diff options
Diffstat (limited to 'src/dsp/x86/warp_sse4.cc')
-rw-r--r-- | src/dsp/x86/warp_sse4.cc | 525 |
1 files changed, 525 insertions, 0 deletions
diff --git a/src/dsp/x86/warp_sse4.cc b/src/dsp/x86/warp_sse4.cc new file mode 100644 index 0000000..43279ab --- /dev/null +++ b/src/dsp/x86/warp_sse4.cc @@ -0,0 +1,525 @@ +// Copyright 2020 The libgav1 Authors +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "src/dsp/warp.h" +#include "src/utils/cpu.h" + +#if LIBGAV1_TARGETING_SSE4_1 + +#include <smmintrin.h> + +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <cstring> +#include <type_traits> + +#include "src/dsp/constants.h" +#include "src/dsp/dsp.h" +#include "src/dsp/x86/common_sse4.h" +#include "src/dsp/x86/transpose_sse4.h" +#include "src/utils/common.h" +#include "src/utils/constants.h" + +namespace libgav1 { +namespace dsp { +namespace low_bitdepth { +namespace { + +// Number of extra bits of precision in warped filtering. +constexpr int kWarpedDiffPrecisionBits = 10; + +// This assumes the two filters contain filter[x] and filter[x+2]. +inline __m128i AccumulateFilter(const __m128i sum, const __m128i filter_0, + const __m128i filter_1, + const __m128i& src_window) { + const __m128i filter_taps = _mm_unpacklo_epi8(filter_0, filter_1); + const __m128i src = + _mm_unpacklo_epi8(src_window, _mm_srli_si128(src_window, 2)); + return _mm_add_epi16(sum, _mm_maddubs_epi16(src, filter_taps)); +} + +constexpr int kFirstPassOffset = 1 << 14; +constexpr int kOffsetRemoval = + (kFirstPassOffset >> kInterRoundBitsHorizontal) * 128; + +// Applies the horizontal filter to one source row and stores the result in +// |intermediate_result_row|. |intermediate_result_row| is a row in the 15x8 +// |intermediate_result| two-dimensional array. +inline void HorizontalFilter(const int sx4, const int16_t alpha, + const __m128i src_row, + int16_t intermediate_result_row[8]) { + int sx = sx4 - MultiplyBy4(alpha); + __m128i filter[8]; + for (__m128i& f : filter) { + const int offset = RightShiftWithRounding(sx, kWarpedDiffPrecisionBits) + + kWarpedPixelPrecisionShifts; + f = LoadLo8(kWarpedFilters8[offset]); + sx += alpha; + } + Transpose8x8To4x16_U8(filter, filter); + // |filter| now contains two filters per register. + // Staggered combinations allow us to take advantage of _mm_maddubs_epi16 + // without overflowing the sign bit. The sign bit is hit only where two taps + // paired in a single madd add up to more than 128. This is only possible with + // two adjacent "inner" taps. Therefore, pairing odd with odd and even with + // even guarantees safety. |sum| is given a negative offset to allow for large + // intermediate values. + // k = 0, 2. + __m128i src_row_window = src_row; + __m128i sum = _mm_set1_epi16(-kFirstPassOffset); + sum = AccumulateFilter(sum, filter[0], filter[1], src_row_window); + + // k = 1, 3. + src_row_window = _mm_srli_si128(src_row_window, 1); + sum = AccumulateFilter(sum, _mm_srli_si128(filter[0], 8), + _mm_srli_si128(filter[1], 8), src_row_window); + // k = 4, 6. + src_row_window = _mm_srli_si128(src_row_window, 3); + sum = AccumulateFilter(sum, filter[2], filter[3], src_row_window); + + // k = 5, 7. + src_row_window = _mm_srli_si128(src_row_window, 1); + sum = AccumulateFilter(sum, _mm_srli_si128(filter[2], 8), + _mm_srli_si128(filter[3], 8), src_row_window); + + sum = RightShiftWithRounding_S16(sum, kInterRoundBitsHorizontal); + StoreUnaligned16(intermediate_result_row, sum); +} + +template <bool is_compound> +inline void WriteVerticalFilter(const __m128i filter[8], + const int16_t intermediate_result[15][8], int y, + void* dst_row) { + constexpr int kRoundBitsVertical = + is_compound ? kInterRoundBitsCompoundVertical : kInterRoundBitsVertical; + __m128i sum_low = _mm_set1_epi32(kOffsetRemoval); + __m128i sum_high = sum_low; + for (int k = 0; k < 8; k += 2) { + const __m128i filters_low = _mm_unpacklo_epi16(filter[k], filter[k + 1]); + const __m128i filters_high = _mm_unpackhi_epi16(filter[k], filter[k + 1]); + const __m128i intermediate_0 = LoadUnaligned16(intermediate_result[y + k]); + const __m128i intermediate_1 = + LoadUnaligned16(intermediate_result[y + k + 1]); + const __m128i intermediate_low = + _mm_unpacklo_epi16(intermediate_0, intermediate_1); + const __m128i intermediate_high = + _mm_unpackhi_epi16(intermediate_0, intermediate_1); + + const __m128i product_low = _mm_madd_epi16(filters_low, intermediate_low); + const __m128i product_high = + _mm_madd_epi16(filters_high, intermediate_high); + sum_low = _mm_add_epi32(sum_low, product_low); + sum_high = _mm_add_epi32(sum_high, product_high); + } + sum_low = RightShiftWithRounding_S32(sum_low, kRoundBitsVertical); + sum_high = RightShiftWithRounding_S32(sum_high, kRoundBitsVertical); + if (is_compound) { + const __m128i sum = _mm_packs_epi32(sum_low, sum_high); + StoreUnaligned16(static_cast<int16_t*>(dst_row), sum); + } else { + const __m128i sum = _mm_packus_epi32(sum_low, sum_high); + StoreLo8(static_cast<uint8_t*>(dst_row), _mm_packus_epi16(sum, sum)); + } +} + +template <bool is_compound> +inline void WriteVerticalFilter(const __m128i filter[8], + const int16_t* intermediate_result_column, + void* dst_row) { + constexpr int kRoundBitsVertical = + is_compound ? kInterRoundBitsCompoundVertical : kInterRoundBitsVertical; + __m128i sum_low = _mm_setzero_si128(); + __m128i sum_high = _mm_setzero_si128(); + for (int k = 0; k < 8; k += 2) { + const __m128i filters_low = _mm_unpacklo_epi16(filter[k], filter[k + 1]); + const __m128i filters_high = _mm_unpackhi_epi16(filter[k], filter[k + 1]); + // Equivalent to unpacking two vectors made by duplicating int16_t values. + const __m128i intermediate = + _mm_set1_epi32((intermediate_result_column[k + 1] << 16) | + intermediate_result_column[k]); + const __m128i product_low = _mm_madd_epi16(filters_low, intermediate); + const __m128i product_high = _mm_madd_epi16(filters_high, intermediate); + sum_low = _mm_add_epi32(sum_low, product_low); + sum_high = _mm_add_epi32(sum_high, product_high); + } + sum_low = RightShiftWithRounding_S32(sum_low, kRoundBitsVertical); + sum_high = RightShiftWithRounding_S32(sum_high, kRoundBitsVertical); + if (is_compound) { + const __m128i sum = _mm_packs_epi32(sum_low, sum_high); + StoreUnaligned16(static_cast<int16_t*>(dst_row), sum); + } else { + const __m128i sum = _mm_packus_epi32(sum_low, sum_high); + StoreLo8(static_cast<uint8_t*>(dst_row), _mm_packus_epi16(sum, sum)); + } +} + +template <bool is_compound, typename DestType> +inline void VerticalFilter(const int16_t source[15][8], int y4, int gamma, + int delta, DestType* dest_row, + ptrdiff_t dest_stride) { + int sy4 = (y4 & ((1 << kWarpedModelPrecisionBits) - 1)) - MultiplyBy4(delta); + for (int y = 0; y < 8; ++y) { + int sy = sy4 - MultiplyBy4(gamma); + __m128i filter[8]; + for (__m128i& f : filter) { + const int offset = RightShiftWithRounding(sy, kWarpedDiffPrecisionBits) + + kWarpedPixelPrecisionShifts; + f = LoadUnaligned16(kWarpedFilters[offset]); + sy += gamma; + } + Transpose8x8_U16(filter, filter); + WriteVerticalFilter<is_compound>(filter, source, y, dest_row); + dest_row += dest_stride; + sy4 += delta; + } +} + +template <bool is_compound, typename DestType> +inline void VerticalFilter(const int16_t* source_cols, int y4, int gamma, + int delta, DestType* dest_row, + ptrdiff_t dest_stride) { + int sy4 = (y4 & ((1 << kWarpedModelPrecisionBits) - 1)) - MultiplyBy4(delta); + for (int y = 0; y < 8; ++y) { + int sy = sy4 - MultiplyBy4(gamma); + __m128i filter[8]; + for (__m128i& f : filter) { + const int offset = RightShiftWithRounding(sy, kWarpedDiffPrecisionBits) + + kWarpedPixelPrecisionShifts; + f = LoadUnaligned16(kWarpedFilters[offset]); + sy += gamma; + } + Transpose8x8_U16(filter, filter); + WriteVerticalFilter<is_compound>(filter, &source_cols[y], dest_row); + dest_row += dest_stride; + sy4 += delta; + } +} + +template <bool is_compound, typename DestType> +inline void WarpRegion1(const uint8_t* src, ptrdiff_t source_stride, + int source_width, int source_height, int ix4, int iy4, + DestType* dst_row, ptrdiff_t dest_stride) { + // Region 1 + // Points to the left or right border of the first row of |src|. + const uint8_t* first_row_border = + (ix4 + 7 <= 0) ? src : src + source_width - 1; + // In general, for y in [-7, 8), the row number iy4 + y is clipped: + // const int row = Clip3(iy4 + y, 0, source_height - 1); + // In two special cases, iy4 + y is clipped to either 0 or + // source_height - 1 for all y. In the rest of the cases, iy4 + y is + // bounded and we can avoid clipping iy4 + y by relying on a reference + // frame's boundary extension on the top and bottom. + // Region 1. + // Every sample used to calculate the prediction block has the same + // value. So the whole prediction block has the same value. + const int row = (iy4 + 7 <= 0) ? 0 : source_height - 1; + const uint8_t row_border_pixel = first_row_border[row * source_stride]; + + if (is_compound) { + const __m128i sum = + _mm_set1_epi16(row_border_pixel << (kInterRoundBitsVertical - + kInterRoundBitsCompoundVertical)); + StoreUnaligned16(dst_row, sum); + } else { + memset(dst_row, row_border_pixel, 8); + } + const DestType* const first_dst_row = dst_row; + dst_row += dest_stride; + for (int y = 1; y < 8; ++y) { + memcpy(dst_row, first_dst_row, 8 * sizeof(*dst_row)); + dst_row += dest_stride; + } +} + +template <bool is_compound, typename DestType> +inline void WarpRegion2(const uint8_t* src, ptrdiff_t source_stride, + int source_width, int y4, int ix4, int iy4, int gamma, + int delta, int16_t intermediate_result_column[15], + DestType* dst_row, ptrdiff_t dest_stride) { + // Region 2. + // Points to the left or right border of the first row of |src|. + const uint8_t* first_row_border = + (ix4 + 7 <= 0) ? src : src + source_width - 1; + // In general, for y in [-7, 8), the row number iy4 + y is clipped: + // const int row = Clip3(iy4 + y, 0, source_height - 1); + // In two special cases, iy4 + y is clipped to either 0 or + // source_height - 1 for all y. In the rest of the cases, iy4 + y is + // bounded and we can avoid clipping iy4 + y by relying on a reference + // frame's boundary extension on the top and bottom. + + // Region 2. + // Horizontal filter. + // The input values in this region are generated by extending the border + // which makes them identical in the horizontal direction. This + // computation could be inlined in the vertical pass but most + // implementations will need a transpose of some sort. + // It is not necessary to use the offset values here because the + // horizontal pass is a simple shift and the vertical pass will always + // require using 32 bits. + for (int y = -7; y < 8; ++y) { + // We may over-read up to 13 pixels above the top source row, or up + // to 13 pixels below the bottom source row. This is proved in + // warp.cc. + const int row = iy4 + y; + int sum = first_row_border[row * source_stride]; + sum <<= (kFilterBits - kInterRoundBitsHorizontal); + intermediate_result_column[y + 7] = sum; + } + // Region 2 vertical filter. + VerticalFilter<is_compound, DestType>(intermediate_result_column, y4, gamma, + delta, dst_row, dest_stride); +} + +template <bool is_compound, typename DestType> +inline void WarpRegion3(const uint8_t* src, ptrdiff_t source_stride, + int source_height, int alpha, int beta, int x4, int ix4, + int iy4, int16_t intermediate_result[15][8]) { + // Region 3 + // At this point, we know ix4 - 7 < source_width - 1 and ix4 + 7 > 0. + + // In general, for y in [-7, 8), the row number iy4 + y is clipped: + // const int row = Clip3(iy4 + y, 0, source_height - 1); + // In two special cases, iy4 + y is clipped to either 0 or + // source_height - 1 for all y. In the rest of the cases, iy4 + y is + // bounded and we can avoid clipping iy4 + y by relying on a reference + // frame's boundary extension on the top and bottom. + // Horizontal filter. + const int row = (iy4 + 7 <= 0) ? 0 : source_height - 1; + const uint8_t* const src_row = src + row * source_stride; + // Read 15 samples from &src_row[ix4 - 7]. The 16th sample is also + // read but is ignored. + // + // NOTE: This may read up to 13 bytes before src_row[0] or up to 14 + // bytes after src_row[source_width - 1]. We assume the source frame + // has left and right borders of at least 13 bytes that extend the + // frame boundary pixels. We also assume there is at least one extra + // padding byte after the right border of the last source row. + const __m128i src_row_v = LoadUnaligned16(&src_row[ix4 - 7]); + int sx4 = (x4 & ((1 << kWarpedModelPrecisionBits) - 1)) - beta * 7; + for (int y = -7; y < 8; ++y) { + HorizontalFilter(sx4, alpha, src_row_v, intermediate_result[y + 7]); + sx4 += beta; + } +} + +template <bool is_compound, typename DestType> +inline void WarpRegion4(const uint8_t* src, ptrdiff_t source_stride, int alpha, + int beta, int x4, int ix4, int iy4, + int16_t intermediate_result[15][8]) { + // Region 4. + // At this point, we know ix4 - 7 < source_width - 1 and ix4 + 7 > 0. + + // In general, for y in [-7, 8), the row number iy4 + y is clipped: + // const int row = Clip3(iy4 + y, 0, source_height - 1); + // In two special cases, iy4 + y is clipped to either 0 or + // source_height - 1 for all y. In the rest of the cases, iy4 + y is + // bounded and we can avoid clipping iy4 + y by relying on a reference + // frame's boundary extension on the top and bottom. + // Horizontal filter. + int sx4 = (x4 & ((1 << kWarpedModelPrecisionBits) - 1)) - beta * 7; + for (int y = -7; y < 8; ++y) { + // We may over-read up to 13 pixels above the top source row, or up + // to 13 pixels below the bottom source row. This is proved in + // warp.cc. + const int row = iy4 + y; + const uint8_t* const src_row = src + row * source_stride; + // Read 15 samples from &src_row[ix4 - 7]. The 16th sample is also + // read but is ignored. + // + // NOTE: This may read up to 13 bytes before src_row[0] or up to 14 + // bytes after src_row[source_width - 1]. We assume the source frame + // has left and right borders of at least 13 bytes that extend the + // frame boundary pixels. We also assume there is at least one extra + // padding byte after the right border of the last source row. + const __m128i src_row_v = LoadUnaligned16(&src_row[ix4 - 7]); + // Convert src_row_v to int8 (subtract 128). + HorizontalFilter(sx4, alpha, src_row_v, intermediate_result[y + 7]); + sx4 += beta; + } +} + +template <bool is_compound, typename DestType> +inline void HandleWarpBlock(const uint8_t* src, ptrdiff_t source_stride, + int source_width, int source_height, + const int* warp_params, int subsampling_x, + int subsampling_y, int src_x, int src_y, + int16_t alpha, int16_t beta, int16_t gamma, + int16_t delta, DestType* dst_row, + ptrdiff_t dest_stride) { + union { + // Intermediate_result is the output of the horizontal filtering and + // rounding. The range is within 13 (= bitdepth + kFilterBits + 1 - + // kInterRoundBitsHorizontal) bits (unsigned). We use the signed int16_t + // type so that we can start with a negative offset and restore it on the + // final filter sum. + int16_t intermediate_result[15][8]; // 15 rows, 8 columns. + // In the simple special cases where the samples in each row are all the + // same, store one sample per row in a column vector. + int16_t intermediate_result_column[15]; + }; + + const int dst_x = + src_x * warp_params[2] + src_y * warp_params[3] + warp_params[0]; + const int dst_y = + src_x * warp_params[4] + src_y * warp_params[5] + warp_params[1]; + const int x4 = dst_x >> subsampling_x; + const int y4 = dst_y >> subsampling_y; + const int ix4 = x4 >> kWarpedModelPrecisionBits; + const int iy4 = y4 >> kWarpedModelPrecisionBits; + // A prediction block may fall outside the frame's boundaries. If a + // prediction block is calculated using only samples outside the frame's + // boundary, the filtering can be simplified. We can divide the plane + // into several regions and handle them differently. + // + // | | + // 1 | 3 | 1 + // | | + // -------+-----------+------- + // |***********| + // 2 |*****4*****| 2 + // |***********| + // -------+-----------+------- + // | | + // 1 | 3 | 1 + // | | + // + // At the center, region 4 represents the frame and is the general case. + // + // In regions 1 and 2, the prediction block is outside the frame's + // boundary horizontally. Therefore the horizontal filtering can be + // simplified. Furthermore, in the region 1 (at the four corners), the + // prediction is outside the frame's boundary both horizontally and + // vertically, so we get a constant prediction block. + // + // In region 3, the prediction block is outside the frame's boundary + // vertically. Unfortunately because we apply the horizontal filters + // first, by the time we apply the vertical filters, they no longer see + // simple inputs. So the only simplification is that all the rows are + // the same, but we still need to apply all the horizontal and vertical + // filters. + + // Check for two simple special cases, where the horizontal filter can + // be significantly simplified. + // + // In general, for each row, the horizontal filter is calculated as + // follows: + // for (int x = -4; x < 4; ++x) { + // const int offset = ...; + // int sum = first_pass_offset; + // for (int k = 0; k < 8; ++k) { + // const int column = Clip3(ix4 + x + k - 3, 0, source_width - 1); + // sum += kWarpedFilters[offset][k] * src_row[column]; + // } + // ... + // } + // The column index before clipping, ix4 + x + k - 3, varies in the range + // ix4 - 7 <= ix4 + x + k - 3 <= ix4 + 7. If ix4 - 7 >= source_width - 1 + // or ix4 + 7 <= 0, then all the column indexes are clipped to the same + // border index (source_width - 1 or 0, respectively). Then for each x, + // the inner for loop of the horizontal filter is reduced to multiplying + // the border pixel by the sum of the filter coefficients. + if (ix4 - 7 >= source_width - 1 || ix4 + 7 <= 0) { + if ((iy4 - 7 >= source_height - 1 || iy4 + 7 <= 0)) { + // Outside the frame in both directions. One repeated value. + WarpRegion1<is_compound, DestType>(src, source_stride, source_width, + source_height, ix4, iy4, dst_row, + dest_stride); + return; + } + // Outside the frame horizontally. Rows repeated. + WarpRegion2<is_compound, DestType>( + src, source_stride, source_width, y4, ix4, iy4, gamma, delta, + intermediate_result_column, dst_row, dest_stride); + return; + } + + if ((iy4 - 7 >= source_height - 1 || iy4 + 7 <= 0)) { + // Outside the frame vertically. + WarpRegion3<is_compound, DestType>(src, source_stride, source_height, alpha, + beta, x4, ix4, iy4, intermediate_result); + } else { + // Inside the frame. + WarpRegion4<is_compound, DestType>(src, source_stride, alpha, beta, x4, ix4, + iy4, intermediate_result); + } + // Region 3 and 4 vertical filter. + VerticalFilter<is_compound, DestType>(intermediate_result, y4, gamma, delta, + dst_row, dest_stride); +} + +template <bool is_compound> +void Warp_SSE4_1(const void* source, ptrdiff_t source_stride, int source_width, + int source_height, const int* warp_params, int subsampling_x, + int subsampling_y, int block_start_x, int block_start_y, + int block_width, int block_height, int16_t alpha, int16_t beta, + int16_t gamma, int16_t delta, void* dest, + ptrdiff_t dest_stride) { + const auto* const src = static_cast<const uint8_t*>(source); + using DestType = + typename std::conditional<is_compound, int16_t, uint8_t>::type; + auto* dst = static_cast<DestType*>(dest); + + // Warp process applies for each 8x8 block. + assert(block_width >= 8); + assert(block_height >= 8); + const int block_end_x = block_start_x + block_width; + const int block_end_y = block_start_y + block_height; + + const int start_x = block_start_x; + const int start_y = block_start_y; + int src_x = (start_x + 4) << subsampling_x; + int src_y = (start_y + 4) << subsampling_y; + const int end_x = (block_end_x + 4) << subsampling_x; + const int end_y = (block_end_y + 4) << subsampling_y; + do { + DestType* dst_row = dst; + src_x = (start_x + 4) << subsampling_x; + do { + HandleWarpBlock<is_compound, DestType>( + src, source_stride, source_width, source_height, warp_params, + subsampling_x, subsampling_y, src_x, src_y, alpha, beta, gamma, delta, + dst_row, dest_stride); + src_x += (8 << subsampling_x); + dst_row += 8; + } while (src_x < end_x); + dst += 8 * dest_stride; + src_y += (8 << subsampling_y); + } while (src_y < end_y); +} + +void Init8bpp() { + Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8); + assert(dsp != nullptr); + dsp->warp = Warp_SSE4_1</*is_compound=*/false>; + dsp->warp_compound = Warp_SSE4_1</*is_compound=*/true>; +} + +} // namespace +} // namespace low_bitdepth + +void WarpInit_SSE4_1() { low_bitdepth::Init8bpp(); } + +} // namespace dsp +} // namespace libgav1 +#else // !LIBGAV1_TARGETING_SSE4_1 + +namespace libgav1 { +namespace dsp { + +void WarpInit_SSE4_1() {} + +} // namespace dsp +} // namespace libgav1 +#endif // LIBGAV1_TARGETING_SSE4_1 |