aboutsummaryrefslogtreecommitdiff
path: root/src/dsp/x86/intrapred_directional_sse4.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/dsp/x86/intrapred_directional_sse4.cc')
-rw-r--r--src/dsp/x86/intrapred_directional_sse4.cc1478
1 files changed, 1478 insertions, 0 deletions
diff --git a/src/dsp/x86/intrapred_directional_sse4.cc b/src/dsp/x86/intrapred_directional_sse4.cc
new file mode 100644
index 0000000..e642aee
--- /dev/null
+++ b/src/dsp/x86/intrapred_directional_sse4.cc
@@ -0,0 +1,1478 @@
+// Copyright 2021 The libgav1 Authors
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "src/dsp/intrapred_directional.h"
+#include "src/utils/cpu.h"
+
+#if LIBGAV1_TARGETING_SSE4_1
+
+#include <smmintrin.h>
+
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <cstring>
+
+#include "src/dsp/constants.h"
+#include "src/dsp/dsp.h"
+#include "src/dsp/x86/common_sse4.h"
+#include "src/dsp/x86/transpose_sse4.h"
+#include "src/utils/common.h"
+#include "src/utils/memory.h"
+
+namespace libgav1 {
+namespace dsp {
+namespace low_bitdepth {
+namespace {
+
+//------------------------------------------------------------------------------
+// 7.11.2.4. Directional intra prediction process
+
+// Special case: An |xstep| of 64 corresponds to an angle delta of 45, meaning
+// upsampling is ruled out. In addition, the bits masked by 0x3F for
+// |shift_val| are 0 for all multiples of 64, so the formula
+// val = top[top_base_x]*shift + top[top_base_x+1]*(32-shift), reduces to
+// val = top[top_base_x+1] << 5, meaning only the second set of pixels is
+// involved in the output. Hence |top| is offset by 1.
+inline void DirectionalZone1_Step64(uint8_t* dst, ptrdiff_t stride,
+ const uint8_t* const top, const int width,
+ const int height) {
+ ptrdiff_t offset = 1;
+ if (height == 4) {
+ memcpy(dst, top + offset, width);
+ dst += stride;
+ memcpy(dst, top + offset + 1, width);
+ dst += stride;
+ memcpy(dst, top + offset + 2, width);
+ dst += stride;
+ memcpy(dst, top + offset + 3, width);
+ return;
+ }
+ int y = 0;
+ do {
+ memcpy(dst, top + offset, width);
+ dst += stride;
+ memcpy(dst, top + offset + 1, width);
+ dst += stride;
+ memcpy(dst, top + offset + 2, width);
+ dst += stride;
+ memcpy(dst, top + offset + 3, width);
+ dst += stride;
+ memcpy(dst, top + offset + 4, width);
+ dst += stride;
+ memcpy(dst, top + offset + 5, width);
+ dst += stride;
+ memcpy(dst, top + offset + 6, width);
+ dst += stride;
+ memcpy(dst, top + offset + 7, width);
+ dst += stride;
+
+ offset += 8;
+ y += 8;
+ } while (y < height);
+}
+
+inline void DirectionalZone1_4xH(uint8_t* dst, ptrdiff_t stride,
+ const uint8_t* const top, const int height,
+ const int xstep, const bool upsampled) {
+ const int upsample_shift = static_cast<int>(upsampled);
+ const int scale_bits = 6 - upsample_shift;
+ const __m128i max_shift = _mm_set1_epi8(32);
+ // Downscaling for a weighted average whose weights sum to 32 (max_shift).
+ const int rounding_bits = 5;
+ const int max_base_x = (height + 3 /* width - 1 */) << upsample_shift;
+ const __m128i final_top_val = _mm_set1_epi16(top[max_base_x]);
+ const __m128i sampler = upsampled ? _mm_set_epi64x(0, 0x0706050403020100)
+ : _mm_set_epi64x(0, 0x0403030202010100);
+ // Each 16-bit value here corresponds to a position that may exceed
+ // |max_base_x|. When added to the top_base_x, it is used to mask values
+ // that pass the end of |top|. Starting from 1 to simulate "cmpge" which is
+ // not supported for packed integers.
+ const __m128i offsets =
+ _mm_set_epi32(0x00080007, 0x00060005, 0x00040003, 0x00020001);
+
+ // All rows from |min_corner_only_y| down will simply use memcpy. |max_base_x|
+ // is always greater than |height|, so clipping to 1 is enough to make the
+ // logic work.
+ const int xstep_units = std::max(xstep >> scale_bits, 1);
+ const int min_corner_only_y = std::min(max_base_x / xstep_units, height);
+
+ // Rows up to this y-value can be computed without checking for bounds.
+ int y = 0;
+ int top_x = xstep;
+
+ for (; y < min_corner_only_y; ++y, dst += stride, top_x += xstep) {
+ const int top_base_x = top_x >> scale_bits;
+
+ // Permit negative values of |top_x|.
+ const int shift_val = (LeftShift(top_x, upsample_shift) & 0x3F) >> 1;
+ const __m128i shift = _mm_set1_epi8(shift_val);
+ const __m128i opposite_shift = _mm_sub_epi8(max_shift, shift);
+ const __m128i shifts = _mm_unpacklo_epi8(opposite_shift, shift);
+ __m128i top_index_vect = _mm_set1_epi16(top_base_x);
+ top_index_vect = _mm_add_epi16(top_index_vect, offsets);
+ const __m128i max_base_x_vect = _mm_set1_epi16(max_base_x);
+
+ // Load 8 values because we will select the sampled values based on
+ // |upsampled|.
+ const __m128i values = LoadLo8(top + top_base_x);
+ const __m128i sampled_values = _mm_shuffle_epi8(values, sampler);
+ const __m128i past_max = _mm_cmpgt_epi16(top_index_vect, max_base_x_vect);
+ __m128i prod = _mm_maddubs_epi16(sampled_values, shifts);
+ prod = RightShiftWithRounding_U16(prod, rounding_bits);
+ // Replace pixels from invalid range with top-right corner.
+ prod = _mm_blendv_epi8(prod, final_top_val, past_max);
+ Store4(dst, _mm_packus_epi16(prod, prod));
+ }
+
+ // Fill in corner-only rows.
+ for (; y < height; ++y) {
+ memset(dst, top[max_base_x], /* width */ 4);
+ dst += stride;
+ }
+}
+
+// 7.11.2.4 (7) angle < 90
+inline void DirectionalZone1_Large(uint8_t* dest, ptrdiff_t stride,
+ const uint8_t* const top_row,
+ const int width, const int height,
+ const int xstep, const bool upsampled) {
+ const int upsample_shift = static_cast<int>(upsampled);
+ const __m128i sampler =
+ upsampled ? _mm_set_epi32(0x0F0E0D0C, 0x0B0A0908, 0x07060504, 0x03020100)
+ : _mm_set_epi32(0x08070706, 0x06050504, 0x04030302, 0x02010100);
+ const int scale_bits = 6 - upsample_shift;
+ const int max_base_x = ((width + height) - 1) << upsample_shift;
+
+ const __m128i max_shift = _mm_set1_epi8(32);
+ // Downscaling for a weighted average whose weights sum to 32 (max_shift).
+ const int rounding_bits = 5;
+ const int base_step = 1 << upsample_shift;
+ const int base_step8 = base_step << 3;
+
+ // All rows from |min_corner_only_y| down will simply use memcpy. |max_base_x|
+ // is always greater than |height|, so clipping to 1 is enough to make the
+ // logic work.
+ const int xstep_units = std::max(xstep >> scale_bits, 1);
+ const int min_corner_only_y = std::min(max_base_x / xstep_units, height);
+
+ // Rows up to this y-value can be computed without checking for bounds.
+ const int max_no_corner_y = std::min(
+ LeftShift((max_base_x - (base_step * width)), scale_bits) / xstep,
+ height);
+ // No need to check for exceeding |max_base_x| in the first loop.
+ int y = 0;
+ int top_x = xstep;
+ for (; y < max_no_corner_y; ++y, dest += stride, top_x += xstep) {
+ int top_base_x = top_x >> scale_bits;
+ // Permit negative values of |top_x|.
+ const int shift_val = (LeftShift(top_x, upsample_shift) & 0x3F) >> 1;
+ const __m128i shift = _mm_set1_epi8(shift_val);
+ const __m128i opposite_shift = _mm_sub_epi8(max_shift, shift);
+ const __m128i shifts = _mm_unpacklo_epi8(opposite_shift, shift);
+ int x = 0;
+ do {
+ const __m128i top_vals = LoadUnaligned16(top_row + top_base_x);
+ __m128i vals = _mm_shuffle_epi8(top_vals, sampler);
+ vals = _mm_maddubs_epi16(vals, shifts);
+ vals = RightShiftWithRounding_U16(vals, rounding_bits);
+ StoreLo8(dest + x, _mm_packus_epi16(vals, vals));
+ top_base_x += base_step8;
+ x += 8;
+ } while (x < width);
+ }
+
+ // Each 16-bit value here corresponds to a position that may exceed
+ // |max_base_x|. When added to the top_base_x, it is used to mask values
+ // that pass the end of |top|. Starting from 1 to simulate "cmpge" which is
+ // not supported for packed integers.
+ const __m128i offsets =
+ _mm_set_epi32(0x00080007, 0x00060005, 0x00040003, 0x00020001);
+
+ const __m128i max_base_x_vect = _mm_set1_epi16(max_base_x);
+ const __m128i final_top_val = _mm_set1_epi16(top_row[max_base_x]);
+ const __m128i base_step8_vect = _mm_set1_epi16(base_step8);
+ for (; y < min_corner_only_y; ++y, dest += stride, top_x += xstep) {
+ int top_base_x = top_x >> scale_bits;
+
+ const int shift_val = (LeftShift(top_x, upsample_shift) & 0x3F) >> 1;
+ const __m128i shift = _mm_set1_epi8(shift_val);
+ const __m128i opposite_shift = _mm_sub_epi8(max_shift, shift);
+ const __m128i shifts = _mm_unpacklo_epi8(opposite_shift, shift);
+ __m128i top_index_vect = _mm_set1_epi16(top_base_x);
+ top_index_vect = _mm_add_epi16(top_index_vect, offsets);
+
+ int x = 0;
+ const int min_corner_only_x =
+ std::min(width, ((max_base_x - top_base_x) >> upsample_shift) + 7) & ~7;
+ for (; x < min_corner_only_x;
+ x += 8, top_base_x += base_step8,
+ top_index_vect = _mm_add_epi16(top_index_vect, base_step8_vect)) {
+ const __m128i past_max = _mm_cmpgt_epi16(top_index_vect, max_base_x_vect);
+ // Assuming a buffer zone of 8 bytes at the end of top_row, this prevents
+ // reading out of bounds. If all indices are past max and we don't need to
+ // use the loaded bytes at all, |top_base_x| becomes 0. |top_base_x| will
+ // reset for the next |y|.
+ top_base_x &= ~_mm_cvtsi128_si32(past_max);
+ const __m128i top_vals = LoadUnaligned16(top_row + top_base_x);
+ __m128i vals = _mm_shuffle_epi8(top_vals, sampler);
+ vals = _mm_maddubs_epi16(vals, shifts);
+ vals = RightShiftWithRounding_U16(vals, rounding_bits);
+ vals = _mm_blendv_epi8(vals, final_top_val, past_max);
+ StoreLo8(dest + x, _mm_packus_epi16(vals, vals));
+ }
+ // Corner-only section of the row.
+ memset(dest + x, top_row[max_base_x], width - x);
+ }
+ // Fill in corner-only rows.
+ for (; y < height; ++y) {
+ memset(dest, top_row[max_base_x], width);
+ dest += stride;
+ }
+}
+
+// 7.11.2.4 (7) angle < 90
+inline void DirectionalZone1_SSE4_1(uint8_t* dest, ptrdiff_t stride,
+ const uint8_t* const top_row,
+ const int width, const int height,
+ const int xstep, const bool upsampled) {
+ const int upsample_shift = static_cast<int>(upsampled);
+ if (xstep == 64) {
+ DirectionalZone1_Step64(dest, stride, top_row, width, height);
+ return;
+ }
+ if (width == 4) {
+ DirectionalZone1_4xH(dest, stride, top_row, height, xstep, upsampled);
+ return;
+ }
+ if (width >= 32) {
+ DirectionalZone1_Large(dest, stride, top_row, width, height, xstep,
+ upsampled);
+ return;
+ }
+ const __m128i sampler =
+ upsampled ? _mm_set_epi32(0x0F0E0D0C, 0x0B0A0908, 0x07060504, 0x03020100)
+ : _mm_set_epi32(0x08070706, 0x06050504, 0x04030302, 0x02010100);
+ const int scale_bits = 6 - upsample_shift;
+ const int max_base_x = ((width + height) - 1) << upsample_shift;
+
+ const __m128i max_shift = _mm_set1_epi8(32);
+ // Downscaling for a weighted average whose weights sum to 32 (max_shift).
+ const int rounding_bits = 5;
+ const int base_step = 1 << upsample_shift;
+ const int base_step8 = base_step << 3;
+
+ // No need to check for exceeding |max_base_x| in the loops.
+ if (((xstep * height) >> scale_bits) + base_step * width < max_base_x) {
+ int top_x = xstep;
+ int y = 0;
+ do {
+ int top_base_x = top_x >> scale_bits;
+ // Permit negative values of |top_x|.
+ const int shift_val = (LeftShift(top_x, upsample_shift) & 0x3F) >> 1;
+ const __m128i shift = _mm_set1_epi8(shift_val);
+ const __m128i opposite_shift = _mm_sub_epi8(max_shift, shift);
+ const __m128i shifts = _mm_unpacklo_epi8(opposite_shift, shift);
+ int x = 0;
+ do {
+ const __m128i top_vals = LoadUnaligned16(top_row + top_base_x);
+ __m128i vals = _mm_shuffle_epi8(top_vals, sampler);
+ vals = _mm_maddubs_epi16(vals, shifts);
+ vals = RightShiftWithRounding_U16(vals, rounding_bits);
+ StoreLo8(dest + x, _mm_packus_epi16(vals, vals));
+ top_base_x += base_step8;
+ x += 8;
+ } while (x < width);
+ dest += stride;
+ top_x += xstep;
+ } while (++y < height);
+ return;
+ }
+
+ // Each 16-bit value here corresponds to a position that may exceed
+ // |max_base_x|. When added to the top_base_x, it is used to mask values
+ // that pass the end of |top|. Starting from 1 to simulate "cmpge" which is
+ // not supported for packed integers.
+ const __m128i offsets =
+ _mm_set_epi32(0x00080007, 0x00060005, 0x00040003, 0x00020001);
+
+ const __m128i max_base_x_vect = _mm_set1_epi16(max_base_x);
+ const __m128i final_top_val = _mm_set1_epi16(top_row[max_base_x]);
+ const __m128i base_step8_vect = _mm_set1_epi16(base_step8);
+ int top_x = xstep;
+ int y = 0;
+ do {
+ int top_base_x = top_x >> scale_bits;
+
+ if (top_base_x >= max_base_x) {
+ for (int i = y; i < height; ++i) {
+ memset(dest, top_row[max_base_x], width);
+ dest += stride;
+ }
+ return;
+ }
+
+ const int shift_val = (LeftShift(top_x, upsample_shift) & 0x3F) >> 1;
+ const __m128i shift = _mm_set1_epi8(shift_val);
+ const __m128i opposite_shift = _mm_sub_epi8(max_shift, shift);
+ const __m128i shifts = _mm_unpacklo_epi8(opposite_shift, shift);
+ __m128i top_index_vect = _mm_set1_epi16(top_base_x);
+ top_index_vect = _mm_add_epi16(top_index_vect, offsets);
+
+ int x = 0;
+ for (; x < width - 8;
+ x += 8, top_base_x += base_step8,
+ top_index_vect = _mm_add_epi16(top_index_vect, base_step8_vect)) {
+ const __m128i past_max = _mm_cmpgt_epi16(top_index_vect, max_base_x_vect);
+ // Assuming a buffer zone of 8 bytes at the end of top_row, this prevents
+ // reading out of bounds. If all indices are past max and we don't need to
+ // use the loaded bytes at all, |top_base_x| becomes 0. |top_base_x| will
+ // reset for the next |y|.
+ top_base_x &= ~_mm_cvtsi128_si32(past_max);
+ const __m128i top_vals = LoadUnaligned16(top_row + top_base_x);
+ __m128i vals = _mm_shuffle_epi8(top_vals, sampler);
+ vals = _mm_maddubs_epi16(vals, shifts);
+ vals = RightShiftWithRounding_U16(vals, rounding_bits);
+ vals = _mm_blendv_epi8(vals, final_top_val, past_max);
+ StoreLo8(dest + x, _mm_packus_epi16(vals, vals));
+ }
+ const __m128i past_max = _mm_cmpgt_epi16(top_index_vect, max_base_x_vect);
+ __m128i vals;
+ if (upsampled) {
+ vals = LoadUnaligned16(top_row + top_base_x);
+ } else {
+ const __m128i top_vals = LoadLo8(top_row + top_base_x);
+ vals = _mm_shuffle_epi8(top_vals, sampler);
+ vals = _mm_insert_epi8(vals, top_row[top_base_x + 8], 15);
+ }
+ vals = _mm_maddubs_epi16(vals, shifts);
+ vals = RightShiftWithRounding_U16(vals, rounding_bits);
+ vals = _mm_blendv_epi8(vals, final_top_val, past_max);
+ StoreLo8(dest + x, _mm_packus_epi16(vals, vals));
+ dest += stride;
+ top_x += xstep;
+ } while (++y < height);
+}
+
+void DirectionalIntraPredictorZone1_SSE4_1(void* const dest, ptrdiff_t stride,
+ const void* const top_row,
+ const int width, const int height,
+ const int xstep,
+ const bool upsampled_top) {
+ const auto* const top_ptr = static_cast<const uint8_t*>(top_row);
+ auto* dst = static_cast<uint8_t*>(dest);
+ DirectionalZone1_SSE4_1(dst, stride, top_ptr, width, height, xstep,
+ upsampled_top);
+}
+
+template <bool upsampled>
+inline void DirectionalZone3_4x4(uint8_t* dest, ptrdiff_t stride,
+ const uint8_t* const left_column,
+ const int base_left_y, const int ystep) {
+ // For use in the non-upsampled case.
+ const __m128i sampler = _mm_set_epi64x(0, 0x0403030202010100);
+ const int upsample_shift = static_cast<int>(upsampled);
+ const int scale_bits = 6 - upsample_shift;
+ const __m128i max_shift = _mm_set1_epi8(32);
+ // Downscaling for a weighted average whose weights sum to 32 (max_shift).
+ const int rounding_bits = 5;
+
+ __m128i result_block[4];
+ for (int x = 0, left_y = base_left_y; x < 4; x++, left_y += ystep) {
+ const int left_base_y = left_y >> scale_bits;
+ const int shift_val = ((left_y << upsample_shift) & 0x3F) >> 1;
+ const __m128i shift = _mm_set1_epi8(shift_val);
+ const __m128i opposite_shift = _mm_sub_epi8(max_shift, shift);
+ const __m128i shifts = _mm_unpacklo_epi8(opposite_shift, shift);
+ __m128i vals;
+ if (upsampled) {
+ vals = LoadLo8(left_column + left_base_y);
+ } else {
+ const __m128i top_vals = LoadLo8(left_column + left_base_y);
+ vals = _mm_shuffle_epi8(top_vals, sampler);
+ }
+ vals = _mm_maddubs_epi16(vals, shifts);
+ vals = RightShiftWithRounding_U16(vals, rounding_bits);
+ result_block[x] = _mm_packus_epi16(vals, vals);
+ }
+ const __m128i result = Transpose4x4_U8(result_block);
+ // This is result_row0.
+ Store4(dest, result);
+ dest += stride;
+ const int result_row1 = _mm_extract_epi32(result, 1);
+ memcpy(dest, &result_row1, sizeof(result_row1));
+ dest += stride;
+ const int result_row2 = _mm_extract_epi32(result, 2);
+ memcpy(dest, &result_row2, sizeof(result_row2));
+ dest += stride;
+ const int result_row3 = _mm_extract_epi32(result, 3);
+ memcpy(dest, &result_row3, sizeof(result_row3));
+}
+
+template <bool upsampled, int height>
+inline void DirectionalZone3_8xH(uint8_t* dest, ptrdiff_t stride,
+ const uint8_t* const left_column,
+ const int base_left_y, const int ystep) {
+ // For use in the non-upsampled case.
+ const __m128i sampler =
+ _mm_set_epi64x(0x0807070606050504, 0x0403030202010100);
+ const int upsample_shift = static_cast<int>(upsampled);
+ const int scale_bits = 6 - upsample_shift;
+ const __m128i max_shift = _mm_set1_epi8(32);
+ // Downscaling for a weighted average whose weights sum to 32 (max_shift).
+ const int rounding_bits = 5;
+
+ __m128i result_block[8];
+ for (int x = 0, left_y = base_left_y; x < 8; x++, left_y += ystep) {
+ const int left_base_y = left_y >> scale_bits;
+ const int shift_val = (LeftShift(left_y, upsample_shift) & 0x3F) >> 1;
+ const __m128i shift = _mm_set1_epi8(shift_val);
+ const __m128i opposite_shift = _mm_sub_epi8(max_shift, shift);
+ const __m128i shifts = _mm_unpacklo_epi8(opposite_shift, shift);
+ __m128i vals;
+ if (upsampled) {
+ vals = LoadUnaligned16(left_column + left_base_y);
+ } else {
+ const __m128i top_vals = LoadUnaligned16(left_column + left_base_y);
+ vals = _mm_shuffle_epi8(top_vals, sampler);
+ }
+ vals = _mm_maddubs_epi16(vals, shifts);
+ result_block[x] = RightShiftWithRounding_U16(vals, rounding_bits);
+ }
+ Transpose8x8_U16(result_block, result_block);
+ for (int y = 0; y < height; ++y) {
+ StoreLo8(dest, _mm_packus_epi16(result_block[y], result_block[y]));
+ dest += stride;
+ }
+}
+
+// 7.11.2.4 (9) angle > 180
+void DirectionalIntraPredictorZone3_SSE4_1(void* dest, ptrdiff_t stride,
+ const void* const left_column,
+ const int width, const int height,
+ const int ystep,
+ const bool upsampled) {
+ const auto* const left_ptr = static_cast<const uint8_t*>(left_column);
+ auto* dst = static_cast<uint8_t*>(dest);
+ const int upsample_shift = static_cast<int>(upsampled);
+ if (width == 4 || height == 4) {
+ const ptrdiff_t stride4 = stride << 2;
+ if (upsampled) {
+ int left_y = ystep;
+ int x = 0;
+ do {
+ uint8_t* dst_x = dst + x;
+ int y = 0;
+ do {
+ DirectionalZone3_4x4<true>(
+ dst_x, stride, left_ptr + (y << upsample_shift), left_y, ystep);
+ dst_x += stride4;
+ y += 4;
+ } while (y < height);
+ left_y += ystep << 2;
+ x += 4;
+ } while (x < width);
+ } else {
+ int left_y = ystep;
+ int x = 0;
+ do {
+ uint8_t* dst_x = dst + x;
+ int y = 0;
+ do {
+ DirectionalZone3_4x4<false>(dst_x, stride, left_ptr + y, left_y,
+ ystep);
+ dst_x += stride4;
+ y += 4;
+ } while (y < height);
+ left_y += ystep << 2;
+ x += 4;
+ } while (x < width);
+ }
+ return;
+ }
+
+ const ptrdiff_t stride8 = stride << 3;
+ if (upsampled) {
+ int left_y = ystep;
+ int x = 0;
+ do {
+ uint8_t* dst_x = dst + x;
+ int y = 0;
+ do {
+ DirectionalZone3_8xH<true, 8>(
+ dst_x, stride, left_ptr + (y << upsample_shift), left_y, ystep);
+ dst_x += stride8;
+ y += 8;
+ } while (y < height);
+ left_y += ystep << 3;
+ x += 8;
+ } while (x < width);
+ } else {
+ int left_y = ystep;
+ int x = 0;
+ do {
+ uint8_t* dst_x = dst + x;
+ int y = 0;
+ do {
+ DirectionalZone3_8xH<false, 8>(
+ dst_x, stride, left_ptr + (y << upsample_shift), left_y, ystep);
+ dst_x += stride8;
+ y += 8;
+ } while (y < height);
+ left_y += ystep << 3;
+ x += 8;
+ } while (x < width);
+ }
+}
+
+//------------------------------------------------------------------------------
+// Directional Zone 2 Functions
+// 7.11.2.4 (8)
+
+// DirectionalBlend* selectively overwrites the values written by
+// DirectionalZone2FromLeftCol*. |zone_bounds| has one 16-bit index for each
+// row.
+template <int y_selector>
+inline void DirectionalBlend4_SSE4_1(uint8_t* dest,
+ const __m128i& dest_index_vect,
+ const __m128i& vals,
+ const __m128i& zone_bounds) {
+ const __m128i max_dest_x_vect = _mm_shufflelo_epi16(zone_bounds, y_selector);
+ const __m128i use_left = _mm_cmplt_epi16(dest_index_vect, max_dest_x_vect);
+ const __m128i original_vals = _mm_cvtepu8_epi16(Load4(dest));
+ const __m128i blended_vals = _mm_blendv_epi8(vals, original_vals, use_left);
+ Store4(dest, _mm_packus_epi16(blended_vals, blended_vals));
+}
+
+inline void DirectionalBlend8_SSE4_1(uint8_t* dest,
+ const __m128i& dest_index_vect,
+ const __m128i& vals,
+ const __m128i& zone_bounds,
+ const __m128i& bounds_selector) {
+ const __m128i max_dest_x_vect =
+ _mm_shuffle_epi8(zone_bounds, bounds_selector);
+ const __m128i use_left = _mm_cmplt_epi16(dest_index_vect, max_dest_x_vect);
+ const __m128i original_vals = _mm_cvtepu8_epi16(LoadLo8(dest));
+ const __m128i blended_vals = _mm_blendv_epi8(vals, original_vals, use_left);
+ StoreLo8(dest, _mm_packus_epi16(blended_vals, blended_vals));
+}
+
+constexpr int kDirectionalWeightBits = 5;
+// |source| is packed with 4 or 8 pairs of 8-bit values from left or top.
+// |shifts| is named to match the specification, with 4 or 8 pairs of (32 -
+// shift) and shift. Shift is guaranteed to be between 0 and 32.
+inline __m128i DirectionalZone2FromSource_SSE4_1(const uint8_t* const source,
+ const __m128i& shifts,
+ const __m128i& sampler) {
+ const __m128i src_vals = LoadUnaligned16(source);
+ __m128i vals = _mm_shuffle_epi8(src_vals, sampler);
+ vals = _mm_maddubs_epi16(vals, shifts);
+ return RightShiftWithRounding_U16(vals, kDirectionalWeightBits);
+}
+
+// Because the source values "move backwards" as the row index increases, the
+// indices derived from ystep are generally negative. This is accommodated by
+// making sure the relative indices are within [-15, 0] when the function is
+// called, and sliding them into the inclusive range [0, 15], relative to a
+// lower base address.
+constexpr int kPositiveIndexOffset = 15;
+
+template <bool upsampled>
+inline void DirectionalZone2FromLeftCol_4x4_SSE4_1(
+ uint8_t* dst, ptrdiff_t stride, const uint8_t* const left_column_base,
+ __m128i left_y) {
+ const int upsample_shift = static_cast<int>(upsampled);
+ const int scale_bits = 6 - upsample_shift;
+ const __m128i max_shifts = _mm_set1_epi8(32);
+ const __m128i shift_mask = _mm_set1_epi32(0x003F003F);
+ const __m128i index_increment = _mm_cvtsi32_si128(0x01010101);
+ const __m128i positive_offset = _mm_set1_epi8(kPositiveIndexOffset);
+ // Left_column and sampler are both offset by 15 so the indices are always
+ // positive.
+ const uint8_t* left_column = left_column_base - kPositiveIndexOffset;
+ for (int y = 0; y < 4; dst += stride, ++y) {
+ __m128i offset_y = _mm_srai_epi16(left_y, scale_bits);
+ offset_y = _mm_packs_epi16(offset_y, offset_y);
+
+ const __m128i adjacent = _mm_add_epi8(offset_y, index_increment);
+ __m128i sampler = _mm_unpacklo_epi8(offset_y, adjacent);
+ // Slide valid |offset_y| indices from range [-15, 0] to [0, 15] so they
+ // can work as shuffle indices. Some values may be out of bounds, but their
+ // pred results will be masked over by top prediction.
+ sampler = _mm_add_epi8(sampler, positive_offset);
+
+ __m128i shifts = _mm_srli_epi16(
+ _mm_and_si128(_mm_slli_epi16(left_y, upsample_shift), shift_mask), 1);
+ shifts = _mm_packus_epi16(shifts, shifts);
+ const __m128i opposite_shifts = _mm_sub_epi8(max_shifts, shifts);
+ shifts = _mm_unpacklo_epi8(opposite_shifts, shifts);
+ const __m128i vals = DirectionalZone2FromSource_SSE4_1(
+ left_column + (y << upsample_shift), shifts, sampler);
+ Store4(dst, _mm_packus_epi16(vals, vals));
+ }
+}
+
+// The height at which a load of 16 bytes will not contain enough source pixels
+// from |left_column| to supply an accurate row when computing 8 pixels at a
+// time. The values are found by inspection. By coincidence, all angles that
+// satisfy (ystep >> 6) == 2 map to the same value, so it is enough to look up
+// by ystep >> 6. The largest index for this lookup is 1023 >> 6 == 15.
+constexpr int kDirectionalZone2ShuffleInvalidHeight[16] = {
+ 1024, 1024, 16, 16, 16, 16, 0, 0, 18, 0, 0, 0, 0, 0, 0, 40};
+
+template <bool upsampled>
+inline void DirectionalZone2FromLeftCol_8x8_SSE4_1(
+ uint8_t* dst, ptrdiff_t stride, const uint8_t* const left_column,
+ __m128i left_y) {
+ const int upsample_shift = static_cast<int>(upsampled);
+ const int scale_bits = 6 - upsample_shift;
+ const __m128i max_shifts = _mm_set1_epi8(32);
+ const __m128i shift_mask = _mm_set1_epi32(0x003F003F);
+ const __m128i index_increment = _mm_set1_epi8(1);
+ const __m128i denegation = _mm_set1_epi8(kPositiveIndexOffset);
+ for (int y = 0; y < 8; dst += stride, ++y) {
+ __m128i offset_y = _mm_srai_epi16(left_y, scale_bits);
+ offset_y = _mm_packs_epi16(offset_y, offset_y);
+ const __m128i adjacent = _mm_add_epi8(offset_y, index_increment);
+
+ // Offset the relative index because ystep is negative in Zone 2 and shuffle
+ // indices must be nonnegative.
+ __m128i sampler = _mm_unpacklo_epi8(offset_y, adjacent);
+ sampler = _mm_add_epi8(sampler, denegation);
+
+ __m128i shifts = _mm_srli_epi16(
+ _mm_and_si128(_mm_slli_epi16(left_y, upsample_shift), shift_mask), 1);
+ shifts = _mm_packus_epi16(shifts, shifts);
+ const __m128i opposite_shifts = _mm_sub_epi8(max_shifts, shifts);
+ shifts = _mm_unpacklo_epi8(opposite_shifts, shifts);
+
+ // The specification adds (y << 6) to left_y, which is subject to
+ // upsampling, but this puts sampler indices out of the 0-15 range. It is
+ // equivalent to offset the source address by (y << upsample_shift) instead.
+ const __m128i vals = DirectionalZone2FromSource_SSE4_1(
+ left_column - kPositiveIndexOffset + (y << upsample_shift), shifts,
+ sampler);
+ StoreLo8(dst, _mm_packus_epi16(vals, vals));
+ }
+}
+
+// |zone_bounds| is an epi16 of the relative x index at which base >= -(1 <<
+// upsampled_top), for each row. When there are 4 values, they can be duplicated
+// with a non-register shuffle mask.
+// |shifts| is one pair of weights that applies throughout a given row.
+template <bool upsampled_top>
+inline void DirectionalZone1Blend_4x4(
+ uint8_t* dest, const uint8_t* const top_row, ptrdiff_t stride,
+ __m128i sampler, const __m128i& zone_bounds, const __m128i& shifts,
+ const __m128i& dest_index_x, int top_x, const int xstep) {
+ const int upsample_shift = static_cast<int>(upsampled_top);
+ const int scale_bits_x = 6 - upsample_shift;
+ top_x -= xstep;
+
+ int top_base_x = (top_x >> scale_bits_x);
+ const __m128i vals0 = DirectionalZone2FromSource_SSE4_1(
+ top_row + top_base_x, _mm_shufflelo_epi16(shifts, 0x00), sampler);
+ DirectionalBlend4_SSE4_1<0x00>(dest, dest_index_x, vals0, zone_bounds);
+ top_x -= xstep;
+ dest += stride;
+
+ top_base_x = (top_x >> scale_bits_x);
+ const __m128i vals1 = DirectionalZone2FromSource_SSE4_1(
+ top_row + top_base_x, _mm_shufflelo_epi16(shifts, 0x55), sampler);
+ DirectionalBlend4_SSE4_1<0x55>(dest, dest_index_x, vals1, zone_bounds);
+ top_x -= xstep;
+ dest += stride;
+
+ top_base_x = (top_x >> scale_bits_x);
+ const __m128i vals2 = DirectionalZone2FromSource_SSE4_1(
+ top_row + top_base_x, _mm_shufflelo_epi16(shifts, 0xAA), sampler);
+ DirectionalBlend4_SSE4_1<0xAA>(dest, dest_index_x, vals2, zone_bounds);
+ top_x -= xstep;
+ dest += stride;
+
+ top_base_x = (top_x >> scale_bits_x);
+ const __m128i vals3 = DirectionalZone2FromSource_SSE4_1(
+ top_row + top_base_x, _mm_shufflelo_epi16(shifts, 0xFF), sampler);
+ DirectionalBlend4_SSE4_1<0xFF>(dest, dest_index_x, vals3, zone_bounds);
+}
+
+template <bool upsampled_top, int height>
+inline void DirectionalZone1Blend_8xH(
+ uint8_t* dest, const uint8_t* const top_row, ptrdiff_t stride,
+ __m128i sampler, const __m128i& zone_bounds, const __m128i& shifts,
+ const __m128i& dest_index_x, int top_x, const int xstep) {
+ const int upsample_shift = static_cast<int>(upsampled_top);
+ const int scale_bits_x = 6 - upsample_shift;
+
+ __m128i y_selector = _mm_set1_epi32(0x01000100);
+ const __m128i index_increment = _mm_set1_epi32(0x02020202);
+ for (int y = 0; y < height; ++y,
+ y_selector = _mm_add_epi8(y_selector, index_increment),
+ dest += stride) {
+ top_x -= xstep;
+ const int top_base_x = top_x >> scale_bits_x;
+ const __m128i vals = DirectionalZone2FromSource_SSE4_1(
+ top_row + top_base_x, _mm_shuffle_epi8(shifts, y_selector), sampler);
+ DirectionalBlend8_SSE4_1(dest, dest_index_x, vals, zone_bounds, y_selector);
+ }
+}
+
+// 7.11.2.4 (8) 90 < angle > 180
+// The strategy for this function is to know how many blocks can be processed
+// with just pixels from |top_ptr|, then handle mixed blocks, then handle only
+// blocks that take from |left_ptr|. Additionally, a fast index-shuffle
+// approach is used for pred values from |left_column| in sections that permit
+// it.
+template <bool upsampled_left, bool upsampled_top>
+inline void DirectionalZone2_SSE4_1(void* dest, ptrdiff_t stride,
+ const uint8_t* const top_row,
+ const uint8_t* const left_column,
+ const int width, const int height,
+ const int xstep, const int ystep) {
+ auto* dst = static_cast<uint8_t*>(dest);
+ const int upsample_left_shift = static_cast<int>(upsampled_left);
+ const int upsample_top_shift = static_cast<int>(upsampled_top);
+ const __m128i max_shift = _mm_set1_epi8(32);
+ const ptrdiff_t stride8 = stride << 3;
+ const __m128i dest_index_x =
+ _mm_set_epi32(0x00070006, 0x00050004, 0x00030002, 0x00010000);
+ const __m128i sampler_top =
+ upsampled_top
+ ? _mm_set_epi32(0x0F0E0D0C, 0x0B0A0908, 0x07060504, 0x03020100)
+ : _mm_set_epi32(0x08070706, 0x06050504, 0x04030302, 0x02010100);
+ const __m128i shift_mask = _mm_set1_epi32(0x003F003F);
+ // All columns from |min_top_only_x| to the right will only need |top_row| to
+ // compute. This assumes minimum |xstep| is 3.
+ const int min_top_only_x = std::min((height * xstep) >> 6, width);
+
+ // For steep angles, the source pixels from left_column may not fit in a
+ // 16-byte load for shuffling.
+ // TODO(petersonab): Find a more precise formula for this subject to x.
+ const int max_shuffle_height =
+ std::min(height, kDirectionalZone2ShuffleInvalidHeight[ystep >> 6]);
+
+ const int xstep8 = xstep << 3;
+ const __m128i xstep8_vect = _mm_set1_epi16(xstep8);
+ // Accumulate xstep across 8 rows.
+ const __m128i xstep_dup = _mm_set1_epi16(-xstep);
+ const __m128i increments = _mm_set_epi16(8, 7, 6, 5, 4, 3, 2, 1);
+ const __m128i xstep_for_shift = _mm_mullo_epi16(xstep_dup, increments);
+ // Offsets the original zone bound value to simplify x < (y+1)*xstep/64 -1
+ const __m128i scaled_one = _mm_set1_epi16(-64);
+ __m128i xstep_bounds_base =
+ (xstep == 64) ? _mm_sub_epi16(scaled_one, xstep_for_shift)
+ : _mm_sub_epi16(_mm_set1_epi16(-1), xstep_for_shift);
+
+ const int left_base_increment = ystep >> 6;
+ const int ystep_remainder = ystep & 0x3F;
+ const int ystep8 = ystep << 3;
+ const int left_base_increment8 = ystep8 >> 6;
+ const int ystep_remainder8 = ystep8 & 0x3F;
+ const __m128i increment_left8 = _mm_set1_epi16(-ystep_remainder8);
+
+ // If the 64 scaling is regarded as a decimal point, the first value of the
+ // left_y vector omits the portion which is covered under the left_column
+ // offset. Following values need the full ystep as a relative offset.
+ const __m128i ystep_init = _mm_set1_epi16(-ystep_remainder);
+ const __m128i ystep_dup = _mm_set1_epi16(-ystep);
+ __m128i left_y = _mm_mullo_epi16(ystep_dup, dest_index_x);
+ left_y = _mm_add_epi16(ystep_init, left_y);
+
+ const __m128i increment_top8 = _mm_set1_epi16(8 << 6);
+ int x = 0;
+
+ // This loop treats each set of 4 columns in 3 stages with y-value boundaries.
+ // The first stage, before the first y-loop, covers blocks that are only
+ // computed from the top row. The second stage, comprising two y-loops, covers
+ // blocks that have a mixture of values computed from top or left. The final
+ // stage covers blocks that are only computed from the left.
+ for (int left_offset = -left_base_increment; x < min_top_only_x;
+ x += 8,
+ xstep_bounds_base = _mm_sub_epi16(xstep_bounds_base, increment_top8),
+ // Watch left_y because it can still get big.
+ left_y = _mm_add_epi16(left_y, increment_left8),
+ left_offset -= left_base_increment8) {
+ uint8_t* dst_x = dst + x;
+
+ // Round down to the nearest multiple of 8.
+ const int max_top_only_y = std::min(((x + 1) << 6) / xstep, height) & ~7;
+ DirectionalZone1_4xH(dst_x, stride, top_row + (x << upsample_top_shift),
+ max_top_only_y, -xstep, upsampled_top);
+ DirectionalZone1_4xH(dst_x + 4, stride,
+ top_row + ((x + 4) << upsample_top_shift),
+ max_top_only_y, -xstep, upsampled_top);
+
+ int y = max_top_only_y;
+ dst_x += stride * y;
+ const int xstep_y = xstep * y;
+ const __m128i xstep_y_vect = _mm_set1_epi16(xstep_y);
+ // All rows from |min_left_only_y| down for this set of columns, only need
+ // |left_column| to compute.
+ const int min_left_only_y = std::min(((x + 8) << 6) / xstep, height);
+ // At high angles such that min_left_only_y < 8, ystep is low and xstep is
+ // high. This means that max_shuffle_height is unbounded and xstep_bounds
+ // will overflow in 16 bits. This is prevented by stopping the first
+ // blending loop at min_left_only_y for such cases, which means we skip over
+ // the second blending loop as well.
+ const int left_shuffle_stop_y =
+ std::min(max_shuffle_height, min_left_only_y);
+ __m128i xstep_bounds = _mm_add_epi16(xstep_bounds_base, xstep_y_vect);
+ __m128i xstep_for_shift_y = _mm_sub_epi16(xstep_for_shift, xstep_y_vect);
+ int top_x = -xstep_y;
+
+ for (; y < left_shuffle_stop_y;
+ y += 8, dst_x += stride8,
+ xstep_bounds = _mm_add_epi16(xstep_bounds, xstep8_vect),
+ xstep_for_shift_y = _mm_sub_epi16(xstep_for_shift_y, xstep8_vect),
+ top_x -= xstep8) {
+ DirectionalZone2FromLeftCol_8x8_SSE4_1<upsampled_left>(
+ dst_x, stride,
+ left_column + ((left_offset + y) << upsample_left_shift), left_y);
+
+ __m128i shifts = _mm_srli_epi16(
+ _mm_and_si128(_mm_slli_epi16(xstep_for_shift_y, upsample_top_shift),
+ shift_mask),
+ 1);
+ shifts = _mm_packus_epi16(shifts, shifts);
+ __m128i opposite_shifts = _mm_sub_epi8(max_shift, shifts);
+ shifts = _mm_unpacklo_epi8(opposite_shifts, shifts);
+ __m128i xstep_bounds_off = _mm_srai_epi16(xstep_bounds, 6);
+ DirectionalZone1Blend_8xH<upsampled_top, 8>(
+ dst_x, top_row + (x << upsample_top_shift), stride, sampler_top,
+ xstep_bounds_off, shifts, dest_index_x, top_x, xstep);
+ }
+ // Pick up from the last y-value, using the 10% slower but secure method for
+ // left prediction.
+ const auto base_left_y = static_cast<int16_t>(_mm_extract_epi16(left_y, 0));
+ for (; y < min_left_only_y;
+ y += 8, dst_x += stride8,
+ xstep_bounds = _mm_add_epi16(xstep_bounds, xstep8_vect),
+ xstep_for_shift_y = _mm_sub_epi16(xstep_for_shift_y, xstep8_vect),
+ top_x -= xstep8) {
+ const __m128i xstep_bounds_off = _mm_srai_epi16(xstep_bounds, 6);
+
+ DirectionalZone3_8xH<upsampled_left, 8>(
+ dst_x, stride,
+ left_column + ((left_offset + y) << upsample_left_shift), base_left_y,
+ -ystep);
+
+ __m128i shifts = _mm_srli_epi16(
+ _mm_and_si128(_mm_slli_epi16(xstep_for_shift_y, upsample_top_shift),
+ shift_mask),
+ 1);
+ shifts = _mm_packus_epi16(shifts, shifts);
+ __m128i opposite_shifts = _mm_sub_epi8(max_shift, shifts);
+ shifts = _mm_unpacklo_epi8(opposite_shifts, shifts);
+ DirectionalZone1Blend_8xH<upsampled_top, 8>(
+ dst_x, top_row + (x << upsample_top_shift), stride, sampler_top,
+ xstep_bounds_off, shifts, dest_index_x, top_x, xstep);
+ }
+ // Loop over y for left_only rows.
+ for (; y < height; y += 8, dst_x += stride8) {
+ DirectionalZone3_8xH<upsampled_left, 8>(
+ dst_x, stride,
+ left_column + ((left_offset + y) << upsample_left_shift), base_left_y,
+ -ystep);
+ }
+ }
+ for (; x < width; x += 4) {
+ DirectionalZone1_4xH(dst + x, stride, top_row + (x << upsample_top_shift),
+ height, -xstep, upsampled_top);
+ }
+}
+
+template <bool upsampled_left, bool upsampled_top>
+inline void DirectionalZone2_4_SSE4_1(void* dest, ptrdiff_t stride,
+ const uint8_t* const top_row,
+ const uint8_t* const left_column,
+ const int width, const int height,
+ const int xstep, const int ystep) {
+ auto* dst = static_cast<uint8_t*>(dest);
+ const int upsample_left_shift = static_cast<int>(upsampled_left);
+ const int upsample_top_shift = static_cast<int>(upsampled_top);
+ const __m128i max_shift = _mm_set1_epi8(32);
+ const ptrdiff_t stride4 = stride << 2;
+ const __m128i dest_index_x = _mm_set_epi32(0, 0, 0x00030002, 0x00010000);
+ const __m128i sampler_top =
+ upsampled_top
+ ? _mm_set_epi32(0x0F0E0D0C, 0x0B0A0908, 0x07060504, 0x03020100)
+ : _mm_set_epi32(0x08070706, 0x06050504, 0x04030302, 0x02010100);
+ // All columns from |min_top_only_x| to the right will only need |top_row| to
+ // compute.
+ assert(xstep >= 3);
+ const int min_top_only_x = std::min((height * xstep) >> 6, width);
+
+ const int xstep4 = xstep << 2;
+ const __m128i xstep4_vect = _mm_set1_epi16(xstep4);
+ const __m128i xstep_dup = _mm_set1_epi16(-xstep);
+ const __m128i increments = _mm_set_epi32(0, 0, 0x00040003, 0x00020001);
+ __m128i xstep_for_shift = _mm_mullo_epi16(xstep_dup, increments);
+ const __m128i scaled_one = _mm_set1_epi16(-64);
+ // Offsets the original zone bound value to simplify x < (y+1)*xstep/64 -1
+ __m128i xstep_bounds_base =
+ (xstep == 64) ? _mm_sub_epi16(scaled_one, xstep_for_shift)
+ : _mm_sub_epi16(_mm_set1_epi16(-1), xstep_for_shift);
+
+ const int left_base_increment = ystep >> 6;
+ const int ystep_remainder = ystep & 0x3F;
+ const int ystep4 = ystep << 2;
+ const int left_base_increment4 = ystep4 >> 6;
+ // This is guaranteed to be less than 64, but accumulation may bring it past
+ // 64 for higher x values.
+ const int ystep_remainder4 = ystep4 & 0x3F;
+ const __m128i increment_left4 = _mm_set1_epi16(-ystep_remainder4);
+ const __m128i increment_top4 = _mm_set1_epi16(4 << 6);
+
+ // If the 64 scaling is regarded as a decimal point, the first value of the
+ // left_y vector omits the portion which will go into the left_column offset.
+ // Following values need the full ystep as a relative offset.
+ const __m128i ystep_init = _mm_set1_epi16(-ystep_remainder);
+ const __m128i ystep_dup = _mm_set1_epi16(-ystep);
+ __m128i left_y = _mm_mullo_epi16(ystep_dup, dest_index_x);
+ left_y = _mm_add_epi16(ystep_init, left_y);
+ const __m128i shift_mask = _mm_set1_epi32(0x003F003F);
+
+ int x = 0;
+ // Loop over x for columns with a mixture of sources.
+ for (int left_offset = -left_base_increment; x < min_top_only_x; x += 4,
+ xstep_bounds_base = _mm_sub_epi16(xstep_bounds_base, increment_top4),
+ left_y = _mm_add_epi16(left_y, increment_left4),
+ left_offset -= left_base_increment4) {
+ uint8_t* dst_x = dst + x;
+
+ // Round down to the nearest multiple of 8.
+ const int max_top_only_y = std::min((x << 6) / xstep, height) & 0xFFFFFFF4;
+ DirectionalZone1_4xH(dst_x, stride, top_row + (x << upsample_top_shift),
+ max_top_only_y, -xstep, upsampled_top);
+ int y = max_top_only_y;
+ dst_x += stride * y;
+ const int xstep_y = xstep * y;
+ const __m128i xstep_y_vect = _mm_set1_epi16(xstep_y);
+ // All rows from |min_left_only_y| down for this set of columns, only need
+ // |left_column| to compute. Rounded up to the nearest multiple of 4.
+ const int min_left_only_y = std::min(((x + 4) << 6) / xstep, height);
+
+ __m128i xstep_bounds = _mm_add_epi16(xstep_bounds_base, xstep_y_vect);
+ __m128i xstep_for_shift_y = _mm_sub_epi16(xstep_for_shift, xstep_y_vect);
+ int top_x = -xstep_y;
+
+ // Loop over y for mixed rows.
+ for (; y < min_left_only_y;
+ y += 4, dst_x += stride4,
+ xstep_bounds = _mm_add_epi16(xstep_bounds, xstep4_vect),
+ xstep_for_shift_y = _mm_sub_epi16(xstep_for_shift_y, xstep4_vect),
+ top_x -= xstep4) {
+ DirectionalZone2FromLeftCol_4x4_SSE4_1<upsampled_left>(
+ dst_x, stride,
+ left_column + ((left_offset + y) * (1 << upsample_left_shift)),
+ left_y);
+
+ __m128i shifts = _mm_srli_epi16(
+ _mm_and_si128(_mm_slli_epi16(xstep_for_shift_y, upsample_top_shift),
+ shift_mask),
+ 1);
+ shifts = _mm_packus_epi16(shifts, shifts);
+ const __m128i opposite_shifts = _mm_sub_epi8(max_shift, shifts);
+ shifts = _mm_unpacklo_epi8(opposite_shifts, shifts);
+ const __m128i xstep_bounds_off = _mm_srai_epi16(xstep_bounds, 6);
+ DirectionalZone1Blend_4x4<upsampled_top>(
+ dst_x, top_row + (x << upsample_top_shift), stride, sampler_top,
+ xstep_bounds_off, shifts, dest_index_x, top_x, xstep);
+ }
+ // Loop over y for left-only rows, if any.
+ for (; y < height; y += 4, dst_x += stride4) {
+ DirectionalZone2FromLeftCol_4x4_SSE4_1<upsampled_left>(
+ dst_x, stride,
+ left_column + ((left_offset + y) << upsample_left_shift), left_y);
+ }
+ }
+ // Loop over top-only columns, if any.
+ for (; x < width; x += 4) {
+ DirectionalZone1_4xH(dst + x, stride, top_row + (x << upsample_top_shift),
+ height, -xstep, upsampled_top);
+ }
+}
+
+void DirectionalIntraPredictorZone2_SSE4_1(void* const dest, ptrdiff_t stride,
+ const void* const top_row,
+ const void* const left_column,
+ const int width, const int height,
+ const int xstep, const int ystep,
+ const bool upsampled_top,
+ const bool upsampled_left) {
+ // Increasing the negative buffer for this function allows more rows to be
+ // processed at a time without branching in an inner loop to check the base.
+ uint8_t top_buffer[288];
+ uint8_t left_buffer[288];
+ memcpy(top_buffer + 128, static_cast<const uint8_t*>(top_row) - 16, 160);
+ memcpy(left_buffer + 128, static_cast<const uint8_t*>(left_column) - 16, 160);
+ const uint8_t* top_ptr = top_buffer + 144;
+ const uint8_t* left_ptr = left_buffer + 144;
+ if (width == 4 || height == 4) {
+ if (upsampled_left) {
+ if (upsampled_top) {
+ DirectionalZone2_4_SSE4_1<true, true>(dest, stride, top_ptr, left_ptr,
+ width, height, xstep, ystep);
+ } else {
+ DirectionalZone2_4_SSE4_1<true, false>(dest, stride, top_ptr, left_ptr,
+ width, height, xstep, ystep);
+ }
+ } else {
+ if (upsampled_top) {
+ DirectionalZone2_4_SSE4_1<false, true>(dest, stride, top_ptr, left_ptr,
+ width, height, xstep, ystep);
+ } else {
+ DirectionalZone2_4_SSE4_1<false, false>(dest, stride, top_ptr, left_ptr,
+ width, height, xstep, ystep);
+ }
+ }
+ return;
+ }
+ if (upsampled_left) {
+ if (upsampled_top) {
+ DirectionalZone2_SSE4_1<true, true>(dest, stride, top_ptr, left_ptr,
+ width, height, xstep, ystep);
+ } else {
+ DirectionalZone2_SSE4_1<true, false>(dest, stride, top_ptr, left_ptr,
+ width, height, xstep, ystep);
+ }
+ } else {
+ if (upsampled_top) {
+ DirectionalZone2_SSE4_1<false, true>(dest, stride, top_ptr, left_ptr,
+ width, height, xstep, ystep);
+ } else {
+ DirectionalZone2_SSE4_1<false, false>(dest, stride, top_ptr, left_ptr,
+ width, height, xstep, ystep);
+ }
+ }
+}
+
+void Init8bpp() {
+ Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8);
+ assert(dsp != nullptr);
+ static_cast<void>(dsp);
+#if DSP_ENABLED_8BPP_SSE4_1(DirectionalIntraPredictorZone1)
+ dsp->directional_intra_predictor_zone1 =
+ DirectionalIntraPredictorZone1_SSE4_1;
+#endif
+#if DSP_ENABLED_8BPP_SSE4_1(DirectionalIntraPredictorZone2)
+ dsp->directional_intra_predictor_zone2 =
+ DirectionalIntraPredictorZone2_SSE4_1;
+#endif
+#if DSP_ENABLED_8BPP_SSE4_1(DirectionalIntraPredictorZone3)
+ dsp->directional_intra_predictor_zone3 =
+ DirectionalIntraPredictorZone3_SSE4_1;
+#endif
+}
+
+} // namespace
+} // namespace low_bitdepth
+
+//------------------------------------------------------------------------------
+#if LIBGAV1_MAX_BITDEPTH >= 10
+namespace high_bitdepth {
+namespace {
+
+//------------------------------------------------------------------------------
+// 7.11.2.4. Directional intra prediction process
+
+// Special case: An |xstep| of 64 corresponds to an angle delta of 45, meaning
+// upsampling is ruled out. In addition, the bits masked by 0x3F for
+// |shift_val| are 0 for all multiples of 64, so the formula
+// val = top[top_base_x]*shift + top[top_base_x+1]*(32-shift), reduces to
+// val = top[top_base_x+1] << 5, meaning only the second set of pixels is
+// involved in the output. Hence |top| is offset by 1.
+inline void DirectionalZone1_Step64(uint16_t* dst, ptrdiff_t stride,
+ const uint16_t* const top, const int width,
+ const int height) {
+ ptrdiff_t offset = 1;
+ if (height == 4) {
+ memcpy(dst, top + offset, width * sizeof(dst[0]));
+ dst += stride;
+ memcpy(dst, top + offset + 1, width * sizeof(dst[0]));
+ dst += stride;
+ memcpy(dst, top + offset + 2, width * sizeof(dst[0]));
+ dst += stride;
+ memcpy(dst, top + offset + 3, width * sizeof(dst[0]));
+ return;
+ }
+ int y = height;
+ do {
+ memcpy(dst, top + offset, width * sizeof(dst[0]));
+ dst += stride;
+ memcpy(dst, top + offset + 1, width * sizeof(dst[0]));
+ dst += stride;
+ memcpy(dst, top + offset + 2, width * sizeof(dst[0]));
+ dst += stride;
+ memcpy(dst, top + offset + 3, width * sizeof(dst[0]));
+ dst += stride;
+ memcpy(dst, top + offset + 4, width * sizeof(dst[0]));
+ dst += stride;
+ memcpy(dst, top + offset + 5, width * sizeof(dst[0]));
+ dst += stride;
+ memcpy(dst, top + offset + 6, width * sizeof(dst[0]));
+ dst += stride;
+ memcpy(dst, top + offset + 7, width * sizeof(dst[0]));
+ dst += stride;
+
+ offset += 8;
+ y -= 8;
+ } while (y != 0);
+}
+
+// Produce a weighted average whose weights sum to 32.
+inline __m128i CombineTopVals4(const __m128i& top_vals, const __m128i& sampler,
+ const __m128i& shifts,
+ const __m128i& top_indices,
+ const __m128i& final_top_val,
+ const __m128i& border_index) {
+ const __m128i sampled_values = _mm_shuffle_epi8(top_vals, sampler);
+ __m128i prod = _mm_mullo_epi16(sampled_values, shifts);
+ prod = _mm_hadd_epi16(prod, prod);
+ const __m128i result = RightShiftWithRounding_U16(prod, 5 /*log2(32)*/);
+
+ const __m128i past_max = _mm_cmpgt_epi16(top_indices, border_index);
+ // Replace pixels from invalid range with top-right corner.
+ return _mm_blendv_epi8(result, final_top_val, past_max);
+}
+
+// When width is 4, only one load operation is needed per iteration. We also
+// avoid extra loop precomputations that cause too much overhead.
+inline void DirectionalZone1_4xH(uint16_t* dst, ptrdiff_t stride,
+ const uint16_t* const top, const int height,
+ const int xstep, const bool upsampled,
+ const __m128i& sampler) {
+ const int upsample_shift = static_cast<int>(upsampled);
+ const int index_scale_bits = 6 - upsample_shift;
+ const int max_base_x = (height + 3 /* width - 1 */) << upsample_shift;
+ const __m128i max_base_x_vect = _mm_set1_epi16(max_base_x);
+ const __m128i final_top_val = _mm_set1_epi16(top[max_base_x]);
+
+ // Each 16-bit value here corresponds to a position that may exceed
+ // |max_base_x|. When added to the top_base_x, it is used to mask values
+ // that pass the end of |top|. Starting from 1 to simulate "cmpge" because
+ // only cmpgt is available.
+ const __m128i offsets =
+ _mm_set_epi32(0x00080007, 0x00060005, 0x00040003, 0x00020001);
+
+ // All rows from |min_corner_only_y| down will simply use memcpy.
+ // |max_base_x| is always greater than |height|, so clipping the denominator
+ // to 1 is enough to make the logic work.
+ const int xstep_units = std::max(xstep >> index_scale_bits, 1);
+ const int min_corner_only_y = std::min(max_base_x / xstep_units, height);
+
+ int y = 0;
+ int top_x = xstep;
+ const __m128i max_shift = _mm_set1_epi16(32);
+
+ for (; y < min_corner_only_y; ++y, dst += stride, top_x += xstep) {
+ const int top_base_x = top_x >> index_scale_bits;
+
+ // Permit negative values of |top_x|.
+ const int shift_val = (LeftShift(top_x, upsample_shift) & 0x3F) >> 1;
+ const __m128i shift = _mm_set1_epi16(shift_val);
+ const __m128i opposite_shift = _mm_sub_epi16(max_shift, shift);
+ const __m128i shifts = _mm_unpacklo_epi16(opposite_shift, shift);
+ __m128i top_index_vect = _mm_set1_epi16(top_base_x);
+ top_index_vect = _mm_add_epi16(top_index_vect, offsets);
+
+ // Load 8 values because we will select the sampled values based on
+ // |upsampled|.
+ const __m128i values = LoadUnaligned16(top + top_base_x);
+ const __m128i pred =
+ CombineTopVals4(values, sampler, shifts, top_index_vect, final_top_val,
+ max_base_x_vect);
+ StoreLo8(dst, pred);
+ }
+
+ // Fill in corner-only rows.
+ for (; y < height; ++y) {
+ Memset(dst, top[max_base_x], /* width */ 4);
+ dst += stride;
+ }
+}
+
+// General purpose combine function.
+// |check_border| means the final source value has to be duplicated into the
+// result. This simplifies the loop structures that use precomputed boundaries
+// to identify sections where it is safe to compute without checking for the
+// right border.
+template <bool check_border>
+inline __m128i CombineTopVals(
+ const __m128i& top_vals_0, const __m128i& top_vals_1,
+ const __m128i& sampler, const __m128i& shifts,
+ const __m128i& top_indices = _mm_setzero_si128(),
+ const __m128i& final_top_val = _mm_setzero_si128(),
+ const __m128i& border_index = _mm_setzero_si128()) {
+ constexpr int scale_int_bits = 5;
+ const __m128i sampled_values_0 = _mm_shuffle_epi8(top_vals_0, sampler);
+ const __m128i sampled_values_1 = _mm_shuffle_epi8(top_vals_1, sampler);
+ const __m128i prod_0 = _mm_mullo_epi16(sampled_values_0, shifts);
+ const __m128i prod_1 = _mm_mullo_epi16(sampled_values_1, shifts);
+ const __m128i combined = _mm_hadd_epi16(prod_0, prod_1);
+ const __m128i result = RightShiftWithRounding_U16(combined, scale_int_bits);
+ if (check_border) {
+ const __m128i past_max = _mm_cmpgt_epi16(top_indices, border_index);
+ // Replace pixels from invalid range with top-right corner.
+ return _mm_blendv_epi8(result, final_top_val, past_max);
+ }
+ return result;
+}
+
+// 7.11.2.4 (7) angle < 90
+inline void DirectionalZone1_Large(uint16_t* dest, ptrdiff_t stride,
+ const uint16_t* const top_row,
+ const int width, const int height,
+ const int xstep, const bool upsampled,
+ const __m128i& sampler) {
+ const int upsample_shift = static_cast<int>(upsampled);
+ const int index_scale_bits = 6 - upsample_shift;
+ const int max_base_x = ((width + height) - 1) << upsample_shift;
+
+ const __m128i max_shift = _mm_set1_epi16(32);
+ const int base_step = 1 << upsample_shift;
+ const int base_step8 = base_step << 3;
+
+ // All rows from |min_corner_only_y| down will simply use memcpy.
+ // |max_base_x| is always greater than |height|, so clipping to 1 is enough
+ // to make the logic work.
+ const int xstep_units = std::max(xstep >> index_scale_bits, 1);
+ const int min_corner_only_y = std::min(max_base_x / xstep_units, height);
+
+ // Rows up to this y-value can be computed without checking for bounds.
+ const int max_no_corner_y = std::min(
+ LeftShift((max_base_x - (base_step * width)), index_scale_bits) / xstep,
+ height);
+ // No need to check for exceeding |max_base_x| in the first loop.
+ int y = 0;
+ int top_x = xstep;
+ for (; y < max_no_corner_y; ++y, dest += stride, top_x += xstep) {
+ int top_base_x = top_x >> index_scale_bits;
+ // Permit negative values of |top_x|.
+ const int shift_val = (LeftShift(top_x, upsample_shift) & 0x3F) >> 1;
+ const __m128i shift = _mm_set1_epi16(shift_val);
+ const __m128i opposite_shift = _mm_sub_epi16(max_shift, shift);
+ const __m128i shifts = _mm_unpacklo_epi16(opposite_shift, shift);
+ int x = 0;
+ do {
+ const __m128i top_vals_0 = LoadUnaligned16(top_row + top_base_x);
+ const __m128i top_vals_1 =
+ LoadUnaligned16(top_row + top_base_x + (4 << upsample_shift));
+
+ const __m128i pred =
+ CombineTopVals<false>(top_vals_0, top_vals_1, sampler, shifts);
+
+ StoreUnaligned16(dest + x, pred);
+ top_base_x += base_step8;
+ x += 8;
+ } while (x < width);
+ }
+
+ // Each 16-bit value here corresponds to a position that may exceed
+ // |max_base_x|. When added to |top_base_x|, it is used to mask values
+ // that pass the end of the |top| buffer. Starting from 1 to simulate "cmpge"
+ // which is not supported for packed integers.
+ const __m128i offsets =
+ _mm_set_epi32(0x00080007, 0x00060005, 0x00040003, 0x00020001);
+
+ const __m128i max_base_x_vect = _mm_set1_epi16(max_base_x);
+ const __m128i final_top_val = _mm_set1_epi16(top_row[max_base_x]);
+ const __m128i base_step8_vect = _mm_set1_epi16(base_step8);
+ for (; y < min_corner_only_y; ++y, dest += stride, top_x += xstep) {
+ int top_base_x = top_x >> index_scale_bits;
+
+ const int shift_val = (LeftShift(top_x, upsample_shift) & 0x3F) >> 1;
+ const __m128i shift = _mm_set1_epi16(shift_val);
+ const __m128i opposite_shift = _mm_sub_epi16(max_shift, shift);
+ const __m128i shifts = _mm_unpacklo_epi16(opposite_shift, shift);
+ __m128i top_index_vect = _mm_set1_epi16(top_base_x);
+ top_index_vect = _mm_add_epi16(top_index_vect, offsets);
+
+ int x = 0;
+ const int min_corner_only_x =
+ std::min(width, ((max_base_x - top_base_x) >> upsample_shift) + 7) & ~7;
+ for (; x < min_corner_only_x;
+ x += 8, top_base_x += base_step8,
+ top_index_vect = _mm_add_epi16(top_index_vect, base_step8_vect)) {
+ const __m128i top_vals_0 = LoadUnaligned16(top_row + top_base_x);
+ const __m128i top_vals_1 =
+ LoadUnaligned16(top_row + top_base_x + (4 << upsample_shift));
+ const __m128i pred =
+ CombineTopVals<true>(top_vals_0, top_vals_1, sampler, shifts,
+ top_index_vect, final_top_val, max_base_x_vect);
+ StoreUnaligned16(dest + x, pred);
+ }
+ // Corner-only section of the row.
+ Memset(dest + x, top_row[max_base_x], width - x);
+ }
+ // Fill in corner-only rows.
+ for (; y < height; ++y) {
+ Memset(dest, top_row[max_base_x], width);
+ dest += stride;
+ }
+}
+
+// 7.11.2.4 (7) angle < 90
+inline void DirectionalIntraPredictorZone1_SSE4_1(
+ void* dest_ptr, ptrdiff_t stride, const void* const top_ptr,
+ const int width, const int height, const int xstep, const bool upsampled) {
+ const auto* const top_row = static_cast<const uint16_t*>(top_ptr);
+ auto* dest = static_cast<uint16_t*>(dest_ptr);
+ stride /= sizeof(uint16_t);
+ const int upsample_shift = static_cast<int>(upsampled);
+ if (xstep == 64) {
+ DirectionalZone1_Step64(dest, stride, top_row, width, height);
+ return;
+ }
+ // Each base pixel paired with its following pixel, for hadd purposes.
+ const __m128i adjacency_shuffler = _mm_set_epi16(
+ 0x0908, 0x0706, 0x0706, 0x0504, 0x0504, 0x0302, 0x0302, 0x0100);
+ // This is equivalent to not shuffling at all.
+ const __m128i identity_shuffler = _mm_set_epi16(
+ 0x0F0E, 0x0D0C, 0x0B0A, 0x0908, 0x0706, 0x0504, 0x0302, 0x0100);
+ // This represents a trade-off between code size and speed. When upsampled
+ // is true, no shuffle is necessary. But to avoid in-loop branching, we
+ // would need 2 copies of the main function body.
+ const __m128i sampler = upsampled ? identity_shuffler : adjacency_shuffler;
+ if (width == 4) {
+ DirectionalZone1_4xH(dest, stride, top_row, height, xstep, upsampled,
+ sampler);
+ return;
+ }
+ if (width >= 32) {
+ DirectionalZone1_Large(dest, stride, top_row, width, height, xstep,
+ upsampled, sampler);
+ return;
+ }
+ const int index_scale_bits = 6 - upsample_shift;
+ const int max_base_x = ((width + height) - 1) << upsample_shift;
+
+ const __m128i max_shift = _mm_set1_epi16(32);
+ const int base_step = 1 << upsample_shift;
+ const int base_step8 = base_step << 3;
+
+ // No need to check for exceeding |max_base_x| in the loops.
+ if (((xstep * height) >> index_scale_bits) + base_step * width < max_base_x) {
+ int top_x = xstep;
+ int y = height;
+ do {
+ int top_base_x = top_x >> index_scale_bits;
+ // Permit negative values of |top_x|.
+ const int shift_val = (LeftShift(top_x, upsample_shift) & 0x3F) >> 1;
+ const __m128i shift = _mm_set1_epi16(shift_val);
+ const __m128i opposite_shift = _mm_sub_epi16(max_shift, shift);
+ const __m128i shifts = _mm_unpacklo_epi16(opposite_shift, shift);
+ int x = 0;
+ do {
+ const __m128i top_vals_0 = LoadUnaligned16(top_row + top_base_x);
+ const __m128i top_vals_1 =
+ LoadUnaligned16(top_row + top_base_x + (4 << upsample_shift));
+ const __m128i pred =
+ CombineTopVals<false>(top_vals_0, top_vals_1, sampler, shifts);
+ StoreUnaligned16(dest + x, pred);
+ top_base_x += base_step8;
+ x += 8;
+ } while (x < width);
+ dest += stride;
+ top_x += xstep;
+ } while (--y != 0);
+ return;
+ }
+
+ // General case. Blocks with width less than 32 do not benefit from x-wise
+ // loop splitting, but do benefit from using memset on appropriate rows.
+
+ // Each 16-bit value here corresponds to a position that may exceed
+ // |max_base_x|. When added to the top_base_x, it is used to mask values
+ // that pass the end of |top|. Starting from 1 to simulate "cmpge" which is
+ // not supported for packed integers.
+ const __m128i offsets =
+ _mm_set_epi32(0x00080007, 0x00060005, 0x00040003, 0x00020001);
+
+ const __m128i max_base_x_vect = _mm_set1_epi16(max_base_x);
+ const __m128i final_top_val = _mm_set1_epi16(top_row[max_base_x]);
+ const __m128i base_step8_vect = _mm_set1_epi16(base_step8);
+
+ // All rows from |min_corner_only_y| down will simply use memcpy.
+ // |max_base_x| is always greater than |height|, so clipping the denominator
+ // to 1 is enough to make the logic work.
+ const int xstep_units = std::max(xstep >> index_scale_bits, 1);
+ const int min_corner_only_y = std::min(max_base_x / xstep_units, height);
+
+ int top_x = xstep;
+ int y = 0;
+ for (; y < min_corner_only_y; ++y, dest += stride, top_x += xstep) {
+ int top_base_x = top_x >> index_scale_bits;
+
+ const int shift_val = (LeftShift(top_x, upsample_shift) & 0x3F) >> 1;
+ const __m128i shift = _mm_set1_epi16(shift_val);
+ const __m128i opposite_shift = _mm_sub_epi16(max_shift, shift);
+ const __m128i shifts = _mm_unpacklo_epi16(opposite_shift, shift);
+ __m128i top_index_vect = _mm_set1_epi16(top_base_x);
+ top_index_vect = _mm_add_epi16(top_index_vect, offsets);
+
+ for (int x = 0; x < width; x += 8, top_base_x += base_step8,
+ top_index_vect = _mm_add_epi16(top_index_vect, base_step8_vect)) {
+ const __m128i top_vals_0 = LoadUnaligned16(top_row + top_base_x);
+ const __m128i top_vals_1 =
+ LoadUnaligned16(top_row + top_base_x + (4 << upsample_shift));
+ const __m128i pred =
+ CombineTopVals<true>(top_vals_0, top_vals_1, sampler, shifts,
+ top_index_vect, final_top_val, max_base_x_vect);
+ StoreUnaligned16(dest + x, pred);
+ }
+ }
+
+ // Fill in corner-only rows.
+ for (; y < height; ++y) {
+ Memset(dest, top_row[max_base_x], width);
+ dest += stride;
+ }
+}
+
+void Init10bpp() {
+ Dsp* const dsp = dsp_internal::GetWritableDspTable(10);
+ assert(dsp != nullptr);
+ static_cast<void>(dsp);
+#if DSP_ENABLED_10BPP_SSE4_1(DirectionalIntraPredictorZone1)
+ dsp->directional_intra_predictor_zone1 =
+ DirectionalIntraPredictorZone1_SSE4_1;
+#endif
+}
+
+} // namespace
+} // namespace high_bitdepth
+
+#endif // LIBGAV1_MAX_BITDEPTH >= 10
+
+void IntraPredDirectionalInit_SSE4_1() {
+ low_bitdepth::Init8bpp();
+#if LIBGAV1_MAX_BITDEPTH >= 10
+ high_bitdepth::Init10bpp();
+#endif
+}
+
+} // namespace dsp
+} // namespace libgav1
+
+#else // !LIBGAV1_TARGETING_SSE4_1
+namespace libgav1 {
+namespace dsp {
+
+void IntraPredDirectionalInit_SSE4_1() {}
+
+} // namespace dsp
+} // namespace libgav1
+#endif // LIBGAV1_TARGETING_SSE4_1