aboutsummaryrefslogtreecommitdiff
path: root/src/tile/tile.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/tile/tile.cc')
-rw-r--r--src/tile/tile.cc2573
1 files changed, 2573 insertions, 0 deletions
diff --git a/src/tile/tile.cc b/src/tile/tile.cc
new file mode 100644
index 0000000..ee48f17
--- /dev/null
+++ b/src/tile/tile.cc
@@ -0,0 +1,2573 @@
+// Copyright 2019 The libgav1 Authors
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "src/tile.h"
+
+#include <algorithm>
+#include <array>
+#include <cassert>
+#include <climits>
+#include <cstdlib>
+#include <cstring>
+#include <memory>
+#include <new>
+#include <numeric>
+#include <type_traits>
+#include <utility>
+
+#include "src/frame_scratch_buffer.h"
+#include "src/motion_vector.h"
+#include "src/reconstruction.h"
+#include "src/utils/bit_mask_set.h"
+#include "src/utils/common.h"
+#include "src/utils/constants.h"
+#include "src/utils/logging.h"
+#include "src/utils/segmentation.h"
+#include "src/utils/stack.h"
+
+namespace libgav1 {
+namespace {
+
+// Import all the constants in the anonymous namespace.
+#include "src/scan_tables.inc"
+
+// Range above kNumQuantizerBaseLevels which the exponential golomb coding
+// process is activated.
+constexpr int kQuantizerCoefficientBaseRange = 12;
+constexpr int kNumQuantizerBaseLevels = 2;
+constexpr int kCoeffBaseRangeMaxIterations =
+ kQuantizerCoefficientBaseRange / (kCoeffBaseRangeSymbolCount - 1);
+constexpr int kEntropyContextLeft = 0;
+constexpr int kEntropyContextTop = 1;
+
+constexpr uint8_t kAllZeroContextsByTopLeft[5][5] = {{1, 2, 2, 2, 3},
+ {2, 4, 4, 4, 5},
+ {2, 4, 4, 4, 5},
+ {2, 4, 4, 4, 5},
+ {3, 5, 5, 5, 6}};
+
+// The space complexity of DFS is O(branching_factor * max_depth). For the
+// parameter tree, branching_factor = 4 (there could be up to 4 children for
+// every node) and max_depth (excluding the root) = 5 (to go from a 128x128
+// block all the way to a 4x4 block). The worse-case stack size is 16, by
+// counting the number of 'o' nodes in the diagram:
+//
+// | 128x128 The highest level (corresponding to the
+// | root of the tree) has no node in the stack.
+// |-----------------+
+// | | | |
+// | o o o 64x64
+// |
+// |-----------------+
+// | | | |
+// | o o o 32x32 Higher levels have three nodes in the stack,
+// | because we pop one node off the stack before
+// |-----------------+ pushing its four children onto the stack.
+// | | | |
+// | o o o 16x16
+// |
+// |-----------------+
+// | | | |
+// | o o o 8x8
+// |
+// |-----------------+
+// | | | |
+// o o o o 4x4 Only the lowest level has four nodes in the
+// stack.
+constexpr int kDfsStackSize = 16;
+
+// Mask indicating whether the transform sets contain a particular transform
+// type. If |tx_type| is present in |tx_set|, then the |tx_type|th LSB is set.
+constexpr BitMaskSet kTransformTypeInSetMask[kNumTransformSets] = {
+ BitMaskSet(0x1), BitMaskSet(0xE0F), BitMaskSet(0x20F),
+ BitMaskSet(0xFFFF), BitMaskSet(0xFFF), BitMaskSet(0x201)};
+
+constexpr PredictionMode
+ kFilterIntraModeToIntraPredictor[kNumFilterIntraPredictors] = {
+ kPredictionModeDc, kPredictionModeVertical, kPredictionModeHorizontal,
+ kPredictionModeD157, kPredictionModeDc};
+
+// Mask used to determine the index for mode_deltas lookup.
+constexpr BitMaskSet kPredictionModeDeltasMask(
+ kPredictionModeNearestMv, kPredictionModeNearMv, kPredictionModeNewMv,
+ kPredictionModeNearestNearestMv, kPredictionModeNearNearMv,
+ kPredictionModeNearestNewMv, kPredictionModeNewNearestMv,
+ kPredictionModeNearNewMv, kPredictionModeNewNearMv,
+ kPredictionModeNewNewMv);
+
+// This is computed as:
+// min(transform_width_log2, 5) + min(transform_height_log2, 5) - 4.
+constexpr uint8_t kEobMultiSizeLookup[kNumTransformSizes] = {
+ 0, 1, 2, 1, 2, 3, 4, 2, 3, 4, 5, 5, 4, 5, 6, 6, 5, 6, 6};
+
+/* clang-format off */
+constexpr uint8_t kCoeffBaseContextOffset[kNumTransformSizes][5][5] = {
+ {{0, 1, 6, 6, 0}, {1, 6, 6, 21, 0}, {6, 6, 21, 21, 0}, {6, 21, 21, 21, 0},
+ {0, 0, 0, 0, 0}},
+ {{0, 11, 11, 11, 0}, {11, 11, 11, 11, 0}, {6, 6, 21, 21, 0},
+ {6, 21, 21, 21, 0}, {21, 21, 21, 21, 0}},
+ {{0, 11, 11, 11, 0}, {11, 11, 11, 11, 0}, {6, 6, 21, 21, 0},
+ {6, 21, 21, 21, 0}, {21, 21, 21, 21, 0}},
+ {{0, 16, 6, 6, 21}, {16, 16, 6, 21, 21}, {16, 16, 21, 21, 21},
+ {16, 16, 21, 21, 21}, {0, 0, 0, 0, 0}},
+ {{0, 1, 6, 6, 21}, {1, 6, 6, 21, 21}, {6, 6, 21, 21, 21},
+ {6, 21, 21, 21, 21}, {21, 21, 21, 21, 21}},
+ {{0, 11, 11, 11, 11}, {11, 11, 11, 11, 11}, {6, 6, 21, 21, 21},
+ {6, 21, 21, 21, 21}, {21, 21, 21, 21, 21}},
+ {{0, 11, 11, 11, 11}, {11, 11, 11, 11, 11}, {6, 6, 21, 21, 21},
+ {6, 21, 21, 21, 21}, {21, 21, 21, 21, 21}},
+ {{0, 16, 6, 6, 21}, {16, 16, 6, 21, 21}, {16, 16, 21, 21, 21},
+ {16, 16, 21, 21, 21}, {0, 0, 0, 0, 0}},
+ {{0, 16, 6, 6, 21}, {16, 16, 6, 21, 21}, {16, 16, 21, 21, 21},
+ {16, 16, 21, 21, 21}, {16, 16, 21, 21, 21}},
+ {{0, 1, 6, 6, 21}, {1, 6, 6, 21, 21}, {6, 6, 21, 21, 21},
+ {6, 21, 21, 21, 21}, {21, 21, 21, 21, 21}},
+ {{0, 11, 11, 11, 11}, {11, 11, 11, 11, 11}, {6, 6, 21, 21, 21},
+ {6, 21, 21, 21, 21}, {21, 21, 21, 21, 21}},
+ {{0, 11, 11, 11, 11}, {11, 11, 11, 11, 11}, {6, 6, 21, 21, 21},
+ {6, 21, 21, 21, 21}, {21, 21, 21, 21, 21}},
+ {{0, 16, 6, 6, 21}, {16, 16, 6, 21, 21}, {16, 16, 21, 21, 21},
+ {16, 16, 21, 21, 21}, {16, 16, 21, 21, 21}},
+ {{0, 16, 6, 6, 21}, {16, 16, 6, 21, 21}, {16, 16, 21, 21, 21},
+ {16, 16, 21, 21, 21}, {16, 16, 21, 21, 21}},
+ {{0, 1, 6, 6, 21}, {1, 6, 6, 21, 21}, {6, 6, 21, 21, 21},
+ {6, 21, 21, 21, 21}, {21, 21, 21, 21, 21}},
+ {{0, 11, 11, 11, 11}, {11, 11, 11, 11, 11}, {6, 6, 21, 21, 21},
+ {6, 21, 21, 21, 21}, {21, 21, 21, 21, 21}},
+ {{0, 16, 6, 6, 21}, {16, 16, 6, 21, 21}, {16, 16, 21, 21, 21},
+ {16, 16, 21, 21, 21}, {16, 16, 21, 21, 21}},
+ {{0, 16, 6, 6, 21}, {16, 16, 6, 21, 21}, {16, 16, 21, 21, 21},
+ {16, 16, 21, 21, 21}, {16, 16, 21, 21, 21}},
+ {{0, 1, 6, 6, 21}, {1, 6, 6, 21, 21}, {6, 6, 21, 21, 21},
+ {6, 21, 21, 21, 21}, {21, 21, 21, 21, 21}}};
+/* clang-format on */
+
+// Extended the table size from 3 to 16 by repeating the last element to avoid
+// the clips to row or column indices.
+constexpr uint8_t kCoeffBasePositionContextOffset[16] = {
+ 26, 31, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36};
+
+constexpr PredictionMode kInterIntraToIntraMode[kNumInterIntraModes] = {
+ kPredictionModeDc, kPredictionModeVertical, kPredictionModeHorizontal,
+ kPredictionModeSmooth};
+
+// Number of horizontal luma samples before intra block copy can be used.
+constexpr int kIntraBlockCopyDelayPixels = 256;
+// Number of 64 by 64 blocks before intra block copy can be used.
+constexpr int kIntraBlockCopyDelay64x64Blocks = kIntraBlockCopyDelayPixels / 64;
+
+// Index [i][j] corresponds to the transform size of width 1 << (i + 2) and
+// height 1 << (j + 2).
+constexpr TransformSize k4x4SizeToTransformSize[5][5] = {
+ {kTransformSize4x4, kTransformSize4x8, kTransformSize4x16,
+ kNumTransformSizes, kNumTransformSizes},
+ {kTransformSize8x4, kTransformSize8x8, kTransformSize8x16,
+ kTransformSize8x32, kNumTransformSizes},
+ {kTransformSize16x4, kTransformSize16x8, kTransformSize16x16,
+ kTransformSize16x32, kTransformSize16x64},
+ {kNumTransformSizes, kTransformSize32x8, kTransformSize32x16,
+ kTransformSize32x32, kTransformSize32x64},
+ {kNumTransformSizes, kNumTransformSizes, kTransformSize64x16,
+ kTransformSize64x32, kTransformSize64x64}};
+
+// Defined in section 9.3 of the spec.
+constexpr TransformType kModeToTransformType[kIntraPredictionModesUV] = {
+ kTransformTypeDctDct, kTransformTypeDctAdst, kTransformTypeAdstDct,
+ kTransformTypeDctDct, kTransformTypeAdstAdst, kTransformTypeDctAdst,
+ kTransformTypeAdstDct, kTransformTypeAdstDct, kTransformTypeDctAdst,
+ kTransformTypeAdstAdst, kTransformTypeDctAdst, kTransformTypeAdstDct,
+ kTransformTypeAdstAdst, kTransformTypeDctDct};
+
+// Defined in section 5.11.47 of the spec. This array does not contain an entry
+// for kTransformSetDctOnly, so the first dimension needs to be
+// |kNumTransformSets| - 1.
+constexpr TransformType kInverseTransformTypeBySet[kNumTransformSets - 1][16] =
+ {{kTransformTypeIdentityIdentity, kTransformTypeDctDct,
+ kTransformTypeIdentityDct, kTransformTypeDctIdentity,
+ kTransformTypeAdstAdst, kTransformTypeDctAdst, kTransformTypeAdstDct},
+ {kTransformTypeIdentityIdentity, kTransformTypeDctDct,
+ kTransformTypeAdstAdst, kTransformTypeDctAdst, kTransformTypeAdstDct},
+ {kTransformTypeIdentityIdentity, kTransformTypeIdentityDct,
+ kTransformTypeDctIdentity, kTransformTypeIdentityAdst,
+ kTransformTypeAdstIdentity, kTransformTypeIdentityFlipadst,
+ kTransformTypeFlipadstIdentity, kTransformTypeDctDct,
+ kTransformTypeDctAdst, kTransformTypeAdstDct, kTransformTypeDctFlipadst,
+ kTransformTypeFlipadstDct, kTransformTypeAdstAdst,
+ kTransformTypeFlipadstFlipadst, kTransformTypeFlipadstAdst,
+ kTransformTypeAdstFlipadst},
+ {kTransformTypeIdentityIdentity, kTransformTypeIdentityDct,
+ kTransformTypeDctIdentity, kTransformTypeDctDct, kTransformTypeDctAdst,
+ kTransformTypeAdstDct, kTransformTypeDctFlipadst,
+ kTransformTypeFlipadstDct, kTransformTypeAdstAdst,
+ kTransformTypeFlipadstFlipadst, kTransformTypeFlipadstAdst,
+ kTransformTypeAdstFlipadst},
+ {kTransformTypeIdentityIdentity, kTransformTypeDctDct}};
+
+// Replaces all occurrences of 64x* and *x64 with 32x* and *x32 respectively.
+constexpr TransformSize kAdjustedTransformSize[kNumTransformSizes] = {
+ kTransformSize4x4, kTransformSize4x8, kTransformSize4x16,
+ kTransformSize8x4, kTransformSize8x8, kTransformSize8x16,
+ kTransformSize8x32, kTransformSize16x4, kTransformSize16x8,
+ kTransformSize16x16, kTransformSize16x32, kTransformSize16x32,
+ kTransformSize32x8, kTransformSize32x16, kTransformSize32x32,
+ kTransformSize32x32, kTransformSize32x16, kTransformSize32x32,
+ kTransformSize32x32};
+
+// This is the same as Max_Tx_Size_Rect array in the spec but with *x64 and 64*x
+// transforms replaced with *x32 and 32x* respectively.
+constexpr TransformSize kUVTransformSize[kMaxBlockSizes] = {
+ kTransformSize4x4, kTransformSize4x8, kTransformSize4x16,
+ kTransformSize8x4, kTransformSize8x8, kTransformSize8x16,
+ kTransformSize8x32, kTransformSize16x4, kTransformSize16x8,
+ kTransformSize16x16, kTransformSize16x32, kTransformSize16x32,
+ kTransformSize32x8, kTransformSize32x16, kTransformSize32x32,
+ kTransformSize32x32, kTransformSize32x16, kTransformSize32x32,
+ kTransformSize32x32, kTransformSize32x32, kTransformSize32x32,
+ kTransformSize32x32};
+
+// ith entry of this array is computed as:
+// DivideBy2(TransformSizeToSquareTransformIndex(kTransformSizeSquareMin[i]) +
+// TransformSizeToSquareTransformIndex(kTransformSizeSquareMax[i]) +
+// 1)
+constexpr uint8_t kTransformSizeContext[kNumTransformSizes] = {
+ 0, 1, 1, 1, 1, 2, 2, 1, 2, 2, 3, 3, 2, 3, 3, 4, 3, 4, 4};
+
+constexpr int8_t kSgrProjDefaultMultiplier[2] = {-32, 31};
+
+constexpr int8_t kWienerDefaultFilter[kNumWienerCoefficients] = {3, -7, 15};
+
+// Maps compound prediction modes into single modes. For e.g.
+// kPredictionModeNearestNewMv will map to kPredictionModeNearestMv for index 0
+// and kPredictionModeNewMv for index 1. It is used to simplify the logic in
+// AssignMv (and avoid duplicate code). This is section 5.11.30. in the spec.
+constexpr PredictionMode
+ kCompoundToSinglePredictionMode[kNumCompoundInterPredictionModes][2] = {
+ {kPredictionModeNearestMv, kPredictionModeNearestMv},
+ {kPredictionModeNearMv, kPredictionModeNearMv},
+ {kPredictionModeNearestMv, kPredictionModeNewMv},
+ {kPredictionModeNewMv, kPredictionModeNearestMv},
+ {kPredictionModeNearMv, kPredictionModeNewMv},
+ {kPredictionModeNewMv, kPredictionModeNearMv},
+ {kPredictionModeGlobalMv, kPredictionModeGlobalMv},
+ {kPredictionModeNewMv, kPredictionModeNewMv},
+};
+PredictionMode GetSinglePredictionMode(int index, PredictionMode y_mode) {
+ if (y_mode < kPredictionModeNearestNearestMv) {
+ return y_mode;
+ }
+ const int lookup_index = y_mode - kPredictionModeNearestNearestMv;
+ assert(lookup_index >= 0);
+ return kCompoundToSinglePredictionMode[lookup_index][index];
+}
+
+// log2(dqDenom) in section 7.12.3 of the spec. We use the log2 value because
+// dqDenom is always a power of two and hence right shift can be used instead of
+// division.
+constexpr uint8_t kQuantizationShift[kNumTransformSizes] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 2, 1, 2, 2};
+
+// Returns the minimum of |length| or |max|-|start|. This is used to clamp array
+// indices when accessing arrays whose bound is equal to |max|.
+int GetNumElements(int length, int start, int max) {
+ return std::min(length, max - start);
+}
+
+template <typename T>
+void SetBlockValues(int rows, int columns, T value, T* dst, ptrdiff_t stride) {
+ // Specialize all columns cases (values in kTransformWidth4x4[]) for better
+ // performance.
+ switch (columns) {
+ case 1:
+ MemSetBlock<T>(rows, 1, value, dst, stride);
+ break;
+ case 2:
+ MemSetBlock<T>(rows, 2, value, dst, stride);
+ break;
+ case 4:
+ MemSetBlock<T>(rows, 4, value, dst, stride);
+ break;
+ case 8:
+ MemSetBlock<T>(rows, 8, value, dst, stride);
+ break;
+ default:
+ assert(columns == 16);
+ MemSetBlock<T>(rows, 16, value, dst, stride);
+ break;
+ }
+}
+
+void SetTransformType(const Tile::Block& block, int x4, int y4, int w4, int h4,
+ TransformType tx_type,
+ TransformType transform_types[32][32]) {
+ const int y_offset = y4 - block.row4x4;
+ const int x_offset = x4 - block.column4x4;
+ TransformType* const dst = &transform_types[y_offset][x_offset];
+ SetBlockValues<TransformType>(h4, w4, tx_type, dst, 32);
+}
+
+void StoreMotionFieldMvs(ReferenceFrameType reference_frame_to_store,
+ const MotionVector& mv_to_store, ptrdiff_t stride,
+ int rows, int columns,
+ ReferenceFrameType* reference_frame_row_start,
+ MotionVector* mv) {
+ static_assert(sizeof(*reference_frame_row_start) == sizeof(int8_t), "");
+ do {
+ // Don't switch the following two memory setting functions.
+ // Some ARM CPUs are quite sensitive to the order.
+ memset(reference_frame_row_start, reference_frame_to_store, columns);
+ std::fill(mv, mv + columns, mv_to_store);
+ reference_frame_row_start += stride;
+ mv += stride;
+ } while (--rows != 0);
+}
+
+// Inverse transform process assumes that the quantized coefficients are stored
+// as a virtual 2d array of size |tx_width| x tx_height. If transform width is
+// 64, then this assumption is broken because the scan order used for populating
+// the coefficients for such transforms is the same as the one used for
+// corresponding transform with width 32 (e.g. the scan order used for 64x16 is
+// the same as the one used for 32x16). So we must restore the coefficients to
+// their correct positions and clean the positions they occupied.
+template <typename ResidualType>
+void MoveCoefficientsForTxWidth64(int clamped_tx_height, int tx_width,
+ ResidualType* residual) {
+ if (tx_width != 64) return;
+ const int rows = clamped_tx_height - 2;
+ auto* src = residual + 32 * rows;
+ residual += 64 * rows;
+ // Process 2 rows in each loop in reverse order to avoid overwrite.
+ int x = rows >> 1;
+ do {
+ // The 2 rows can be processed in order.
+ memcpy(residual, src, 32 * sizeof(src[0]));
+ memcpy(residual + 64, src + 32, 32 * sizeof(src[0]));
+ memset(src + 32, 0, 32 * sizeof(src[0]));
+ src -= 64;
+ residual -= 128;
+ } while (--x);
+ // Process the second row. The first row is already correct.
+ memcpy(residual + 64, src + 32, 32 * sizeof(src[0]));
+ memset(src + 32, 0, 32 * sizeof(src[0]));
+}
+
+void GetClampParameters(const Tile::Block& block, int min[2], int max[2]) {
+ // 7.10.2.14 (part 1). (also contains implementations of 5.11.53
+ // and 5.11.54).
+ constexpr int kMvBorder4x4 = 4;
+ const int row_border = kMvBorder4x4 + block.height4x4;
+ const int column_border = kMvBorder4x4 + block.width4x4;
+ const int macroblocks_to_top_edge = -block.row4x4;
+ const int macroblocks_to_bottom_edge =
+ block.tile.frame_header().rows4x4 - block.height4x4 - block.row4x4;
+ const int macroblocks_to_left_edge = -block.column4x4;
+ const int macroblocks_to_right_edge =
+ block.tile.frame_header().columns4x4 - block.width4x4 - block.column4x4;
+ min[0] = MultiplyBy32(macroblocks_to_top_edge - row_border);
+ min[1] = MultiplyBy32(macroblocks_to_left_edge - column_border);
+ max[0] = MultiplyBy32(macroblocks_to_bottom_edge + row_border);
+ max[1] = MultiplyBy32(macroblocks_to_right_edge + column_border);
+}
+
+// Section 8.3.2 in the spec, under coeff_base_eob.
+int GetCoeffBaseContextEob(TransformSize tx_size, int index) {
+ if (index == 0) return 0;
+ const TransformSize adjusted_tx_size = kAdjustedTransformSize[tx_size];
+ const int tx_width_log2 = kTransformWidthLog2[adjusted_tx_size];
+ const int tx_height = kTransformHeight[adjusted_tx_size];
+ if (index <= DivideBy8(tx_height << tx_width_log2)) return 1;
+ if (index <= DivideBy4(tx_height << tx_width_log2)) return 2;
+ return 3;
+}
+
+// Section 8.3.2 in the spec, under coeff_br. Optimized for end of block based
+// on the fact that {0, 1}, {1, 0}, {1, 1}, {0, 2} and {2, 0} will all be 0 in
+// the end of block case.
+int GetCoeffBaseRangeContextEob(int adjusted_tx_width_log2, int pos,
+ TransformClass tx_class) {
+ if (pos == 0) return 0;
+ const int tx_width = 1 << adjusted_tx_width_log2;
+ const int row = pos >> adjusted_tx_width_log2;
+ const int column = pos & (tx_width - 1);
+ // This return statement is equivalent to:
+ // return ((tx_class == kTransformClass2D && (row | column) < 2) ||
+ // (tx_class == kTransformClassHorizontal && column == 0) ||
+ // (tx_class == kTransformClassVertical && row == 0))
+ // ? 7
+ // : 14;
+ return 14 >> ((static_cast<int>(tx_class == kTransformClass2D) &
+ static_cast<int>((row | column) < 2)) |
+ (tx_class & static_cast<int>(column == 0)) |
+ ((tx_class >> 1) & static_cast<int>(row == 0)));
+}
+
+} // namespace
+
+Tile::Tile(int tile_number, const uint8_t* const data, size_t size,
+ const ObuSequenceHeader& sequence_header,
+ const ObuFrameHeader& frame_header,
+ RefCountedBuffer* const current_frame, const DecoderState& state,
+ FrameScratchBuffer* const frame_scratch_buffer,
+ const WedgeMaskArray& wedge_masks,
+ const QuantizerMatrix& quantizer_matrix,
+ SymbolDecoderContext* const saved_symbol_decoder_context,
+ const SegmentationMap* prev_segment_ids,
+ PostFilter* const post_filter, const dsp::Dsp* const dsp,
+ ThreadPool* const thread_pool,
+ BlockingCounterWithStatus* const pending_tiles, bool frame_parallel,
+ bool use_intra_prediction_buffer)
+ : number_(tile_number),
+ row_(number_ / frame_header.tile_info.tile_columns),
+ column_(number_ % frame_header.tile_info.tile_columns),
+ data_(data),
+ size_(size),
+ read_deltas_(false),
+ subsampling_x_{0, sequence_header.color_config.subsampling_x,
+ sequence_header.color_config.subsampling_x},
+ subsampling_y_{0, sequence_header.color_config.subsampling_y,
+ sequence_header.color_config.subsampling_y},
+ current_quantizer_index_(frame_header.quantizer.base_index),
+ sequence_header_(sequence_header),
+ frame_header_(frame_header),
+ reference_frame_sign_bias_(state.reference_frame_sign_bias),
+ reference_frames_(state.reference_frame),
+ motion_field_(frame_scratch_buffer->motion_field),
+ reference_order_hint_(state.reference_order_hint),
+ wedge_masks_(wedge_masks),
+ quantizer_matrix_(quantizer_matrix),
+ reader_(data_, size_, frame_header_.enable_cdf_update),
+ symbol_decoder_context_(frame_scratch_buffer->symbol_decoder_context),
+ saved_symbol_decoder_context_(saved_symbol_decoder_context),
+ prev_segment_ids_(prev_segment_ids),
+ dsp_(*dsp),
+ post_filter_(*post_filter),
+ block_parameters_holder_(frame_scratch_buffer->block_parameters_holder),
+ quantizer_(sequence_header_.color_config.bitdepth,
+ &frame_header_.quantizer),
+ residual_size_((sequence_header_.color_config.bitdepth == 8)
+ ? sizeof(int16_t)
+ : sizeof(int32_t)),
+ intra_block_copy_lag_(
+ frame_header_.allow_intrabc
+ ? (sequence_header_.use_128x128_superblock ? 3 : 5)
+ : 1),
+ current_frame_(*current_frame),
+ cdef_index_(frame_scratch_buffer->cdef_index),
+ inter_transform_sizes_(frame_scratch_buffer->inter_transform_sizes),
+ thread_pool_(thread_pool),
+ residual_buffer_pool_(frame_scratch_buffer->residual_buffer_pool.get()),
+ tile_scratch_buffer_pool_(
+ &frame_scratch_buffer->tile_scratch_buffer_pool),
+ pending_tiles_(pending_tiles),
+ frame_parallel_(frame_parallel),
+ use_intra_prediction_buffer_(use_intra_prediction_buffer),
+ intra_prediction_buffer_(
+ use_intra_prediction_buffer_
+ ? &frame_scratch_buffer->intra_prediction_buffers.get()[row_]
+ : nullptr) {
+ row4x4_start_ = frame_header.tile_info.tile_row_start[row_];
+ row4x4_end_ = frame_header.tile_info.tile_row_start[row_ + 1];
+ column4x4_start_ = frame_header.tile_info.tile_column_start[column_];
+ column4x4_end_ = frame_header.tile_info.tile_column_start[column_ + 1];
+ const int block_width4x4 = kNum4x4BlocksWide[SuperBlockSize()];
+ const int block_width4x4_log2 = k4x4HeightLog2[SuperBlockSize()];
+ superblock_rows_ =
+ (row4x4_end_ - row4x4_start_ + block_width4x4 - 1) >> block_width4x4_log2;
+ superblock_columns_ =
+ (column4x4_end_ - column4x4_start_ + block_width4x4 - 1) >>
+ block_width4x4_log2;
+ // If |split_parse_and_decode_| is true, we do the necessary setup for
+ // splitting the parsing and the decoding steps. This is done in the following
+ // two cases:
+ // 1) If there is multi-threading within a tile (this is done if
+ // |thread_pool_| is not nullptr and if there are at least as many
+ // superblock columns as |intra_block_copy_lag_|).
+ // 2) If |frame_parallel| is true.
+ split_parse_and_decode_ = (thread_pool_ != nullptr &&
+ superblock_columns_ > intra_block_copy_lag_) ||
+ frame_parallel;
+ if (frame_parallel_) {
+ reference_frame_progress_cache_.fill(INT_MIN);
+ }
+ memset(delta_lf_, 0, sizeof(delta_lf_));
+ delta_lf_all_zero_ = true;
+ const YuvBuffer& buffer = post_filter_.frame_buffer();
+ for (int plane = kPlaneY; plane < PlaneCount(); ++plane) {
+ // Verify that the borders are big enough for Reconstruct(). max_tx_length
+ // is the maximum value of tx_width and tx_height for the plane.
+ const int max_tx_length = (plane == kPlaneY) ? 64 : 32;
+ // Reconstruct() may overwrite on the right. Since the right border of a
+ // row is followed in memory by the left border of the next row, the
+ // number of extra pixels to the right of a row is at least the sum of the
+ // left and right borders.
+ //
+ // Note: This assertion actually checks the sum of the left and right
+ // borders of post_filter_.GetUnfilteredBuffer(), which is a horizontally
+ // and vertically shifted version of |buffer|. Since the sum of the left and
+ // right borders is not changed by the shift, we can just check the sum of
+ // the left and right borders of |buffer|.
+ assert(buffer.left_border(plane) + buffer.right_border(plane) >=
+ max_tx_length - 1);
+ // Reconstruct() may overwrite on the bottom. We need an extra border row
+ // on the bottom because we need the left border of that row.
+ //
+ // Note: This assertion checks the bottom border of
+ // post_filter_.GetUnfilteredBuffer(). So we need to calculate the vertical
+ // shift that the PostFilter constructor applied to |buffer| and reduce the
+ // bottom border by that amount.
+#ifndef NDEBUG
+ const int vertical_shift = static_cast<int>(
+ (post_filter_.GetUnfilteredBuffer(plane) - buffer.data(plane)) /
+ buffer.stride(plane));
+ const int bottom_border = buffer.bottom_border(plane) - vertical_shift;
+ assert(bottom_border >= max_tx_length);
+#endif
+ // In AV1, a transform block of height H starts at a y coordinate that is
+ // a multiple of H. If a transform block at the bottom of the frame has
+ // height H, then Reconstruct() will write up to the row with index
+ // Align(buffer.height(plane), H) - 1. Therefore the maximum number of
+ // rows Reconstruct() may write to is
+ // Align(buffer.height(plane), max_tx_length).
+ buffer_[plane].Reset(Align(buffer.height(plane), max_tx_length),
+ buffer.stride(plane),
+ post_filter_.GetUnfilteredBuffer(plane));
+ const int plane_height =
+ SubsampledValue(frame_header_.height, subsampling_y_[plane]);
+ deblock_row_limit_[plane] =
+ std::min(frame_header_.rows4x4, DivideBy4(plane_height + 3)
+ << subsampling_y_[plane]);
+ const int plane_width =
+ SubsampledValue(frame_header_.width, subsampling_x_[plane]);
+ deblock_column_limit_[plane] =
+ std::min(frame_header_.columns4x4, DivideBy4(plane_width + 3)
+ << subsampling_x_[plane]);
+ }
+}
+
+bool Tile::Init() {
+ assert(coefficient_levels_.size() == dc_categories_.size());
+ for (size_t i = 0; i < coefficient_levels_.size(); ++i) {
+ const int contexts_per_plane = (i == kEntropyContextLeft)
+ ? frame_header_.rows4x4
+ : frame_header_.columns4x4;
+ if (!coefficient_levels_[i].Reset(PlaneCount(), contexts_per_plane)) {
+ LIBGAV1_DLOG(ERROR, "coefficient_levels_[%zu].Reset() failed.", i);
+ return false;
+ }
+ if (!dc_categories_[i].Reset(PlaneCount(), contexts_per_plane)) {
+ LIBGAV1_DLOG(ERROR, "dc_categories_[%zu].Reset() failed.", i);
+ return false;
+ }
+ }
+ if (split_parse_and_decode_) {
+ assert(residual_buffer_pool_ != nullptr);
+ if (!residual_buffer_threaded_.Reset(superblock_rows_, superblock_columns_,
+ /*zero_initialize=*/false)) {
+ LIBGAV1_DLOG(ERROR, "residual_buffer_threaded_.Reset() failed.");
+ return false;
+ }
+ } else {
+ // Add 32 * |kResidualPaddingVertical| padding to avoid bottom boundary
+ // checks when parsing quantized coefficients.
+ residual_buffer_ = MakeAlignedUniquePtr<uint8_t>(
+ 32, (4096 + 32 * kResidualPaddingVertical) * residual_size_);
+ if (residual_buffer_ == nullptr) {
+ LIBGAV1_DLOG(ERROR, "Allocation of residual_buffer_ failed.");
+ return false;
+ }
+ prediction_parameters_.reset(new (std::nothrow) PredictionParameters());
+ if (prediction_parameters_ == nullptr) {
+ LIBGAV1_DLOG(ERROR, "Allocation of prediction_parameters_ failed.");
+ return false;
+ }
+ }
+ if (frame_header_.use_ref_frame_mvs) {
+ assert(sequence_header_.enable_order_hint);
+ SetupMotionField(frame_header_, current_frame_, reference_frames_,
+ row4x4_start_, row4x4_end_, column4x4_start_,
+ column4x4_end_, &motion_field_);
+ }
+ ResetLoopRestorationParams();
+ return true;
+}
+
+template <ProcessingMode processing_mode, bool save_symbol_decoder_context>
+bool Tile::ProcessSuperBlockRow(int row4x4,
+ TileScratchBuffer* const scratch_buffer) {
+ if (row4x4 < row4x4_start_ || row4x4 >= row4x4_end_) return true;
+ assert(scratch_buffer != nullptr);
+ const int block_width4x4 = kNum4x4BlocksWide[SuperBlockSize()];
+ for (int column4x4 = column4x4_start_; column4x4 < column4x4_end_;
+ column4x4 += block_width4x4) {
+ if (!ProcessSuperBlock(row4x4, column4x4, block_width4x4, scratch_buffer,
+ processing_mode)) {
+ LIBGAV1_DLOG(ERROR, "Error decoding super block row: %d column: %d",
+ row4x4, column4x4);
+ return false;
+ }
+ }
+ if (save_symbol_decoder_context && row4x4 + block_width4x4 >= row4x4_end_) {
+ SaveSymbolDecoderContext();
+ }
+ if (processing_mode == kProcessingModeDecodeOnly ||
+ processing_mode == kProcessingModeParseAndDecode) {
+ PopulateIntraPredictionBuffer(row4x4);
+ }
+ return true;
+}
+
+// Used in frame parallel mode. The symbol decoder context need not be saved in
+// this case since it was done when parsing was complete.
+template bool Tile::ProcessSuperBlockRow<kProcessingModeDecodeOnly, false>(
+ int row4x4, TileScratchBuffer* scratch_buffer);
+// Used in non frame parallel mode.
+template bool Tile::ProcessSuperBlockRow<kProcessingModeParseAndDecode, true>(
+ int row4x4, TileScratchBuffer* scratch_buffer);
+
+void Tile::SaveSymbolDecoderContext() {
+ if (frame_header_.enable_frame_end_update_cdf &&
+ number_ == frame_header_.tile_info.context_update_id) {
+ *saved_symbol_decoder_context_ = symbol_decoder_context_;
+ }
+}
+
+bool Tile::ParseAndDecode() {
+ // If this is the main thread, we build the loop filter bit masks when parsing
+ // so that it happens in the current thread. This ensures that the main thread
+ // does as much work as possible.
+ if (split_parse_and_decode_) {
+ if (!ThreadedParseAndDecode()) return false;
+ SaveSymbolDecoderContext();
+ return true;
+ }
+ std::unique_ptr<TileScratchBuffer> scratch_buffer =
+ tile_scratch_buffer_pool_->Get();
+ if (scratch_buffer == nullptr) {
+ pending_tiles_->Decrement(false);
+ LIBGAV1_DLOG(ERROR, "Failed to get scratch buffer.");
+ return false;
+ }
+ const int block_width4x4 = kNum4x4BlocksWide[SuperBlockSize()];
+ for (int row4x4 = row4x4_start_; row4x4 < row4x4_end_;
+ row4x4 += block_width4x4) {
+ if (!ProcessSuperBlockRow<kProcessingModeParseAndDecode, true>(
+ row4x4, scratch_buffer.get())) {
+ pending_tiles_->Decrement(false);
+ return false;
+ }
+ }
+ tile_scratch_buffer_pool_->Release(std::move(scratch_buffer));
+ pending_tiles_->Decrement(true);
+ return true;
+}
+
+bool Tile::Parse() {
+ const int block_width4x4 = kNum4x4BlocksWide[SuperBlockSize()];
+ std::unique_ptr<TileScratchBuffer> scratch_buffer =
+ tile_scratch_buffer_pool_->Get();
+ if (scratch_buffer == nullptr) {
+ LIBGAV1_DLOG(ERROR, "Failed to get scratch buffer.");
+ return false;
+ }
+ for (int row4x4 = row4x4_start_; row4x4 < row4x4_end_;
+ row4x4 += block_width4x4) {
+ if (!ProcessSuperBlockRow<kProcessingModeParseOnly, false>(
+ row4x4, scratch_buffer.get())) {
+ return false;
+ }
+ }
+ tile_scratch_buffer_pool_->Release(std::move(scratch_buffer));
+ SaveSymbolDecoderContext();
+ return true;
+}
+
+bool Tile::Decode(
+ std::mutex* const mutex, int* const superblock_row_progress,
+ std::condition_variable* const superblock_row_progress_condvar) {
+ const int block_width4x4 = sequence_header_.use_128x128_superblock ? 32 : 16;
+ const int block_width4x4_log2 =
+ sequence_header_.use_128x128_superblock ? 5 : 4;
+ std::unique_ptr<TileScratchBuffer> scratch_buffer =
+ tile_scratch_buffer_pool_->Get();
+ if (scratch_buffer == nullptr) {
+ LIBGAV1_DLOG(ERROR, "Failed to get scratch buffer.");
+ return false;
+ }
+ for (int row4x4 = row4x4_start_, index = row4x4_start_ >> block_width4x4_log2;
+ row4x4 < row4x4_end_; row4x4 += block_width4x4, ++index) {
+ if (!ProcessSuperBlockRow<kProcessingModeDecodeOnly, false>(
+ row4x4, scratch_buffer.get())) {
+ return false;
+ }
+ if (post_filter_.DoDeblock()) {
+ // Apply vertical deblock filtering for all the columns in this tile
+ // except for the first 64 columns.
+ post_filter_.ApplyDeblockFilter(
+ kLoopFilterTypeVertical, row4x4,
+ column4x4_start_ + kNum4x4InLoopFilterUnit, column4x4_end_,
+ block_width4x4);
+ // If this is the first superblock row of the tile, then we cannot apply
+ // horizontal deblocking here since we don't know if the top row is
+ // available. So it will be done by the calling thread in that case.
+ if (row4x4 != row4x4_start_) {
+ // Apply horizontal deblock filtering for all the columns in this tile
+ // except for the first and the last 64 columns.
+ // Note about the last tile of each row: For the last tile,
+ // column4x4_end may not be a multiple of 16. In that case it is still
+ // okay to simply subtract 16 since ApplyDeblockFilter() will only do
+ // the filters in increments of 64 columns (or 32 columns for chroma
+ // with subsampling).
+ post_filter_.ApplyDeblockFilter(
+ kLoopFilterTypeHorizontal, row4x4,
+ column4x4_start_ + kNum4x4InLoopFilterUnit,
+ column4x4_end_ - kNum4x4InLoopFilterUnit, block_width4x4);
+ }
+ }
+ bool notify;
+ {
+ std::unique_lock<std::mutex> lock(*mutex);
+ notify = ++superblock_row_progress[index] ==
+ frame_header_.tile_info.tile_columns;
+ }
+ if (notify) {
+ // We are done decoding this superblock row. Notify the post filtering
+ // thread.
+ superblock_row_progress_condvar[index].notify_one();
+ }
+ }
+ tile_scratch_buffer_pool_->Release(std::move(scratch_buffer));
+ return true;
+}
+
+bool Tile::ThreadedParseAndDecode() {
+ {
+ std::lock_guard<std::mutex> lock(threading_.mutex);
+ if (!threading_.sb_state.Reset(superblock_rows_, superblock_columns_)) {
+ pending_tiles_->Decrement(false);
+ LIBGAV1_DLOG(ERROR, "threading.sb_state.Reset() failed.");
+ return false;
+ }
+ // Account for the parsing job.
+ ++threading_.pending_jobs;
+ }
+
+ const int block_width4x4 = kNum4x4BlocksWide[SuperBlockSize()];
+
+ // Begin parsing.
+ std::unique_ptr<TileScratchBuffer> scratch_buffer =
+ tile_scratch_buffer_pool_->Get();
+ if (scratch_buffer == nullptr) {
+ pending_tiles_->Decrement(false);
+ LIBGAV1_DLOG(ERROR, "Failed to get scratch buffer.");
+ return false;
+ }
+ for (int row4x4 = row4x4_start_, row_index = 0; row4x4 < row4x4_end_;
+ row4x4 += block_width4x4, ++row_index) {
+ for (int column4x4 = column4x4_start_, column_index = 0;
+ column4x4 < column4x4_end_;
+ column4x4 += block_width4x4, ++column_index) {
+ if (!ProcessSuperBlock(row4x4, column4x4, block_width4x4,
+ scratch_buffer.get(), kProcessingModeParseOnly)) {
+ std::lock_guard<std::mutex> lock(threading_.mutex);
+ threading_.abort = true;
+ break;
+ }
+ std::unique_lock<std::mutex> lock(threading_.mutex);
+ if (threading_.abort) break;
+ threading_.sb_state[row_index][column_index] = kSuperBlockStateParsed;
+ // Schedule the decoding of this superblock if it is allowed.
+ if (CanDecode(row_index, column_index)) {
+ ++threading_.pending_jobs;
+ threading_.sb_state[row_index][column_index] =
+ kSuperBlockStateScheduled;
+ lock.unlock();
+ thread_pool_->Schedule(
+ [this, row_index, column_index, block_width4x4]() {
+ DecodeSuperBlock(row_index, column_index, block_width4x4);
+ });
+ }
+ }
+ std::lock_guard<std::mutex> lock(threading_.mutex);
+ if (threading_.abort) break;
+ }
+ tile_scratch_buffer_pool_->Release(std::move(scratch_buffer));
+
+ // We are done parsing. We can return here since the calling thread will make
+ // sure that it waits for all the superblocks to be decoded.
+ //
+ // Finish using |threading_| before |pending_tiles_->Decrement()| because the
+ // Tile object could go out of scope as soon as |pending_tiles_->Decrement()|
+ // is called.
+ threading_.mutex.lock();
+ const bool no_pending_jobs = (--threading_.pending_jobs == 0);
+ const bool job_succeeded = !threading_.abort;
+ threading_.mutex.unlock();
+ if (no_pending_jobs) {
+ // We are done parsing and decoding this tile.
+ pending_tiles_->Decrement(job_succeeded);
+ }
+ return job_succeeded;
+}
+
+bool Tile::CanDecode(int row_index, int column_index) const {
+ assert(row_index >= 0);
+ assert(column_index >= 0);
+ // If |threading_.sb_state[row_index][column_index]| is not equal to
+ // kSuperBlockStateParsed, then return false. This is ok because if
+ // |threading_.sb_state[row_index][column_index]| is equal to:
+ // kSuperBlockStateNone - then the superblock is not yet parsed.
+ // kSuperBlockStateScheduled - then the superblock is already scheduled for
+ // decode.
+ // kSuperBlockStateDecoded - then the superblock has already been decoded.
+ if (row_index >= superblock_rows_ || column_index >= superblock_columns_ ||
+ threading_.sb_state[row_index][column_index] != kSuperBlockStateParsed) {
+ return false;
+ }
+ // First superblock has no dependencies.
+ if (row_index == 0 && column_index == 0) {
+ return true;
+ }
+ // Superblocks in the first row only depend on the superblock to the left of
+ // it.
+ if (row_index == 0) {
+ return threading_.sb_state[0][column_index - 1] == kSuperBlockStateDecoded;
+ }
+ // All other superblocks depend on superblock to the left of it (if one
+ // exists) and superblock to the top right with a lag of
+ // |intra_block_copy_lag_| (if one exists).
+ const int top_right_column_index =
+ std::min(column_index + intra_block_copy_lag_, superblock_columns_ - 1);
+ return threading_.sb_state[row_index - 1][top_right_column_index] ==
+ kSuperBlockStateDecoded &&
+ (column_index == 0 ||
+ threading_.sb_state[row_index][column_index - 1] ==
+ kSuperBlockStateDecoded);
+}
+
+void Tile::DecodeSuperBlock(int row_index, int column_index,
+ int block_width4x4) {
+ const int row4x4 = row4x4_start_ + (row_index * block_width4x4);
+ const int column4x4 = column4x4_start_ + (column_index * block_width4x4);
+ std::unique_ptr<TileScratchBuffer> scratch_buffer =
+ tile_scratch_buffer_pool_->Get();
+ bool ok = scratch_buffer != nullptr;
+ if (ok) {
+ ok = ProcessSuperBlock(row4x4, column4x4, block_width4x4,
+ scratch_buffer.get(), kProcessingModeDecodeOnly);
+ tile_scratch_buffer_pool_->Release(std::move(scratch_buffer));
+ }
+ std::unique_lock<std::mutex> lock(threading_.mutex);
+ if (ok) {
+ threading_.sb_state[row_index][column_index] = kSuperBlockStateDecoded;
+ // Candidate rows and columns that we could potentially begin the decoding
+ // (if it is allowed to do so). The candidates are:
+ // 1) The superblock to the bottom-left of the current superblock with a
+ // lag of |intra_block_copy_lag_| (or the beginning of the next superblock
+ // row in case there are less than |intra_block_copy_lag_| superblock
+ // columns in the Tile).
+ // 2) The superblock to the right of the current superblock.
+ const int candidate_row_indices[] = {row_index + 1, row_index};
+ const int candidate_column_indices[] = {
+ std::max(0, column_index - intra_block_copy_lag_), column_index + 1};
+ for (size_t i = 0; i < std::extent<decltype(candidate_row_indices)>::value;
+ ++i) {
+ const int candidate_row_index = candidate_row_indices[i];
+ const int candidate_column_index = candidate_column_indices[i];
+ if (!CanDecode(candidate_row_index, candidate_column_index)) {
+ continue;
+ }
+ ++threading_.pending_jobs;
+ threading_.sb_state[candidate_row_index][candidate_column_index] =
+ kSuperBlockStateScheduled;
+ lock.unlock();
+ thread_pool_->Schedule([this, candidate_row_index, candidate_column_index,
+ block_width4x4]() {
+ DecodeSuperBlock(candidate_row_index, candidate_column_index,
+ block_width4x4);
+ });
+ lock.lock();
+ }
+ } else {
+ threading_.abort = true;
+ }
+ // Finish using |threading_| before |pending_tiles_->Decrement()| because the
+ // Tile object could go out of scope as soon as |pending_tiles_->Decrement()|
+ // is called.
+ const bool no_pending_jobs = (--threading_.pending_jobs == 0);
+ const bool job_succeeded = !threading_.abort;
+ lock.unlock();
+ if (no_pending_jobs) {
+ // We are done parsing and decoding this tile.
+ pending_tiles_->Decrement(job_succeeded);
+ }
+}
+
+void Tile::PopulateIntraPredictionBuffer(int row4x4) {
+ const int block_width4x4 = kNum4x4BlocksWide[SuperBlockSize()];
+ if (!use_intra_prediction_buffer_ || row4x4 + block_width4x4 >= row4x4_end_) {
+ return;
+ }
+ const size_t pixel_size =
+ (sequence_header_.color_config.bitdepth == 8 ? sizeof(uint8_t)
+ : sizeof(uint16_t));
+ for (int plane = kPlaneY; plane < PlaneCount(); ++plane) {
+ const int row_to_copy =
+ (MultiplyBy4(row4x4 + block_width4x4) >> subsampling_y_[plane]) - 1;
+ const size_t pixels_to_copy =
+ (MultiplyBy4(column4x4_end_ - column4x4_start_) >>
+ subsampling_x_[plane]) *
+ pixel_size;
+ const size_t column_start =
+ MultiplyBy4(column4x4_start_) >> subsampling_x_[plane];
+ void* start;
+#if LIBGAV1_MAX_BITDEPTH >= 10
+ if (sequence_header_.color_config.bitdepth > 8) {
+ Array2DView<uint16_t> buffer(
+ buffer_[plane].rows(), buffer_[plane].columns() / sizeof(uint16_t),
+ reinterpret_cast<uint16_t*>(&buffer_[plane][0][0]));
+ start = &buffer[row_to_copy][column_start];
+ } else // NOLINT
+#endif
+ {
+ start = &buffer_[plane][row_to_copy][column_start];
+ }
+ memcpy((*intra_prediction_buffer_)[plane].get() + column_start * pixel_size,
+ start, pixels_to_copy);
+ }
+}
+
+int Tile::GetTransformAllZeroContext(const Block& block, Plane plane,
+ TransformSize tx_size, int x4, int y4,
+ int w4, int h4) {
+ const int max_x4x4 = frame_header_.columns4x4 >> subsampling_x_[plane];
+ const int max_y4x4 = frame_header_.rows4x4 >> subsampling_y_[plane];
+
+ const int tx_width = kTransformWidth[tx_size];
+ const int tx_height = kTransformHeight[tx_size];
+ const BlockSize plane_size = block.residual_size[plane];
+ const int block_width = kBlockWidthPixels[plane_size];
+ const int block_height = kBlockHeightPixels[plane_size];
+
+ int top = 0;
+ int left = 0;
+ const int num_top_elements = GetNumElements(w4, x4, max_x4x4);
+ const int num_left_elements = GetNumElements(h4, y4, max_y4x4);
+ if (plane == kPlaneY) {
+ if (block_width == tx_width && block_height == tx_height) return 0;
+ const uint8_t* coefficient_levels =
+ &coefficient_levels_[kEntropyContextTop][plane][x4];
+ for (int i = 0; i < num_top_elements; ++i) {
+ top = std::max(top, static_cast<int>(coefficient_levels[i]));
+ }
+ coefficient_levels = &coefficient_levels_[kEntropyContextLeft][plane][y4];
+ for (int i = 0; i < num_left_elements; ++i) {
+ left = std::max(left, static_cast<int>(coefficient_levels[i]));
+ }
+ assert(top <= 4);
+ assert(left <= 4);
+ // kAllZeroContextsByTopLeft is pre-computed based on the logic in the spec
+ // for top and left.
+ return kAllZeroContextsByTopLeft[top][left];
+ }
+ const uint8_t* coefficient_levels =
+ &coefficient_levels_[kEntropyContextTop][plane][x4];
+ const int8_t* dc_categories = &dc_categories_[kEntropyContextTop][plane][x4];
+ for (int i = 0; i < num_top_elements; ++i) {
+ top |= coefficient_levels[i];
+ top |= dc_categories[i];
+ }
+ coefficient_levels = &coefficient_levels_[kEntropyContextLeft][plane][y4];
+ dc_categories = &dc_categories_[kEntropyContextLeft][plane][y4];
+ for (int i = 0; i < num_left_elements; ++i) {
+ left |= coefficient_levels[i];
+ left |= dc_categories[i];
+ }
+ return static_cast<int>(top != 0) + static_cast<int>(left != 0) + 7 +
+ 3 * static_cast<int>(block_width * block_height >
+ tx_width * tx_height);
+}
+
+TransformSet Tile::GetTransformSet(TransformSize tx_size, bool is_inter) const {
+ const TransformSize tx_size_square_min = kTransformSizeSquareMin[tx_size];
+ const TransformSize tx_size_square_max = kTransformSizeSquareMax[tx_size];
+ if (tx_size_square_max == kTransformSize64x64) return kTransformSetDctOnly;
+ if (is_inter) {
+ if (frame_header_.reduced_tx_set ||
+ tx_size_square_max == kTransformSize32x32) {
+ return kTransformSetInter3;
+ }
+ if (tx_size_square_min == kTransformSize16x16) return kTransformSetInter2;
+ return kTransformSetInter1;
+ }
+ if (tx_size_square_max == kTransformSize32x32) return kTransformSetDctOnly;
+ if (frame_header_.reduced_tx_set ||
+ tx_size_square_min == kTransformSize16x16) {
+ return kTransformSetIntra2;
+ }
+ return kTransformSetIntra1;
+}
+
+TransformType Tile::ComputeTransformType(const Block& block, Plane plane,
+ TransformSize tx_size, int block_x,
+ int block_y) {
+ const BlockParameters& bp = *block.bp;
+ const TransformSize tx_size_square_max = kTransformSizeSquareMax[tx_size];
+ if (frame_header_.segmentation.lossless[bp.segment_id] ||
+ tx_size_square_max == kTransformSize64x64) {
+ return kTransformTypeDctDct;
+ }
+ if (plane == kPlaneY) {
+ return transform_types_[block_y - block.row4x4][block_x - block.column4x4];
+ }
+ const TransformSet tx_set = GetTransformSet(tx_size, bp.is_inter);
+ TransformType tx_type;
+ if (bp.is_inter) {
+ const int x4 =
+ std::max(block.column4x4, block_x << subsampling_x_[kPlaneU]);
+ const int y4 = std::max(block.row4x4, block_y << subsampling_y_[kPlaneU]);
+ tx_type = transform_types_[y4 - block.row4x4][x4 - block.column4x4];
+ } else {
+ tx_type = kModeToTransformType[bp.uv_mode];
+ }
+ return kTransformTypeInSetMask[tx_set].Contains(tx_type)
+ ? tx_type
+ : kTransformTypeDctDct;
+}
+
+void Tile::ReadTransformType(const Block& block, int x4, int y4,
+ TransformSize tx_size) {
+ BlockParameters& bp = *block.bp;
+ const TransformSet tx_set = GetTransformSet(tx_size, bp.is_inter);
+
+ TransformType tx_type = kTransformTypeDctDct;
+ if (tx_set != kTransformSetDctOnly &&
+ frame_header_.segmentation.qindex[bp.segment_id] > 0) {
+ const int cdf_index = SymbolDecoderContext::TxTypeIndex(tx_set);
+ const int cdf_tx_size_index =
+ TransformSizeToSquareTransformIndex(kTransformSizeSquareMin[tx_size]);
+ uint16_t* cdf;
+ if (bp.is_inter) {
+ cdf = symbol_decoder_context_
+ .inter_tx_type_cdf[cdf_index][cdf_tx_size_index];
+ switch (tx_set) {
+ case kTransformSetInter1:
+ tx_type = static_cast<TransformType>(reader_.ReadSymbol<16>(cdf));
+ break;
+ case kTransformSetInter2:
+ tx_type = static_cast<TransformType>(reader_.ReadSymbol<12>(cdf));
+ break;
+ default:
+ assert(tx_set == kTransformSetInter3);
+ tx_type = static_cast<TransformType>(reader_.ReadSymbol(cdf));
+ break;
+ }
+ } else {
+ const PredictionMode intra_direction =
+ block.bp->prediction_parameters->use_filter_intra
+ ? kFilterIntraModeToIntraPredictor[block.bp->prediction_parameters
+ ->filter_intra_mode]
+ : bp.y_mode;
+ cdf =
+ symbol_decoder_context_
+ .intra_tx_type_cdf[cdf_index][cdf_tx_size_index][intra_direction];
+ assert(tx_set == kTransformSetIntra1 || tx_set == kTransformSetIntra2);
+ tx_type = static_cast<TransformType>((tx_set == kTransformSetIntra1)
+ ? reader_.ReadSymbol<7>(cdf)
+ : reader_.ReadSymbol<5>(cdf));
+ }
+
+ // This array does not contain an entry for kTransformSetDctOnly, so the
+ // first dimension needs to be offset by 1.
+ tx_type = kInverseTransformTypeBySet[tx_set - 1][tx_type];
+ }
+ SetTransformType(block, x4, y4, kTransformWidth4x4[tx_size],
+ kTransformHeight4x4[tx_size], tx_type, transform_types_);
+}
+
+// Section 8.3.2 in the spec, under coeff_base and coeff_br.
+// Bottom boundary checks are avoided by the padded rows.
+// For a coefficient near the right boundary, the two right neighbors and the
+// one bottom-right neighbor may be out of boundary. We don't check the right
+// boundary for them, because the out of boundary neighbors project to positions
+// above the diagonal line which goes through the current coefficient and these
+// positions are still all 0s according to the diagonal scan order.
+template <typename ResidualType>
+void Tile::ReadCoeffBase2D(
+ const uint16_t* scan, TransformSize tx_size, int adjusted_tx_width_log2,
+ int eob,
+ uint16_t coeff_base_cdf[kCoeffBaseContexts][kCoeffBaseSymbolCount + 1],
+ uint16_t coeff_base_range_cdf[kCoeffBaseRangeContexts]
+ [kCoeffBaseRangeSymbolCount + 1],
+ ResidualType* const quantized_buffer, uint8_t* const level_buffer) {
+ const int tx_width = 1 << adjusted_tx_width_log2;
+ for (int i = eob - 2; i >= 1; --i) {
+ const uint16_t pos = scan[i];
+ const int row = pos >> adjusted_tx_width_log2;
+ const int column = pos & (tx_width - 1);
+ auto* const quantized = &quantized_buffer[pos];
+ auto* const levels = &level_buffer[pos];
+ const int neighbor_sum = 1 + levels[1] + levels[tx_width] +
+ levels[tx_width + 1] + levels[2] +
+ levels[MultiplyBy2(tx_width)];
+ const int context =
+ ((neighbor_sum > 7) ? 4 : DivideBy2(neighbor_sum)) +
+ kCoeffBaseContextOffset[tx_size][std::min(row, 4)][std::min(column, 4)];
+ int level =
+ reader_.ReadSymbol<kCoeffBaseSymbolCount>(coeff_base_cdf[context]);
+ levels[0] = level;
+ if (level > kNumQuantizerBaseLevels) {
+ // No need to clip quantized values to COEFF_BASE_RANGE + NUM_BASE_LEVELS
+ // + 1, because we clip the overall output to 6 and the unclipped
+ // quantized values will always result in an output of greater than 6.
+ int context = std::min(6, DivideBy2(1 + quantized[1] + // {0, 1}
+ quantized[tx_width] + // {1, 0}
+ quantized[tx_width + 1])); // {1, 1}
+ context += 14 >> static_cast<int>((row | column) < 2);
+ level += ReadCoeffBaseRange(coeff_base_range_cdf[context]);
+ }
+ quantized[0] = level;
+ }
+ // Read position 0.
+ {
+ auto* const quantized = &quantized_buffer[0];
+ int level = reader_.ReadSymbol<kCoeffBaseSymbolCount>(coeff_base_cdf[0]);
+ level_buffer[0] = level;
+ if (level > kNumQuantizerBaseLevels) {
+ // No need to clip quantized values to COEFF_BASE_RANGE + NUM_BASE_LEVELS
+ // + 1, because we clip the overall output to 6 and the unclipped
+ // quantized values will always result in an output of greater than 6.
+ const int context =
+ std::min(6, DivideBy2(1 + quantized[1] + // {0, 1}
+ quantized[tx_width] + // {1, 0}
+ quantized[tx_width + 1])); // {1, 1}
+ level += ReadCoeffBaseRange(coeff_base_range_cdf[context]);
+ }
+ quantized[0] = level;
+ }
+}
+
+// Section 8.3.2 in the spec, under coeff_base and coeff_br.
+// Bottom boundary checks are avoided by the padded rows.
+// For a coefficient near the right boundary, the four right neighbors may be
+// out of boundary. We don't do the boundary check for the first three right
+// neighbors, because even for the transform blocks with smallest width 4, the
+// first three out of boundary neighbors project to positions left of the
+// current coefficient and these positions are still all 0s according to the
+// column scan order. However, when transform block width is 4 and the current
+// coefficient is on the right boundary, its fourth right neighbor projects to
+// the under position on the same column, which could be nonzero. Therefore, we
+// must skip the fourth right neighbor. To make it simple, for any coefficient,
+// we always do the boundary check for its fourth right neighbor.
+template <typename ResidualType>
+void Tile::ReadCoeffBaseHorizontal(
+ const uint16_t* scan, TransformSize /*tx_size*/, int adjusted_tx_width_log2,
+ int eob,
+ uint16_t coeff_base_cdf[kCoeffBaseContexts][kCoeffBaseSymbolCount + 1],
+ uint16_t coeff_base_range_cdf[kCoeffBaseRangeContexts]
+ [kCoeffBaseRangeSymbolCount + 1],
+ ResidualType* const quantized_buffer, uint8_t* const level_buffer) {
+ const int tx_width = 1 << adjusted_tx_width_log2;
+ int i = eob - 2;
+ do {
+ const uint16_t pos = scan[i];
+ const int column = pos & (tx_width - 1);
+ auto* const quantized = &quantized_buffer[pos];
+ auto* const levels = &level_buffer[pos];
+ const int neighbor_sum =
+ 1 + (levels[1] + // {0, 1}
+ levels[tx_width] + // {1, 0}
+ levels[2] + // {0, 2}
+ levels[3] + // {0, 3}
+ ((column + 4 < tx_width) ? levels[4] : 0)); // {0, 4}
+ const int context = ((neighbor_sum > 7) ? 4 : DivideBy2(neighbor_sum)) +
+ kCoeffBasePositionContextOffset[column];
+ int level =
+ reader_.ReadSymbol<kCoeffBaseSymbolCount>(coeff_base_cdf[context]);
+ levels[0] = level;
+ if (level > kNumQuantizerBaseLevels) {
+ // No need to clip quantized values to COEFF_BASE_RANGE + NUM_BASE_LEVELS
+ // + 1, because we clip the overall output to 6 and the unclipped
+ // quantized values will always result in an output of greater than 6.
+ int context = std::min(6, DivideBy2(1 + quantized[1] + // {0, 1}
+ quantized[tx_width] + // {1, 0}
+ quantized[2])); // {0, 2}
+ if (pos != 0) {
+ context += 14 >> static_cast<int>(column == 0);
+ }
+ level += ReadCoeffBaseRange(coeff_base_range_cdf[context]);
+ }
+ quantized[0] = level;
+ } while (--i >= 0);
+}
+
+// Section 8.3.2 in the spec, under coeff_base and coeff_br.
+// Bottom boundary checks are avoided by the padded rows.
+// Right boundary check is performed explicitly.
+template <typename ResidualType>
+void Tile::ReadCoeffBaseVertical(
+ const uint16_t* scan, TransformSize /*tx_size*/, int adjusted_tx_width_log2,
+ int eob,
+ uint16_t coeff_base_cdf[kCoeffBaseContexts][kCoeffBaseSymbolCount + 1],
+ uint16_t coeff_base_range_cdf[kCoeffBaseRangeContexts]
+ [kCoeffBaseRangeSymbolCount + 1],
+ ResidualType* const quantized_buffer, uint8_t* const level_buffer) {
+ const int tx_width = 1 << adjusted_tx_width_log2;
+ int i = eob - 2;
+ do {
+ const uint16_t pos = scan[i];
+ const int row = pos >> adjusted_tx_width_log2;
+ const int column = pos & (tx_width - 1);
+ auto* const quantized = &quantized_buffer[pos];
+ auto* const levels = &level_buffer[pos];
+ const int neighbor_sum =
+ 1 + (((column + 1 < tx_width) ? levels[1] : 0) + // {0, 1}
+ levels[tx_width] + // {1, 0}
+ levels[MultiplyBy2(tx_width)] + // {2, 0}
+ levels[tx_width * 3] + // {3, 0}
+ levels[MultiplyBy4(tx_width)]); // {4, 0}
+ const int context = ((neighbor_sum > 7) ? 4 : DivideBy2(neighbor_sum)) +
+ kCoeffBasePositionContextOffset[row];
+ int level =
+ reader_.ReadSymbol<kCoeffBaseSymbolCount>(coeff_base_cdf[context]);
+ levels[0] = level;
+ if (level > kNumQuantizerBaseLevels) {
+ // No need to clip quantized values to COEFF_BASE_RANGE + NUM_BASE_LEVELS
+ // + 1, because we clip the overall output to 6 and the unclipped
+ // quantized values will always result in an output of greater than 6.
+ const int quantized_column1 = (column + 1 < tx_width) ? quantized[1] : 0;
+ int context =
+ std::min(6, DivideBy2(1 + quantized_column1 + // {0, 1}
+ quantized[tx_width] + // {1, 0}
+ quantized[MultiplyBy2(tx_width)])); // {2, 0}
+ if (pos != 0) {
+ context += 14 >> static_cast<int>(row == 0);
+ }
+ level += ReadCoeffBaseRange(coeff_base_range_cdf[context]);
+ }
+ quantized[0] = level;
+ } while (--i >= 0);
+}
+
+int Tile::GetDcSignContext(int x4, int y4, int w4, int h4, Plane plane) {
+ const int max_x4x4 = frame_header_.columns4x4 >> subsampling_x_[plane];
+ const int8_t* dc_categories = &dc_categories_[kEntropyContextTop][plane][x4];
+ // Set dc_sign to 8-bit long so that std::accumulate() saves sign extension.
+ int8_t dc_sign = std::accumulate(
+ dc_categories, dc_categories + GetNumElements(w4, x4, max_x4x4), 0);
+ const int max_y4x4 = frame_header_.rows4x4 >> subsampling_y_[plane];
+ dc_categories = &dc_categories_[kEntropyContextLeft][plane][y4];
+ dc_sign = std::accumulate(
+ dc_categories, dc_categories + GetNumElements(h4, y4, max_y4x4), dc_sign);
+ // This return statement is equivalent to:
+ // if (dc_sign < 0) return 1;
+ // if (dc_sign > 0) return 2;
+ // return 0;
+ // And it is better than:
+ // return static_cast<int>(dc_sign != 0) + static_cast<int>(dc_sign > 0);
+ return static_cast<int>(dc_sign < 0) +
+ MultiplyBy2(static_cast<int>(dc_sign > 0));
+}
+
+void Tile::SetEntropyContexts(int x4, int y4, int w4, int h4, Plane plane,
+ uint8_t coefficient_level, int8_t dc_category) {
+ const int max_x4x4 = frame_header_.columns4x4 >> subsampling_x_[plane];
+ const int num_top_elements = GetNumElements(w4, x4, max_x4x4);
+ memset(&coefficient_levels_[kEntropyContextTop][plane][x4], coefficient_level,
+ num_top_elements);
+ memset(&dc_categories_[kEntropyContextTop][plane][x4], dc_category,
+ num_top_elements);
+ const int max_y4x4 = frame_header_.rows4x4 >> subsampling_y_[plane];
+ const int num_left_elements = GetNumElements(h4, y4, max_y4x4);
+ memset(&coefficient_levels_[kEntropyContextLeft][plane][y4],
+ coefficient_level, num_left_elements);
+ memset(&dc_categories_[kEntropyContextLeft][plane][y4], dc_category,
+ num_left_elements);
+}
+
+template <typename ResidualType, bool is_dc_coefficient>
+bool Tile::ReadSignAndApplyDequantization(
+ const uint16_t* const scan, int i, int q_value,
+ const uint8_t* const quantizer_matrix, int shift, int max_value,
+ uint16_t* const dc_sign_cdf, int8_t* const dc_category,
+ int* const coefficient_level, ResidualType* residual_buffer) {
+ const int pos = is_dc_coefficient ? 0 : scan[i];
+ // If residual_buffer[pos] is zero, then the rest of the function has no
+ // effect.
+ int level = residual_buffer[pos];
+ if (level == 0) return true;
+ const int sign = is_dc_coefficient
+ ? static_cast<int>(reader_.ReadSymbol(dc_sign_cdf))
+ : reader_.ReadBit();
+ if (level > kNumQuantizerBaseLevels + kQuantizerCoefficientBaseRange) {
+ int length = 0;
+ bool golomb_length_bit = false;
+ do {
+ golomb_length_bit = static_cast<bool>(reader_.ReadBit());
+ ++length;
+ if (length > 20) {
+ LIBGAV1_DLOG(ERROR, "Invalid golomb_length %d", length);
+ return false;
+ }
+ } while (!golomb_length_bit);
+ int x = 1;
+ for (int i = length - 2; i >= 0; --i) {
+ x = (x << 1) | reader_.ReadBit();
+ }
+ level += x - 1;
+ }
+ if (is_dc_coefficient) {
+ *dc_category = (sign != 0) ? -1 : 1;
+ }
+ level &= 0xfffff;
+ *coefficient_level += level;
+ // Apply dequantization. Step 1 of section 7.12.3 in the spec.
+ int q = q_value;
+ if (quantizer_matrix != nullptr) {
+ q = RightShiftWithRounding(q * quantizer_matrix[pos], 5);
+ }
+ // The intermediate multiplication can exceed 32 bits, so it has to be
+ // performed by promoting one of the values to int64_t.
+ int32_t dequantized_value = (static_cast<int64_t>(q) * level) & 0xffffff;
+ dequantized_value >>= shift;
+ // At this point:
+ // * |dequantized_value| is always non-negative.
+ // * |sign| can be either 0 or 1.
+ // * min_value = -(max_value + 1).
+ // We need to apply the following:
+ // dequantized_value = sign ? -dequantized_value : dequantized_value;
+ // dequantized_value = Clip3(dequantized_value, min_value, max_value);
+ //
+ // Note that -x == ~(x - 1).
+ //
+ // Now, The above two lines can be done with a std::min and xor as follows:
+ dequantized_value = std::min(dequantized_value - sign, max_value) ^ -sign;
+ residual_buffer[pos] = dequantized_value;
+ return true;
+}
+
+int Tile::ReadCoeffBaseRange(uint16_t* cdf) {
+ int level = 0;
+ for (int j = 0; j < kCoeffBaseRangeMaxIterations; ++j) {
+ const int coeff_base_range =
+ reader_.ReadSymbol<kCoeffBaseRangeSymbolCount>(cdf);
+ level += coeff_base_range;
+ if (coeff_base_range < (kCoeffBaseRangeSymbolCount - 1)) break;
+ }
+ return level;
+}
+
+template <typename ResidualType>
+int Tile::ReadTransformCoefficients(const Block& block, Plane plane,
+ int start_x, int start_y,
+ TransformSize tx_size,
+ TransformType* const tx_type) {
+ const int x4 = DivideBy4(start_x);
+ const int y4 = DivideBy4(start_y);
+ const int w4 = kTransformWidth4x4[tx_size];
+ const int h4 = kTransformHeight4x4[tx_size];
+ const int tx_size_context = kTransformSizeContext[tx_size];
+ int context =
+ GetTransformAllZeroContext(block, plane, tx_size, x4, y4, w4, h4);
+ const bool all_zero = reader_.ReadSymbol(
+ symbol_decoder_context_.all_zero_cdf[tx_size_context][context]);
+ if (all_zero) {
+ if (plane == kPlaneY) {
+ SetTransformType(block, x4, y4, w4, h4, kTransformTypeDctDct,
+ transform_types_);
+ }
+ SetEntropyContexts(x4, y4, w4, h4, plane, 0, 0);
+ // This is not used in this case, so it can be set to any value.
+ *tx_type = kNumTransformTypes;
+ return 0;
+ }
+ const int tx_width = kTransformWidth[tx_size];
+ const int tx_height = kTransformHeight[tx_size];
+ const TransformSize adjusted_tx_size = kAdjustedTransformSize[tx_size];
+ const int adjusted_tx_width_log2 = kTransformWidthLog2[adjusted_tx_size];
+ const int tx_padding =
+ (1 << adjusted_tx_width_log2) * kResidualPaddingVertical;
+ auto* residual = reinterpret_cast<ResidualType*>(*block.residual);
+ // Clear padding to avoid bottom boundary checks when parsing quantized
+ // coefficients.
+ memset(residual, 0, (tx_width * tx_height + tx_padding) * residual_size_);
+ uint8_t level_buffer[(32 + kResidualPaddingVertical) * 32];
+ memset(
+ level_buffer, 0,
+ kTransformWidth[adjusted_tx_size] * kTransformHeight[adjusted_tx_size] +
+ tx_padding);
+ const int clamped_tx_height = std::min(tx_height, 32);
+ if (plane == kPlaneY) {
+ ReadTransformType(block, x4, y4, tx_size);
+ }
+ BlockParameters& bp = *block.bp;
+ *tx_type = ComputeTransformType(block, plane, tx_size, x4, y4);
+ const int eob_multi_size = kEobMultiSizeLookup[tx_size];
+ const PlaneType plane_type = GetPlaneType(plane);
+ const TransformClass tx_class = GetTransformClass(*tx_type);
+ context = static_cast<int>(tx_class != kTransformClass2D);
+ int eob_pt = 1;
+ switch (eob_multi_size) {
+ case 0:
+ eob_pt += reader_.ReadSymbol<kEobPt16SymbolCount>(
+ symbol_decoder_context_.eob_pt_16_cdf[plane_type][context]);
+ break;
+ case 1:
+ eob_pt += reader_.ReadSymbol<kEobPt32SymbolCount>(
+ symbol_decoder_context_.eob_pt_32_cdf[plane_type][context]);
+ break;
+ case 2:
+ eob_pt += reader_.ReadSymbol<kEobPt64SymbolCount>(
+ symbol_decoder_context_.eob_pt_64_cdf[plane_type][context]);
+ break;
+ case 3:
+ eob_pt += reader_.ReadSymbol<kEobPt128SymbolCount>(
+ symbol_decoder_context_.eob_pt_128_cdf[plane_type][context]);
+ break;
+ case 4:
+ eob_pt += reader_.ReadSymbol<kEobPt256SymbolCount>(
+ symbol_decoder_context_.eob_pt_256_cdf[plane_type][context]);
+ break;
+ case 5:
+ eob_pt += reader_.ReadSymbol<kEobPt512SymbolCount>(
+ symbol_decoder_context_.eob_pt_512_cdf[plane_type]);
+ break;
+ case 6:
+ default:
+ eob_pt += reader_.ReadSymbol<kEobPt1024SymbolCount>(
+ symbol_decoder_context_.eob_pt_1024_cdf[plane_type]);
+ break;
+ }
+ int eob = (eob_pt < 2) ? eob_pt : ((1 << (eob_pt - 2)) + 1);
+ if (eob_pt >= 3) {
+ context = eob_pt - 3;
+ const bool eob_extra = reader_.ReadSymbol(
+ symbol_decoder_context_
+ .eob_extra_cdf[tx_size_context][plane_type][context]);
+ if (eob_extra) eob += 1 << (eob_pt - 3);
+ for (int i = 1; i < eob_pt - 2; ++i) {
+ assert(eob_pt - i >= 3);
+ assert(eob_pt <= kEobPt1024SymbolCount);
+ if (static_cast<bool>(reader_.ReadBit())) {
+ eob += 1 << (eob_pt - i - 3);
+ }
+ }
+ }
+ const uint16_t* scan = kScan[tx_class][tx_size];
+ const int clamped_tx_size_context = std::min(tx_size_context, 3);
+ auto coeff_base_range_cdf =
+ symbol_decoder_context_
+ .coeff_base_range_cdf[clamped_tx_size_context][plane_type];
+ // Read the last coefficient.
+ {
+ context = GetCoeffBaseContextEob(tx_size, eob - 1);
+ const uint16_t pos = scan[eob - 1];
+ int level =
+ 1 + reader_.ReadSymbol<kCoeffBaseEobSymbolCount>(
+ symbol_decoder_context_
+ .coeff_base_eob_cdf[tx_size_context][plane_type][context]);
+ level_buffer[pos] = level;
+ if (level > kNumQuantizerBaseLevels) {
+ level +=
+ ReadCoeffBaseRange(coeff_base_range_cdf[GetCoeffBaseRangeContextEob(
+ adjusted_tx_width_log2, pos, tx_class)]);
+ }
+ residual[pos] = level;
+ }
+ if (eob > 1) {
+ // Read all the other coefficients.
+ // Lookup used to call the right variant of ReadCoeffBase*() based on the
+ // transform class.
+ static constexpr void (Tile::*kGetCoeffBaseFunc[])(
+ const uint16_t* scan, TransformSize tx_size, int adjusted_tx_width_log2,
+ int eob,
+ uint16_t coeff_base_cdf[kCoeffBaseContexts][kCoeffBaseSymbolCount + 1],
+ uint16_t coeff_base_range_cdf[kCoeffBaseRangeContexts]
+ [kCoeffBaseRangeSymbolCount + 1],
+ ResidualType* quantized_buffer,
+ uint8_t* level_buffer) = {&Tile::ReadCoeffBase2D<ResidualType>,
+ &Tile::ReadCoeffBaseHorizontal<ResidualType>,
+ &Tile::ReadCoeffBaseVertical<ResidualType>};
+ (this->*kGetCoeffBaseFunc[tx_class])(
+ scan, tx_size, adjusted_tx_width_log2, eob,
+ symbol_decoder_context_.coeff_base_cdf[tx_size_context][plane_type],
+ coeff_base_range_cdf, residual, level_buffer);
+ }
+ const int max_value = (1 << (7 + sequence_header_.color_config.bitdepth)) - 1;
+ const int current_quantizer_index = GetQIndex(
+ frame_header_.segmentation, bp.segment_id, current_quantizer_index_);
+ const int dc_q_value = quantizer_.GetDcValue(plane, current_quantizer_index);
+ const int ac_q_value = quantizer_.GetAcValue(plane, current_quantizer_index);
+ const int shift = kQuantizationShift[tx_size];
+ const uint8_t* const quantizer_matrix =
+ (frame_header_.quantizer.use_matrix &&
+ *tx_type < kTransformTypeIdentityIdentity &&
+ !frame_header_.segmentation.lossless[bp.segment_id] &&
+ frame_header_.quantizer.matrix_level[plane] < 15)
+ ? quantizer_matrix_[frame_header_.quantizer.matrix_level[plane]]
+ [plane_type][adjusted_tx_size]
+ .get()
+ : nullptr;
+ int coefficient_level = 0;
+ int8_t dc_category = 0;
+ uint16_t* const dc_sign_cdf =
+ (residual[0] != 0)
+ ? symbol_decoder_context_.dc_sign_cdf[plane_type][GetDcSignContext(
+ x4, y4, w4, h4, plane)]
+ : nullptr;
+ assert(scan[0] == 0);
+ if (!ReadSignAndApplyDequantization<ResidualType, /*is_dc_coefficient=*/true>(
+ scan, 0, dc_q_value, quantizer_matrix, shift, max_value, dc_sign_cdf,
+ &dc_category, &coefficient_level, residual)) {
+ return -1;
+ }
+ if (eob > 1) {
+ int i = 1;
+ do {
+ if (!ReadSignAndApplyDequantization<ResidualType,
+ /*is_dc_coefficient=*/false>(
+ scan, i, ac_q_value, quantizer_matrix, shift, max_value, nullptr,
+ nullptr, &coefficient_level, residual)) {
+ return -1;
+ }
+ } while (++i < eob);
+ MoveCoefficientsForTxWidth64(clamped_tx_height, tx_width, residual);
+ }
+ SetEntropyContexts(x4, y4, w4, h4, plane, std::min(4, coefficient_level),
+ dc_category);
+ if (split_parse_and_decode_) {
+ *block.residual += tx_width * tx_height * residual_size_;
+ }
+ return eob;
+}
+
+// CALL_BITDEPTH_FUNCTION is a macro that calls the appropriate template
+// |function| depending on the value of |sequence_header_.color_config.bitdepth|
+// with the variadic arguments.
+#if LIBGAV1_MAX_BITDEPTH >= 10
+#define CALL_BITDEPTH_FUNCTION(function, ...) \
+ do { \
+ if (sequence_header_.color_config.bitdepth > 8) { \
+ function<uint16_t>(__VA_ARGS__); \
+ } else { \
+ function<uint8_t>(__VA_ARGS__); \
+ } \
+ } while (false)
+#else
+#define CALL_BITDEPTH_FUNCTION(function, ...) \
+ do { \
+ function<uint8_t>(__VA_ARGS__); \
+ } while (false)
+#endif
+
+bool Tile::TransformBlock(const Block& block, Plane plane, int base_x,
+ int base_y, TransformSize tx_size, int x, int y,
+ ProcessingMode mode) {
+ BlockParameters& bp = *block.bp;
+ const int subsampling_x = subsampling_x_[plane];
+ const int subsampling_y = subsampling_y_[plane];
+ const int start_x = base_x + MultiplyBy4(x);
+ const int start_y = base_y + MultiplyBy4(y);
+ const int max_x = MultiplyBy4(frame_header_.columns4x4) >> subsampling_x;
+ const int max_y = MultiplyBy4(frame_header_.rows4x4) >> subsampling_y;
+ if (start_x >= max_x || start_y >= max_y) return true;
+ const int row = DivideBy4(start_y << subsampling_y);
+ const int column = DivideBy4(start_x << subsampling_x);
+ const int mask = sequence_header_.use_128x128_superblock ? 31 : 15;
+ const int sub_block_row4x4 = row & mask;
+ const int sub_block_column4x4 = column & mask;
+ const int step_x = kTransformWidth4x4[tx_size];
+ const int step_y = kTransformHeight4x4[tx_size];
+ const bool do_decode = mode == kProcessingModeDecodeOnly ||
+ mode == kProcessingModeParseAndDecode;
+ if (do_decode && !bp.is_inter) {
+ if (bp.palette_mode_info.size[GetPlaneType(plane)] > 0) {
+ CALL_BITDEPTH_FUNCTION(PalettePrediction, block, plane, start_x, start_y,
+ x, y, tx_size);
+ } else {
+ const PredictionMode mode =
+ (plane == kPlaneY)
+ ? bp.y_mode
+ : (bp.uv_mode == kPredictionModeChromaFromLuma ? kPredictionModeDc
+ : bp.uv_mode);
+ const int tr_row4x4 = (sub_block_row4x4 >> subsampling_y);
+ const int tr_column4x4 =
+ (sub_block_column4x4 >> subsampling_x) + step_x + 1;
+ const int bl_row4x4 = (sub_block_row4x4 >> subsampling_y) + step_y + 1;
+ const int bl_column4x4 = (sub_block_column4x4 >> subsampling_x);
+ const bool has_left = x > 0 || block.left_available[plane];
+ const bool has_top = y > 0 || block.top_available[plane];
+
+ CALL_BITDEPTH_FUNCTION(
+ IntraPrediction, block, plane, start_x, start_y, has_left, has_top,
+ block.scratch_buffer->block_decoded[plane][tr_row4x4][tr_column4x4],
+ block.scratch_buffer->block_decoded[plane][bl_row4x4][bl_column4x4],
+ mode, tx_size);
+ if (plane != kPlaneY && bp.uv_mode == kPredictionModeChromaFromLuma) {
+ CALL_BITDEPTH_FUNCTION(ChromaFromLumaPrediction, block, plane, start_x,
+ start_y, tx_size);
+ }
+ }
+ if (plane == kPlaneY) {
+ block.bp->prediction_parameters->max_luma_width =
+ start_x + MultiplyBy4(step_x);
+ block.bp->prediction_parameters->max_luma_height =
+ start_y + MultiplyBy4(step_y);
+ block.scratch_buffer->cfl_luma_buffer_valid = false;
+ }
+ }
+ if (!bp.skip) {
+ const int sb_row_index = SuperBlockRowIndex(block.row4x4);
+ const int sb_column_index = SuperBlockColumnIndex(block.column4x4);
+ if (mode == kProcessingModeDecodeOnly) {
+ TransformParameterQueue& tx_params =
+ *residual_buffer_threaded_[sb_row_index][sb_column_index]
+ ->transform_parameters();
+ ReconstructBlock(block, plane, start_x, start_y, tx_size,
+ tx_params.Type(), tx_params.NonZeroCoeffCount());
+ tx_params.Pop();
+ } else {
+ TransformType tx_type;
+ int non_zero_coeff_count;
+#if LIBGAV1_MAX_BITDEPTH >= 10
+ if (sequence_header_.color_config.bitdepth > 8) {
+ non_zero_coeff_count = ReadTransformCoefficients<int32_t>(
+ block, plane, start_x, start_y, tx_size, &tx_type);
+ } else // NOLINT
+#endif
+ {
+ non_zero_coeff_count = ReadTransformCoefficients<int16_t>(
+ block, plane, start_x, start_y, tx_size, &tx_type);
+ }
+ if (non_zero_coeff_count < 0) return false;
+ if (mode == kProcessingModeParseAndDecode) {
+ ReconstructBlock(block, plane, start_x, start_y, tx_size, tx_type,
+ non_zero_coeff_count);
+ } else {
+ assert(mode == kProcessingModeParseOnly);
+ residual_buffer_threaded_[sb_row_index][sb_column_index]
+ ->transform_parameters()
+ ->Push(non_zero_coeff_count, tx_type);
+ }
+ }
+ }
+ if (do_decode) {
+ bool* block_decoded =
+ &block.scratch_buffer
+ ->block_decoded[plane][(sub_block_row4x4 >> subsampling_y) + 1]
+ [(sub_block_column4x4 >> subsampling_x) + 1];
+ SetBlockValues<bool>(step_y, step_x, true, block_decoded,
+ TileScratchBuffer::kBlockDecodedStride);
+ }
+ return true;
+}
+
+bool Tile::TransformTree(const Block& block, int start_x, int start_y,
+ BlockSize plane_size, ProcessingMode mode) {
+ assert(plane_size <= kBlock64x64);
+ // Branching factor is 4; Maximum Depth is 4; So the maximum stack size
+ // required is (4 - 1) * 4 + 1 = 13.
+ Stack<TransformTreeNode, 13> stack;
+ // It is okay to cast BlockSize to TransformSize here since the enum are
+ // equivalent for all BlockSize values <= kBlock64x64.
+ stack.Push(TransformTreeNode(start_x, start_y,
+ static_cast<TransformSize>(plane_size)));
+
+ do {
+ TransformTreeNode node = stack.Pop();
+ const int row = DivideBy4(node.y);
+ const int column = DivideBy4(node.x);
+ if (row >= frame_header_.rows4x4 || column >= frame_header_.columns4x4) {
+ continue;
+ }
+ const TransformSize inter_tx_size = inter_transform_sizes_[row][column];
+ const int width = kTransformWidth[node.tx_size];
+ const int height = kTransformHeight[node.tx_size];
+ if (width <= kTransformWidth[inter_tx_size] &&
+ height <= kTransformHeight[inter_tx_size]) {
+ if (!TransformBlock(block, kPlaneY, node.x, node.y, node.tx_size, 0, 0,
+ mode)) {
+ return false;
+ }
+ continue;
+ }
+ // The split transform size look up gives the right transform size that we
+ // should push in the stack.
+ // if (width > height) => transform size whose width is half.
+ // if (width < height) => transform size whose height is half.
+ // if (width == height) => transform size whose width and height are half.
+ const TransformSize split_tx_size = kSplitTransformSize[node.tx_size];
+ const int half_width = DivideBy2(width);
+ if (width > height) {
+ stack.Push(TransformTreeNode(node.x + half_width, node.y, split_tx_size));
+ stack.Push(TransformTreeNode(node.x, node.y, split_tx_size));
+ continue;
+ }
+ const int half_height = DivideBy2(height);
+ if (width < height) {
+ stack.Push(
+ TransformTreeNode(node.x, node.y + half_height, split_tx_size));
+ stack.Push(TransformTreeNode(node.x, node.y, split_tx_size));
+ continue;
+ }
+ stack.Push(TransformTreeNode(node.x + half_width, node.y + half_height,
+ split_tx_size));
+ stack.Push(TransformTreeNode(node.x, node.y + half_height, split_tx_size));
+ stack.Push(TransformTreeNode(node.x + half_width, node.y, split_tx_size));
+ stack.Push(TransformTreeNode(node.x, node.y, split_tx_size));
+ } while (!stack.Empty());
+ return true;
+}
+
+void Tile::ReconstructBlock(const Block& block, Plane plane, int start_x,
+ int start_y, TransformSize tx_size,
+ TransformType tx_type, int non_zero_coeff_count) {
+ // Reconstruction process. Steps 2 and 3 of Section 7.12.3 in the spec.
+ assert(non_zero_coeff_count >= 0);
+ if (non_zero_coeff_count == 0) return;
+#if LIBGAV1_MAX_BITDEPTH >= 10
+ if (sequence_header_.color_config.bitdepth > 8) {
+ Array2DView<uint16_t> buffer(
+ buffer_[plane].rows(), buffer_[plane].columns() / sizeof(uint16_t),
+ reinterpret_cast<uint16_t*>(&buffer_[plane][0][0]));
+ Reconstruct(dsp_, tx_type, tx_size,
+ frame_header_.segmentation.lossless[block.bp->segment_id],
+ reinterpret_cast<int32_t*>(*block.residual), start_x, start_y,
+ &buffer, non_zero_coeff_count);
+ } else // NOLINT
+#endif
+ {
+ Reconstruct(dsp_, tx_type, tx_size,
+ frame_header_.segmentation.lossless[block.bp->segment_id],
+ reinterpret_cast<int16_t*>(*block.residual), start_x, start_y,
+ &buffer_[plane], non_zero_coeff_count);
+ }
+ if (split_parse_and_decode_) {
+ *block.residual +=
+ kTransformWidth[tx_size] * kTransformHeight[tx_size] * residual_size_;
+ }
+}
+
+bool Tile::Residual(const Block& block, ProcessingMode mode) {
+ const int width_chunks = std::max(1, block.width >> 6);
+ const int height_chunks = std::max(1, block.height >> 6);
+ const BlockSize size_chunk4x4 =
+ (width_chunks > 1 || height_chunks > 1) ? kBlock64x64 : block.size;
+ const BlockParameters& bp = *block.bp;
+ for (int chunk_y = 0; chunk_y < height_chunks; ++chunk_y) {
+ for (int chunk_x = 0; chunk_x < width_chunks; ++chunk_x) {
+ const int num_planes = block.HasChroma() ? PlaneCount() : 1;
+ int plane = kPlaneY;
+ do {
+ const int subsampling_x = subsampling_x_[plane];
+ const int subsampling_y = subsampling_y_[plane];
+ // For Y Plane, when lossless is true |bp.transform_size| is always
+ // kTransformSize4x4. So we can simply use |bp.transform_size| here as
+ // the Y plane's transform size (part of Section 5.11.37 in the spec).
+ const TransformSize tx_size =
+ (plane == kPlaneY) ? bp.transform_size : bp.uv_transform_size;
+ const BlockSize plane_size =
+ kPlaneResidualSize[size_chunk4x4][subsampling_x][subsampling_y];
+ assert(plane_size != kBlockInvalid);
+ if (bp.is_inter &&
+ !frame_header_.segmentation.lossless[bp.segment_id] &&
+ plane == kPlaneY) {
+ const int row_chunk4x4 = block.row4x4 + MultiplyBy16(chunk_y);
+ const int column_chunk4x4 = block.column4x4 + MultiplyBy16(chunk_x);
+ const int base_x = MultiplyBy4(column_chunk4x4 >> subsampling_x);
+ const int base_y = MultiplyBy4(row_chunk4x4 >> subsampling_y);
+ if (!TransformTree(block, base_x, base_y, plane_size, mode)) {
+ return false;
+ }
+ } else {
+ const int base_x = MultiplyBy4(block.column4x4 >> subsampling_x);
+ const int base_y = MultiplyBy4(block.row4x4 >> subsampling_y);
+ const int step_x = kTransformWidth4x4[tx_size];
+ const int step_y = kTransformHeight4x4[tx_size];
+ const int num4x4_wide = kNum4x4BlocksWide[plane_size];
+ const int num4x4_high = kNum4x4BlocksHigh[plane_size];
+ for (int y = 0; y < num4x4_high; y += step_y) {
+ for (int x = 0; x < num4x4_wide; x += step_x) {
+ if (!TransformBlock(
+ block, static_cast<Plane>(plane), base_x, base_y, tx_size,
+ x + (MultiplyBy16(chunk_x) >> subsampling_x),
+ y + (MultiplyBy16(chunk_y) >> subsampling_y), mode)) {
+ return false;
+ }
+ }
+ }
+ }
+ } while (++plane < num_planes);
+ }
+ }
+ return true;
+}
+
+// The purpose of this function is to limit the maximum size of motion vectors
+// and also, if use_intra_block_copy is true, to additionally constrain the
+// motion vector so that the data is fetched from parts of the tile that have
+// already been decoded and are not too close to the current block (in order to
+// make a pipelined decoder implementation feasible).
+bool Tile::IsMvValid(const Block& block, bool is_compound) const {
+ const BlockParameters& bp = *block.bp;
+ for (int i = 0; i < 1 + static_cast<int>(is_compound); ++i) {
+ for (int mv_component : bp.mv.mv[i].mv) {
+ if (std::abs(mv_component) >= (1 << 14)) {
+ return false;
+ }
+ }
+ }
+ if (!block.bp->prediction_parameters->use_intra_block_copy) {
+ return true;
+ }
+ if ((bp.mv.mv[0].mv32 & 0x00070007) != 0) {
+ return false;
+ }
+ const int delta_row = bp.mv.mv[0].mv[0] >> 3;
+ const int delta_column = bp.mv.mv[0].mv[1] >> 3;
+ int src_top_edge = MultiplyBy4(block.row4x4) + delta_row;
+ int src_left_edge = MultiplyBy4(block.column4x4) + delta_column;
+ const int src_bottom_edge = src_top_edge + block.height;
+ const int src_right_edge = src_left_edge + block.width;
+ if (block.HasChroma()) {
+ if (block.width < 8 && subsampling_x_[kPlaneU] != 0) {
+ src_left_edge -= 4;
+ }
+ if (block.height < 8 && subsampling_y_[kPlaneU] != 0) {
+ src_top_edge -= 4;
+ }
+ }
+ if (src_top_edge < MultiplyBy4(row4x4_start_) ||
+ src_left_edge < MultiplyBy4(column4x4_start_) ||
+ src_bottom_edge > MultiplyBy4(row4x4_end_) ||
+ src_right_edge > MultiplyBy4(column4x4_end_)) {
+ return false;
+ }
+ // sb_height_log2 = use_128x128_superblock ? log2(128) : log2(64)
+ const int sb_height_log2 =
+ 6 + static_cast<int>(sequence_header_.use_128x128_superblock);
+ const int active_sb_row = MultiplyBy4(block.row4x4) >> sb_height_log2;
+ const int active_64x64_block_column = MultiplyBy4(block.column4x4) >> 6;
+ const int src_sb_row = (src_bottom_edge - 1) >> sb_height_log2;
+ const int src_64x64_block_column = (src_right_edge - 1) >> 6;
+ const int total_64x64_blocks_per_row =
+ ((column4x4_end_ - column4x4_start_ - 1) >> 4) + 1;
+ const int active_64x64_block =
+ active_sb_row * total_64x64_blocks_per_row + active_64x64_block_column;
+ const int src_64x64_block =
+ src_sb_row * total_64x64_blocks_per_row + src_64x64_block_column;
+ if (src_64x64_block >= active_64x64_block - kIntraBlockCopyDelay64x64Blocks) {
+ return false;
+ }
+
+ // Wavefront constraint: use only top left area of frame for reference.
+ if (src_sb_row > active_sb_row) return false;
+ const int gradient =
+ 1 + kIntraBlockCopyDelay64x64Blocks +
+ static_cast<int>(sequence_header_.use_128x128_superblock);
+ const int wavefront_offset = gradient * (active_sb_row - src_sb_row);
+ return src_64x64_block_column < active_64x64_block_column -
+ kIntraBlockCopyDelay64x64Blocks +
+ wavefront_offset;
+}
+
+bool Tile::AssignInterMv(const Block& block, bool is_compound) {
+ int min[2];
+ int max[2];
+ GetClampParameters(block, min, max);
+ BlockParameters& bp = *block.bp;
+ const PredictionParameters& prediction_parameters = *bp.prediction_parameters;
+ if (is_compound) {
+ for (int i = 0; i < 2; ++i) {
+ const PredictionMode mode = GetSinglePredictionMode(i, bp.y_mode);
+ MotionVector predicted_mv;
+ if (mode == kPredictionModeGlobalMv) {
+ predicted_mv = prediction_parameters.global_mv[i];
+ } else {
+ const int ref_mv_index = (mode == kPredictionModeNearestMv ||
+ (mode == kPredictionModeNewMv &&
+ prediction_parameters.ref_mv_count <= 1))
+ ? 0
+ : prediction_parameters.ref_mv_index;
+ predicted_mv = prediction_parameters.reference_mv(ref_mv_index, i);
+ if (ref_mv_index < prediction_parameters.ref_mv_count) {
+ predicted_mv.mv[0] = Clip3(predicted_mv.mv[0], min[0], max[0]);
+ predicted_mv.mv[1] = Clip3(predicted_mv.mv[1], min[1], max[1]);
+ }
+ }
+ if (mode == kPredictionModeNewMv) {
+ ReadMotionVector(block, i);
+ bp.mv.mv[i].mv[0] += predicted_mv.mv[0];
+ bp.mv.mv[i].mv[1] += predicted_mv.mv[1];
+ } else {
+ bp.mv.mv[i] = predicted_mv;
+ }
+ }
+ } else {
+ const PredictionMode mode = GetSinglePredictionMode(0, bp.y_mode);
+ MotionVector predicted_mv;
+ if (mode == kPredictionModeGlobalMv) {
+ predicted_mv = prediction_parameters.global_mv[0];
+ } else {
+ const int ref_mv_index = (mode == kPredictionModeNearestMv ||
+ (mode == kPredictionModeNewMv &&
+ prediction_parameters.ref_mv_count <= 1))
+ ? 0
+ : prediction_parameters.ref_mv_index;
+ predicted_mv = prediction_parameters.reference_mv(ref_mv_index);
+ if (ref_mv_index < prediction_parameters.ref_mv_count) {
+ predicted_mv.mv[0] = Clip3(predicted_mv.mv[0], min[0], max[0]);
+ predicted_mv.mv[1] = Clip3(predicted_mv.mv[1], min[1], max[1]);
+ }
+ }
+ if (mode == kPredictionModeNewMv) {
+ ReadMotionVector(block, 0);
+ bp.mv.mv[0].mv[0] += predicted_mv.mv[0];
+ bp.mv.mv[0].mv[1] += predicted_mv.mv[1];
+ } else {
+ bp.mv.mv[0] = predicted_mv;
+ }
+ }
+ return IsMvValid(block, is_compound);
+}
+
+bool Tile::AssignIntraMv(const Block& block) {
+ // TODO(linfengz): Check if the clamping process is necessary.
+ int min[2];
+ int max[2];
+ GetClampParameters(block, min, max);
+ BlockParameters& bp = *block.bp;
+ const PredictionParameters& prediction_parameters = *bp.prediction_parameters;
+ const MotionVector& ref_mv_0 = prediction_parameters.reference_mv(0);
+ ReadMotionVector(block, 0);
+ if (ref_mv_0.mv32 == 0) {
+ const MotionVector& ref_mv_1 = prediction_parameters.reference_mv(1);
+ if (ref_mv_1.mv32 == 0) {
+ const int super_block_size4x4 = kNum4x4BlocksHigh[SuperBlockSize()];
+ if (block.row4x4 - super_block_size4x4 < row4x4_start_) {
+ bp.mv.mv[0].mv[1] -= MultiplyBy32(super_block_size4x4);
+ bp.mv.mv[0].mv[1] -= MultiplyBy8(kIntraBlockCopyDelayPixels);
+ } else {
+ bp.mv.mv[0].mv[0] -= MultiplyBy32(super_block_size4x4);
+ }
+ } else {
+ bp.mv.mv[0].mv[0] += Clip3(ref_mv_1.mv[0], min[0], max[0]);
+ bp.mv.mv[0].mv[1] += Clip3(ref_mv_1.mv[1], min[0], max[0]);
+ }
+ } else {
+ bp.mv.mv[0].mv[0] += Clip3(ref_mv_0.mv[0], min[0], max[0]);
+ bp.mv.mv[0].mv[1] += Clip3(ref_mv_0.mv[1], min[1], max[1]);
+ }
+ return IsMvValid(block, /*is_compound=*/false);
+}
+
+void Tile::ResetEntropyContext(const Block& block) {
+ const int num_planes = block.HasChroma() ? PlaneCount() : 1;
+ int plane = kPlaneY;
+ do {
+ const int subsampling_x = subsampling_x_[plane];
+ const int start_x = block.column4x4 >> subsampling_x;
+ const int end_x =
+ std::min((block.column4x4 + block.width4x4) >> subsampling_x,
+ frame_header_.columns4x4);
+ memset(&coefficient_levels_[kEntropyContextTop][plane][start_x], 0,
+ end_x - start_x);
+ memset(&dc_categories_[kEntropyContextTop][plane][start_x], 0,
+ end_x - start_x);
+ const int subsampling_y = subsampling_y_[plane];
+ const int start_y = block.row4x4 >> subsampling_y;
+ const int end_y =
+ std::min((block.row4x4 + block.height4x4) >> subsampling_y,
+ frame_header_.rows4x4);
+ memset(&coefficient_levels_[kEntropyContextLeft][plane][start_y], 0,
+ end_y - start_y);
+ memset(&dc_categories_[kEntropyContextLeft][plane][start_y], 0,
+ end_y - start_y);
+ } while (++plane < num_planes);
+}
+
+bool Tile::ComputePrediction(const Block& block) {
+ const BlockParameters& bp = *block.bp;
+ if (!bp.is_inter) return true;
+ const int mask =
+ (1 << (4 + static_cast<int>(sequence_header_.use_128x128_superblock))) -
+ 1;
+ const int sub_block_row4x4 = block.row4x4 & mask;
+ const int sub_block_column4x4 = block.column4x4 & mask;
+ const int plane_count = block.HasChroma() ? PlaneCount() : 1;
+ // Returns true if this block applies local warping. The state is determined
+ // in the Y plane and carried for use in the U/V planes.
+ // But the U/V planes will not apply warping when the block size is smaller
+ // than 8x8, even if this variable is true.
+ bool is_local_valid = false;
+ // Local warping parameters, similar usage as is_local_valid.
+ GlobalMotion local_warp_params;
+ int plane = kPlaneY;
+ do {
+ const int8_t subsampling_x = subsampling_x_[plane];
+ const int8_t subsampling_y = subsampling_y_[plane];
+ const BlockSize plane_size = block.residual_size[plane];
+ const int block_width4x4 = kNum4x4BlocksWide[plane_size];
+ const int block_height4x4 = kNum4x4BlocksHigh[plane_size];
+ const int block_width = MultiplyBy4(block_width4x4);
+ const int block_height = MultiplyBy4(block_height4x4);
+ const int base_x = MultiplyBy4(block.column4x4 >> subsampling_x);
+ const int base_y = MultiplyBy4(block.row4x4 >> subsampling_y);
+ if (bp.reference_frame[1] == kReferenceFrameIntra) {
+ const int tr_row4x4 = sub_block_row4x4 >> subsampling_y;
+ const int tr_column4x4 =
+ (sub_block_column4x4 >> subsampling_x) + block_width4x4 + 1;
+ const int bl_row4x4 =
+ (sub_block_row4x4 >> subsampling_y) + block_height4x4;
+ const int bl_column4x4 = (sub_block_column4x4 >> subsampling_x) + 1;
+ const TransformSize tx_size =
+ k4x4SizeToTransformSize[k4x4WidthLog2[plane_size]]
+ [k4x4HeightLog2[plane_size]];
+ const bool has_left = block.left_available[plane];
+ const bool has_top = block.top_available[plane];
+ CALL_BITDEPTH_FUNCTION(
+ IntraPrediction, block, static_cast<Plane>(plane), base_x, base_y,
+ has_left, has_top,
+ block.scratch_buffer->block_decoded[plane][tr_row4x4][tr_column4x4],
+ block.scratch_buffer->block_decoded[plane][bl_row4x4][bl_column4x4],
+ kInterIntraToIntraMode[block.bp->prediction_parameters
+ ->inter_intra_mode],
+ tx_size);
+ }
+ int candidate_row = block.row4x4;
+ int candidate_column = block.column4x4;
+ bool some_use_intra = bp.reference_frame[0] == kReferenceFrameIntra;
+ if (!some_use_intra && plane != 0) {
+ candidate_row = (candidate_row >> subsampling_y) << subsampling_y;
+ candidate_column = (candidate_column >> subsampling_x) << subsampling_x;
+ if (candidate_row != block.row4x4) {
+ // Top block.
+ const BlockParameters& bp_top =
+ *block_parameters_holder_.Find(candidate_row, block.column4x4);
+ some_use_intra = bp_top.reference_frame[0] == kReferenceFrameIntra;
+ if (!some_use_intra && candidate_column != block.column4x4) {
+ // Top-left block.
+ const BlockParameters& bp_top_left =
+ *block_parameters_holder_.Find(candidate_row, candidate_column);
+ some_use_intra =
+ bp_top_left.reference_frame[0] == kReferenceFrameIntra;
+ }
+ }
+ if (!some_use_intra && candidate_column != block.column4x4) {
+ // Left block.
+ const BlockParameters& bp_left =
+ *block_parameters_holder_.Find(block.row4x4, candidate_column);
+ some_use_intra = bp_left.reference_frame[0] == kReferenceFrameIntra;
+ }
+ }
+ int prediction_width;
+ int prediction_height;
+ if (some_use_intra) {
+ candidate_row = block.row4x4;
+ candidate_column = block.column4x4;
+ prediction_width = block_width;
+ prediction_height = block_height;
+ } else {
+ prediction_width = block.width >> subsampling_x;
+ prediction_height = block.height >> subsampling_y;
+ }
+ int r = 0;
+ int y = 0;
+ do {
+ int c = 0;
+ int x = 0;
+ do {
+ if (!InterPrediction(block, static_cast<Plane>(plane), base_x + x,
+ base_y + y, prediction_width, prediction_height,
+ candidate_row + r, candidate_column + c,
+ &is_local_valid, &local_warp_params)) {
+ return false;
+ }
+ ++c;
+ x += prediction_width;
+ } while (x < block_width);
+ ++r;
+ y += prediction_height;
+ } while (y < block_height);
+ } while (++plane < plane_count);
+ return true;
+}
+
+#undef CALL_BITDEPTH_FUNCTION
+
+void Tile::PopulateDeblockFilterLevel(const Block& block) {
+ if (!post_filter_.DoDeblock()) return;
+ BlockParameters& bp = *block.bp;
+ const int mode_id =
+ static_cast<int>(kPredictionModeDeltasMask.Contains(bp.y_mode));
+ for (int i = 0; i < kFrameLfCount; ++i) {
+ if (delta_lf_all_zero_) {
+ bp.deblock_filter_level[i] = post_filter_.GetZeroDeltaDeblockFilterLevel(
+ bp.segment_id, i, bp.reference_frame[0], mode_id);
+ } else {
+ bp.deblock_filter_level[i] =
+ deblock_filter_levels_[bp.segment_id][i][bp.reference_frame[0]]
+ [mode_id];
+ }
+ }
+}
+
+bool Tile::ProcessBlock(int row4x4, int column4x4, BlockSize block_size,
+ ParameterTree* const tree,
+ TileScratchBuffer* const scratch_buffer,
+ ResidualPtr* residual) {
+ // Do not process the block if the starting point is beyond the visible frame.
+ // This is equivalent to the has_row/has_column check in the
+ // decode_partition() section of the spec when partition equals
+ // kPartitionHorizontal or kPartitionVertical.
+ if (row4x4 >= frame_header_.rows4x4 ||
+ column4x4 >= frame_header_.columns4x4) {
+ return true;
+ }
+ BlockParameters& bp = *tree->parameters();
+ block_parameters_holder_.FillCache(row4x4, column4x4, block_size, &bp);
+ Block block(*this, block_size, row4x4, column4x4, scratch_buffer, residual);
+ bp.size = block_size;
+ bp.prediction_parameters =
+ split_parse_and_decode_ ? std::unique_ptr<PredictionParameters>(
+ new (std::nothrow) PredictionParameters())
+ : std::move(prediction_parameters_);
+ if (bp.prediction_parameters == nullptr) return false;
+ if (!DecodeModeInfo(block)) return false;
+ bp.is_global_mv_block = (bp.y_mode == kPredictionModeGlobalMv ||
+ bp.y_mode == kPredictionModeGlobalGlobalMv) &&
+ !IsBlockDimension4(bp.size);
+ PopulateDeblockFilterLevel(block);
+ if (!ReadPaletteTokens(block)) return false;
+ DecodeTransformSize(block);
+ // Part of Section 5.11.37 in the spec (implemented as a simple lookup).
+ bp.uv_transform_size = frame_header_.segmentation.lossless[bp.segment_id]
+ ? kTransformSize4x4
+ : kUVTransformSize[block.residual_size[kPlaneU]];
+ if (bp.skip) ResetEntropyContext(block);
+ if (split_parse_and_decode_) {
+ if (!Residual(block, kProcessingModeParseOnly)) return false;
+ } else {
+ if (!ComputePrediction(block) ||
+ !Residual(block, kProcessingModeParseAndDecode)) {
+ return false;
+ }
+ }
+ // If frame_header_.segmentation.enabled is false, bp.segment_id is 0 for all
+ // blocks. We don't need to call save bp.segment_id in the current frame
+ // because the current frame's segmentation map will be cleared to all 0s.
+ //
+ // If frame_header_.segmentation.enabled is true and
+ // frame_header_.segmentation.update_map is false, we will copy the previous
+ // frame's segmentation map to the current frame. So we don't need to call
+ // save bp.segment_id in the current frame.
+ if (frame_header_.segmentation.enabled &&
+ frame_header_.segmentation.update_map) {
+ const int x_limit = std::min(frame_header_.columns4x4 - column4x4,
+ static_cast<int>(block.width4x4));
+ const int y_limit = std::min(frame_header_.rows4x4 - row4x4,
+ static_cast<int>(block.height4x4));
+ current_frame_.segmentation_map()->FillBlock(row4x4, column4x4, x_limit,
+ y_limit, bp.segment_id);
+ }
+ StoreMotionFieldMvsIntoCurrentFrame(block);
+ if (!split_parse_and_decode_) {
+ prediction_parameters_ = std::move(bp.prediction_parameters);
+ }
+ return true;
+}
+
+bool Tile::DecodeBlock(ParameterTree* const tree,
+ TileScratchBuffer* const scratch_buffer,
+ ResidualPtr* residual) {
+ const int row4x4 = tree->row4x4();
+ const int column4x4 = tree->column4x4();
+ if (row4x4 >= frame_header_.rows4x4 ||
+ column4x4 >= frame_header_.columns4x4) {
+ return true;
+ }
+ const BlockSize block_size = tree->block_size();
+ Block block(*this, block_size, row4x4, column4x4, scratch_buffer, residual);
+ if (!ComputePrediction(block) ||
+ !Residual(block, kProcessingModeDecodeOnly)) {
+ return false;
+ }
+ block.bp->prediction_parameters.reset(nullptr);
+ return true;
+}
+
+bool Tile::ProcessPartition(int row4x4_start, int column4x4_start,
+ ParameterTree* const root,
+ TileScratchBuffer* const scratch_buffer,
+ ResidualPtr* residual) {
+ Stack<ParameterTree*, kDfsStackSize> stack;
+
+ // Set up the first iteration.
+ ParameterTree* node = root;
+ int row4x4 = row4x4_start;
+ int column4x4 = column4x4_start;
+ BlockSize block_size = SuperBlockSize();
+
+ // DFS loop. If it sees a terminal node (leaf node), ProcessBlock is invoked.
+ // Otherwise, the children are pushed into the stack for future processing.
+ do {
+ if (!stack.Empty()) {
+ // Set up subsequent iterations.
+ node = stack.Pop();
+ row4x4 = node->row4x4();
+ column4x4 = node->column4x4();
+ block_size = node->block_size();
+ }
+ if (row4x4 >= frame_header_.rows4x4 ||
+ column4x4 >= frame_header_.columns4x4) {
+ continue;
+ }
+ const int block_width4x4 = kNum4x4BlocksWide[block_size];
+ assert(block_width4x4 == kNum4x4BlocksHigh[block_size]);
+ const int half_block4x4 = block_width4x4 >> 1;
+ const bool has_rows = (row4x4 + half_block4x4) < frame_header_.rows4x4;
+ const bool has_columns =
+ (column4x4 + half_block4x4) < frame_header_.columns4x4;
+ Partition partition;
+ if (!ReadPartition(row4x4, column4x4, block_size, has_rows, has_columns,
+ &partition)) {
+ LIBGAV1_DLOG(ERROR, "Failed to read partition for row: %d column: %d",
+ row4x4, column4x4);
+ return false;
+ }
+ const BlockSize sub_size = kSubSize[partition][block_size];
+ // Section 6.10.4: It is a requirement of bitstream conformance that
+ // get_plane_residual_size( subSize, 1 ) is not equal to BLOCK_INVALID
+ // every time subSize is computed.
+ if (sub_size == kBlockInvalid ||
+ kPlaneResidualSize[sub_size]
+ [sequence_header_.color_config.subsampling_x]
+ [sequence_header_.color_config.subsampling_y] ==
+ kBlockInvalid) {
+ LIBGAV1_DLOG(
+ ERROR,
+ "Invalid sub-block/plane size for row: %d column: %d partition: "
+ "%d block_size: %d sub_size: %d subsampling_x/y: %d, %d",
+ row4x4, column4x4, partition, block_size, sub_size,
+ sequence_header_.color_config.subsampling_x,
+ sequence_header_.color_config.subsampling_y);
+ return false;
+ }
+ if (!node->SetPartitionType(partition)) {
+ LIBGAV1_DLOG(ERROR, "node->SetPartitionType() failed.");
+ return false;
+ }
+ switch (partition) {
+ case kPartitionNone:
+ if (!ProcessBlock(row4x4, column4x4, sub_size, node, scratch_buffer,
+ residual)) {
+ return false;
+ }
+ break;
+ case kPartitionSplit:
+ // The children must be added in reverse order since a stack is being
+ // used.
+ for (int i = 3; i >= 0; --i) {
+ ParameterTree* const child = node->children(i);
+ assert(child != nullptr);
+ stack.Push(child);
+ }
+ break;
+ case kPartitionHorizontal:
+ case kPartitionVertical:
+ case kPartitionHorizontalWithTopSplit:
+ case kPartitionHorizontalWithBottomSplit:
+ case kPartitionVerticalWithLeftSplit:
+ case kPartitionVerticalWithRightSplit:
+ case kPartitionHorizontal4:
+ case kPartitionVertical4:
+ for (int i = 0; i < 4; ++i) {
+ ParameterTree* const child = node->children(i);
+ // Once a null child is seen, all the subsequent children will also be
+ // null.
+ if (child == nullptr) break;
+ if (!ProcessBlock(child->row4x4(), child->column4x4(),
+ child->block_size(), child, scratch_buffer,
+ residual)) {
+ return false;
+ }
+ }
+ break;
+ }
+ } while (!stack.Empty());
+ return true;
+}
+
+void Tile::ResetLoopRestorationParams() {
+ for (int plane = kPlaneY; plane < kMaxPlanes; ++plane) {
+ for (int i = WienerInfo::kVertical; i <= WienerInfo::kHorizontal; ++i) {
+ reference_unit_info_[plane].sgr_proj_info.multiplier[i] =
+ kSgrProjDefaultMultiplier[i];
+ for (int j = 0; j < kNumWienerCoefficients; ++j) {
+ reference_unit_info_[plane].wiener_info.filter[i][j] =
+ kWienerDefaultFilter[j];
+ }
+ }
+ }
+}
+
+void Tile::ResetCdef(const int row4x4, const int column4x4) {
+ if (!sequence_header_.enable_cdef) return;
+ const int row = DivideBy16(row4x4);
+ const int column = DivideBy16(column4x4);
+ cdef_index_[row][column] = -1;
+ if (sequence_header_.use_128x128_superblock) {
+ const int cdef_size4x4 = kNum4x4BlocksWide[kBlock64x64];
+ const int border_row = DivideBy16(row4x4 + cdef_size4x4);
+ const int border_column = DivideBy16(column4x4 + cdef_size4x4);
+ cdef_index_[row][border_column] = -1;
+ cdef_index_[border_row][column] = -1;
+ cdef_index_[border_row][border_column] = -1;
+ }
+}
+
+void Tile::ClearBlockDecoded(TileScratchBuffer* const scratch_buffer,
+ int row4x4, int column4x4) {
+ // Set everything to false.
+ memset(scratch_buffer->block_decoded, 0,
+ sizeof(scratch_buffer->block_decoded));
+ // Set specific edge cases to true.
+ const int sb_size4 = sequence_header_.use_128x128_superblock ? 32 : 16;
+ for (int plane = kPlaneY; plane < PlaneCount(); ++plane) {
+ const int subsampling_x = subsampling_x_[plane];
+ const int subsampling_y = subsampling_y_[plane];
+ const int sb_width4 = (column4x4_end_ - column4x4) >> subsampling_x;
+ const int sb_height4 = (row4x4_end_ - row4x4) >> subsampling_y;
+ // The memset is equivalent to the following lines in the spec:
+ // for ( x = -1; x <= ( sbSize4 >> subX ); x++ ) {
+ // if ( y < 0 && x < sbWidth4 ) {
+ // BlockDecoded[plane][y][x] = 1
+ // }
+ // }
+ const int num_elements =
+ std::min((sb_size4 >> subsampling_x_[plane]) + 1, sb_width4) + 1;
+ memset(&scratch_buffer->block_decoded[plane][0][0], 1, num_elements);
+ // The for loop is equivalent to the following lines in the spec:
+ // for ( y = -1; y <= ( sbSize4 >> subY ); y++ )
+ // if ( x < 0 && y < sbHeight4 )
+ // BlockDecoded[plane][y][x] = 1
+ // }
+ // }
+ // BlockDecoded[plane][sbSize4 >> subY][-1] = 0
+ for (int y = -1; y < std::min((sb_size4 >> subsampling_y), sb_height4);
+ ++y) {
+ scratch_buffer->block_decoded[plane][y + 1][0] = true;
+ }
+ }
+}
+
+bool Tile::ProcessSuperBlock(int row4x4, int column4x4, int block_width4x4,
+ TileScratchBuffer* const scratch_buffer,
+ ProcessingMode mode) {
+ const bool parsing =
+ mode == kProcessingModeParseOnly || mode == kProcessingModeParseAndDecode;
+ const bool decoding = mode == kProcessingModeDecodeOnly ||
+ mode == kProcessingModeParseAndDecode;
+ if (parsing) {
+ read_deltas_ = frame_header_.delta_q.present;
+ ResetCdef(row4x4, column4x4);
+ }
+ if (decoding) {
+ ClearBlockDecoded(scratch_buffer, row4x4, column4x4);
+ }
+ const BlockSize block_size = SuperBlockSize();
+ if (parsing) {
+ ReadLoopRestorationCoefficients(row4x4, column4x4, block_size);
+ }
+ const int row = row4x4 / block_width4x4;
+ const int column = column4x4 / block_width4x4;
+ if (parsing && decoding) {
+ uint8_t* residual_buffer = residual_buffer_.get();
+ if (!ProcessPartition(row4x4, column4x4,
+ block_parameters_holder_.Tree(row, column),
+ scratch_buffer, &residual_buffer)) {
+ LIBGAV1_DLOG(ERROR, "Error decoding partition row: %d column: %d", row4x4,
+ column4x4);
+ return false;
+ }
+ return true;
+ }
+ const int sb_row_index = SuperBlockRowIndex(row4x4);
+ const int sb_column_index = SuperBlockColumnIndex(column4x4);
+ if (parsing) {
+ residual_buffer_threaded_[sb_row_index][sb_column_index] =
+ residual_buffer_pool_->Get();
+ if (residual_buffer_threaded_[sb_row_index][sb_column_index] == nullptr) {
+ LIBGAV1_DLOG(ERROR, "Failed to get residual buffer.");
+ return false;
+ }
+ uint8_t* residual_buffer =
+ residual_buffer_threaded_[sb_row_index][sb_column_index]->buffer();
+ if (!ProcessPartition(row4x4, column4x4,
+ block_parameters_holder_.Tree(row, column),
+ scratch_buffer, &residual_buffer)) {
+ LIBGAV1_DLOG(ERROR, "Error parsing partition row: %d column: %d", row4x4,
+ column4x4);
+ return false;
+ }
+ } else {
+ uint8_t* residual_buffer =
+ residual_buffer_threaded_[sb_row_index][sb_column_index]->buffer();
+ if (!DecodeSuperBlock(block_parameters_holder_.Tree(row, column),
+ scratch_buffer, &residual_buffer)) {
+ LIBGAV1_DLOG(ERROR, "Error decoding superblock row: %d column: %d",
+ row4x4, column4x4);
+ return false;
+ }
+ residual_buffer_pool_->Release(
+ std::move(residual_buffer_threaded_[sb_row_index][sb_column_index]));
+ }
+ return true;
+}
+
+bool Tile::DecodeSuperBlock(ParameterTree* const tree,
+ TileScratchBuffer* const scratch_buffer,
+ ResidualPtr* residual) {
+ Stack<ParameterTree*, kDfsStackSize> stack;
+ stack.Push(tree);
+ do {
+ ParameterTree* const node = stack.Pop();
+ if (node->partition() != kPartitionNone) {
+ for (int i = 3; i >= 0; --i) {
+ if (node->children(i) == nullptr) continue;
+ stack.Push(node->children(i));
+ }
+ continue;
+ }
+ if (!DecodeBlock(node, scratch_buffer, residual)) {
+ LIBGAV1_DLOG(ERROR, "Error decoding block row: %d column: %d",
+ node->row4x4(), node->column4x4());
+ return false;
+ }
+ } while (!stack.Empty());
+ return true;
+}
+
+void Tile::ReadLoopRestorationCoefficients(int row4x4, int column4x4,
+ BlockSize block_size) {
+ if (frame_header_.allow_intrabc) return;
+ LoopRestorationInfo* const restoration_info = post_filter_.restoration_info();
+ const bool is_superres_scaled =
+ frame_header_.width != frame_header_.upscaled_width;
+ for (int plane = kPlaneY; plane < PlaneCount(); ++plane) {
+ LoopRestorationUnitInfo unit_info;
+ if (restoration_info->PopulateUnitInfoForSuperBlock(
+ static_cast<Plane>(plane), block_size, is_superres_scaled,
+ frame_header_.superres_scale_denominator, row4x4, column4x4,
+ &unit_info)) {
+ for (int unit_row = unit_info.row_start; unit_row < unit_info.row_end;
+ ++unit_row) {
+ for (int unit_column = unit_info.column_start;
+ unit_column < unit_info.column_end; ++unit_column) {
+ const int unit_id = unit_row * restoration_info->num_horizontal_units(
+ static_cast<Plane>(plane)) +
+ unit_column;
+ restoration_info->ReadUnitCoefficients(
+ &reader_, &symbol_decoder_context_, static_cast<Plane>(plane),
+ unit_id, &reference_unit_info_);
+ }
+ }
+ }
+ }
+}
+
+void Tile::StoreMotionFieldMvsIntoCurrentFrame(const Block& block) {
+ if (frame_header_.refresh_frame_flags == 0 ||
+ IsIntraFrame(frame_header_.frame_type)) {
+ return;
+ }
+ // Iterate over odd rows/columns beginning at the first odd row/column for the
+ // block. It is done this way because motion field mvs are only needed at a
+ // 8x8 granularity.
+ const int row_start4x4 = block.row4x4 | 1;
+ const int row_limit4x4 =
+ std::min(block.row4x4 + block.height4x4, frame_header_.rows4x4);
+ if (row_start4x4 >= row_limit4x4) return;
+ const int column_start4x4 = block.column4x4 | 1;
+ const int column_limit4x4 =
+ std::min(block.column4x4 + block.width4x4, frame_header_.columns4x4);
+ if (column_start4x4 >= column_limit4x4) return;
+
+ // The largest reference MV component that can be saved.
+ constexpr int kRefMvsLimit = (1 << 12) - 1;
+ const BlockParameters& bp = *block.bp;
+ ReferenceInfo* reference_info = current_frame_.reference_info();
+ for (int i = 1; i >= 0; --i) {
+ const ReferenceFrameType reference_frame_to_store = bp.reference_frame[i];
+ // Must make a local copy so that StoreMotionFieldMvs() knows there is no
+ // overlap between load and store.
+ const MotionVector mv_to_store = bp.mv.mv[i];
+ const int mv_row = std::abs(mv_to_store.mv[MotionVector::kRow]);
+ const int mv_column = std::abs(mv_to_store.mv[MotionVector::kColumn]);
+ if (reference_frame_to_store > kReferenceFrameIntra &&
+ // kRefMvsLimit equals 0x07FF, so we can first bitwise OR the two
+ // absolute values and then compare with kRefMvsLimit to save a branch.
+ // The next line is equivalent to:
+ // mv_row <= kRefMvsLimit && mv_column <= kRefMvsLimit
+ (mv_row | mv_column) <= kRefMvsLimit &&
+ reference_info->relative_distance_from[reference_frame_to_store] < 0) {
+ const int row_start8x8 = DivideBy2(row_start4x4);
+ const int row_limit8x8 = DivideBy2(row_limit4x4);
+ const int column_start8x8 = DivideBy2(column_start4x4);
+ const int column_limit8x8 = DivideBy2(column_limit4x4);
+ const int rows = row_limit8x8 - row_start8x8;
+ const int columns = column_limit8x8 - column_start8x8;
+ const ptrdiff_t stride = DivideBy2(current_frame_.columns4x4());
+ ReferenceFrameType* const reference_frame_row_start =
+ &reference_info
+ ->motion_field_reference_frame[row_start8x8][column_start8x8];
+ MotionVector* const mv =
+ &reference_info->motion_field_mv[row_start8x8][column_start8x8];
+
+ // Specialize columns cases 1, 2, 4, 8 and 16. This makes memset() inlined
+ // and simplifies std::fill() for these cases.
+ if (columns <= 1) {
+ // Don't change the above condition to (columns == 1).
+ // Condition (columns <= 1) may help the compiler simplify the inlining
+ // of the general case of StoreMotionFieldMvs() by eliminating the
+ // (columns == 0) case.
+ assert(columns == 1);
+ StoreMotionFieldMvs(reference_frame_to_store, mv_to_store, stride, rows,
+ 1, reference_frame_row_start, mv);
+ } else if (columns == 2) {
+ StoreMotionFieldMvs(reference_frame_to_store, mv_to_store, stride, rows,
+ 2, reference_frame_row_start, mv);
+ } else if (columns == 4) {
+ StoreMotionFieldMvs(reference_frame_to_store, mv_to_store, stride, rows,
+ 4, reference_frame_row_start, mv);
+ } else if (columns == 8) {
+ StoreMotionFieldMvs(reference_frame_to_store, mv_to_store, stride, rows,
+ 8, reference_frame_row_start, mv);
+ } else if (columns == 16) {
+ StoreMotionFieldMvs(reference_frame_to_store, mv_to_store, stride, rows,
+ 16, reference_frame_row_start, mv);
+ } else if (columns < 16) {
+ // This always true condition (columns < 16) may help the compiler
+ // simplify the inlining of the following function.
+ // This general case is rare and usually only happens to the blocks
+ // which contain the right boundary of the frame.
+ StoreMotionFieldMvs(reference_frame_to_store, mv_to_store, stride, rows,
+ columns, reference_frame_row_start, mv);
+ } else {
+ assert(false);
+ }
+ return;
+ }
+ }
+}
+
+} // namespace libgav1