, source, stride); + return; + case 16: + CflSubsampler420Impl_WxH_SSE4_1<block_width_log2, block_height_log2, 16>( + luma, max_luma_width, max_luma_height, source, stride); + return; + case 24: + CflSubsampler420Impl_WxH_SSE4_1<block_width_log2, block_height_log2, 24>( + luma, max_luma_width, max_luma_height, source, stride); + return; + default: + assert(max_luma_width == 32); + CflSubsampler420Impl_WxH_SSE4_1<block_width_log2, block_height_log2, 32>( + luma, max_luma_width, max_luma_height, source, stride); + return; + } +} + +void Init8bpp() { + Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8); + assert(dsp != nullptr); +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x4_CflSubsampler420) + dsp->cfl_subsamplers[kTransformSize4x4][kSubsamplingType420] = + CflSubsampler420_4xH_SSE4_1<2>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x8_CflSubsampler420) + dsp->cfl_subsamplers[kTransformSize4x8][kSubsamplingType420] = + CflSubsampler420_4xH_SSE4_1<3>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x16_CflSubsampler420) + dsp->cfl_subsamplers[kTransformSize4x16][kSubsamplingType420] = + CflSubsampler420_4xH_SSE4_1<4>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x4_CflSubsampler420) + dsp->cfl_subsamplers[kTransformSize8x4][kSubsamplingType420] = + CflSubsampler420_8xH_SSE4_1<2>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x8_CflSubsampler420) + dsp->cfl_subsamplers[kTransformSize8x8][kSubsamplingType420] = + CflSubsampler420_8xH_SSE4_1<3>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x16_CflSubsampler420) + dsp->cfl_subsamplers[kTransformSize8x16][kSubsamplingType420] = + CflSubsampler420_8xH_SSE4_1<4>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x32_CflSubsampler420) + dsp->cfl_subsamplers[kTransformSize8x32][kSubsamplingType420] = + CflSubsampler420_8xH_SSE4_1<5>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x4_CflSubsampler420) + dsp->cfl_subsamplers[kTransformSize16x4][kSubsamplingType420] = + CflSubsampler420_WxH_SSE4_1<4, 2>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x8_CflSubsampler420) + dsp->cfl_subsamplers[kTransformSize16x8][kSubsamplingType420] = + CflSubsampler420_WxH_SSE4_1<4, 3>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x16_CflSubsampler420) + dsp->cfl_subsamplers[kTransformSize16x16][kSubsamplingType420] = + CflSubsampler420_WxH_SSE4_1<4, 4>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x32_CflSubsampler420) + dsp->cfl_subsamplers[kTransformSize16x32][kSubsamplingType420] = + CflSubsampler420_WxH_SSE4_1<4, 5>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x8_CflSubsampler420) + dsp->cfl_subsamplers[kTransformSize32x8][kSubsamplingType420] = + CflSubsampler420_WxH_SSE4_1<5, 3>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x16_CflSubsampler420) + dsp->cfl_subsamplers[kTransformSize32x16][kSubsamplingType420] = + CflSubsampler420_WxH_SSE4_1<5, 4>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x32_CflSubsampler420) + dsp->cfl_subsamplers[kTransformSize32x32][kSubsamplingType420] = + CflSubsampler420_WxH_SSE4_1<5, 5>; +#endif + +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x4_CflSubsampler444) + dsp->cfl_subsamplers[kTransformSize4x4][kSubsamplingType444] = + CflSubsampler444_4xH_SSE4_1<2>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x8_CflSubsampler444) + dsp->cfl_subsamplers[kTransformSize4x8][kSubsamplingType444] = + CflSubsampler444_4xH_SSE4_1<3>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x16_CflSubsampler444) + dsp->cfl_subsamplers[kTransformSize4x16][kSubsamplingType444] = + CflSubsampler444_4xH_SSE4_1<4>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x4_CflSubsampler444) + dsp->cfl_subsamplers[kTransformSize8x4][kSubsamplingType444] = + CflSubsampler444_8xH_SSE4_1<2>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x8_CflSubsampler444) + dsp->cfl_subsamplers[kTransformSize8x8][kSubsamplingType444] = + CflSubsampler444_8xH_SSE4_1<3>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x16_CflSubsampler444) + dsp->cfl_subsamplers[kTransformSize8x16][kSubsamplingType444] = + CflSubsampler444_8xH_SSE4_1<4>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x32_CflSubsampler444) + dsp->cfl_subsamplers[kTransformSize8x32][kSubsamplingType444] = + CflSubsampler444_8xH_SSE4_1<5>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x4_CflSubsampler444) + dsp->cfl_subsamplers[kTransformSize16x4][kSubsamplingType444] = + CflSubsampler444_SSE4_1<4, 2>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x8_CflSubsampler444) + dsp->cfl_subsamplers[kTransformSize16x8][kSubsamplingType444] = + CflSubsampler444_SSE4_1<4, 3>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x16_CflSubsampler444) + dsp->cfl_subsamplers[kTransformSize16x16][kSubsamplingType444] = + CflSubsampler444_SSE4_1<4, 4>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x32_CflSubsampler444) + dsp->cfl_subsamplers[kTransformSize16x32][kSubsamplingType444] = + CflSubsampler444_SSE4_1<4, 5>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x8_CflSubsampler444) + dsp->cfl_subsamplers[kTransformSize32x8][kSubsamplingType444] = + CflSubsampler444_SSE4_1<5, 3>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x16_CflSubsampler444) + dsp->cfl_subsamplers[kTransformSize32x16][kSubsamplingType444] = + CflSubsampler444_SSE4_1<5, 4>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x32_CflSubsampler444) + dsp->cfl_subsamplers[kTransformSize32x32][kSubsamplingType444] = + CflSubsampler444_SSE4_1<5, 5>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x4_CflIntraPredictor) + dsp->cfl_intra_predictors[kTransformSize4x4] = CflIntraPredictor_SSE4_1<4, 4>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x8_CflIntraPredictor) + dsp->cfl_intra_predictors[kTransformSize4x8] = CflIntraPredictor_SSE4_1<4, 8>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x16_CflIntraPredictor) + dsp->cfl_intra_predictors[kTransformSize4x16] = + CflIntraPredictor_SSE4_1<4, 16>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x4_CflIntraPredictor) + dsp->cfl_intra_predictors[kTransformSize8x4] = CflIntraPredictor_SSE4_1<8, 4>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x8_CflIntraPredictor) + dsp->cfl_intra_predictors[kTransformSize8x8] = CflIntraPredictor_SSE4_1<8, 8>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x16_CflIntraPredictor) + dsp->cfl_intra_predictors[kTransformSize8x16] = + CflIntraPredictor_SSE4_1<8, 16>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x32_CflIntraPredictor) + dsp->cfl_intra_predictors[kTransformSize8x32] = + CflIntraPredictor_SSE4_1<8, 32>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x4_CflIntraPredictor) + dsp->cfl_intra_predictors[kTransformSize16x4] = + CflIntraPredictor_SSE4_1<16, 4>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x8_CflIntraPredictor) + dsp->cfl_intra_predictors[kTransformSize16x8] = + CflIntraPredictor_SSE4_1<16, 8>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x16_CflIntraPredictor) + dsp->cfl_intra_predictors[kTransformSize16x16] = + CflIntraPredictor_SSE4_1<16, 16>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x32_CflIntraPredictor) + dsp->cfl_intra_predictors[kTransformSize16x32] = + CflIntraPredictor_SSE4_1<16, 32>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x8_CflIntraPredictor) + dsp->cfl_intra_predictors[kTransformSize32x8] = + CflIntraPredictor_SSE4_1<32, 8>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x16_CflIntraPredictor) + dsp->cfl_intra_predictors[kTransformSize32x16] = + CflIntraPredictor_SSE4_1<32, 16>; +#endif +#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x32_CflIntraPredictor) + dsp->cfl_intra_predictors[kTransformSize32x32] = + CflIntraPredictor_SSE4_1<32, 32>; +#endif +} + +} // namespace +} // namespace low_bitdepth + +void IntraPredCflInit_SSE4_1() { low_bitdepth::Init8bpp(); } + +} // namespace dsp +} // namespace libgav1 + +#else // !LIBGAV1_TARGETING_SSE4_1 + +namespace libgav1 { +namespace dsp { + +void IntraPredCflInit_SSE4_1() {} + +} // namespace dsp +} // namespace libgav1 + +#endif // LIBGAV1_TARGETING_SSE4_1 |