1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
|
// Copyright 2019 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/decoder_impl.h"
#include <algorithm>
#include <atomic>
#include <cassert>
#include <iterator>
#include <new>
#include <utility>
#include "src/dsp/common.h"
#include "src/dsp/constants.h"
#include "src/dsp/dsp.h"
#include "src/film_grain.h"
#include "src/frame_buffer_utils.h"
#include "src/frame_scratch_buffer.h"
#include "src/loop_restoration_info.h"
#include "src/obu_parser.h"
#include "src/post_filter.h"
#include "src/prediction_mask.h"
#include "src/threading_strategy.h"
#include "src/utils/blocking_counter.h"
#include "src/utils/common.h"
#include "src/utils/constants.h"
#include "src/utils/logging.h"
#include "src/utils/raw_bit_reader.h"
#include "src/utils/segmentation.h"
#include "src/utils/threadpool.h"
#include "src/yuv_buffer.h"
namespace libgav1 {
namespace {
constexpr int kMaxBlockWidth4x4 = 32;
constexpr int kMaxBlockHeight4x4 = 32;
// Computes the bottom border size in pixels. If CDEF, loop restoration or
// SuperRes is enabled, adds extra border pixels to facilitate those steps to
// happen nearly in-place (a few extra rows instead of an entire frame buffer).
// The logic in this function should match the corresponding logic for
// |vertical_shift| in the PostFilter constructor.
int GetBottomBorderPixels(const bool do_cdef, const bool do_restoration,
const bool do_superres, const int subsampling_y) {
int extra_border = 0;
if (do_cdef) {
extra_border += kCdefBorder;
} else if (do_restoration) {
// If CDEF is enabled, loop restoration is safe without extra border.
extra_border += kRestorationVerticalBorder;
}
if (do_superres) extra_border += kSuperResVerticalBorder;
// Double the number of extra bottom border pixels if the bottom border will
// be subsampled.
extra_border <<= subsampling_y;
return Align(kBorderPixels + extra_border, 2); // Must be a multiple of 2.
}
// Sets |frame_scratch_buffer->tile_decoding_failed| to true (while holding on
// to |frame_scratch_buffer->superblock_row_mutex|) and notifies the first
// |count| condition variables in
// |frame_scratch_buffer->superblock_row_progress_condvar|.
void SetFailureAndNotifyAll(FrameScratchBuffer* const frame_scratch_buffer,
int count) {
{
std::lock_guard<std::mutex> lock(
frame_scratch_buffer->superblock_row_mutex);
frame_scratch_buffer->tile_decoding_failed = true;
}
std::condition_variable* const condvars =
frame_scratch_buffer->superblock_row_progress_condvar.get();
for (int i = 0; i < count; ++i) {
condvars[i].notify_one();
}
}
// Helper class that releases the frame scratch buffer in the destructor.
class FrameScratchBufferReleaser {
public:
FrameScratchBufferReleaser(
FrameScratchBufferPool* frame_scratch_buffer_pool,
std::unique_ptr<FrameScratchBuffer>* frame_scratch_buffer)
: frame_scratch_buffer_pool_(frame_scratch_buffer_pool),
frame_scratch_buffer_(frame_scratch_buffer) {}
~FrameScratchBufferReleaser() {
frame_scratch_buffer_pool_->Release(std::move(*frame_scratch_buffer_));
}
private:
FrameScratchBufferPool* const frame_scratch_buffer_pool_;
std::unique_ptr<FrameScratchBuffer>* const frame_scratch_buffer_;
};
// Sets the |frame|'s segmentation map for two cases. The third case is handled
// in Tile::DecodeBlock().
void SetSegmentationMap(const ObuFrameHeader& frame_header,
const SegmentationMap* prev_segment_ids,
RefCountedBuffer* const frame) {
if (!frame_header.segmentation.enabled) {
// All segment_id's are 0.
frame->segmentation_map()->Clear();
} else if (!frame_header.segmentation.update_map) {
// Copy from prev_segment_ids.
if (prev_segment_ids == nullptr) {
// Treat a null prev_segment_ids pointer as if it pointed to a
// segmentation map containing all 0s.
frame->segmentation_map()->Clear();
} else {
frame->segmentation_map()->CopyFrom(*prev_segment_ids);
}
}
}
StatusCode DecodeTilesNonFrameParallel(
const ObuSequenceHeader& sequence_header,
const ObuFrameHeader& frame_header,
const Vector<std::unique_ptr<Tile>>& tiles,
FrameScratchBuffer* const frame_scratch_buffer,
PostFilter* const post_filter) {
// Decode in superblock row order.
const int block_width4x4 = sequence_header.use_128x128_superblock ? 32 : 16;
std::unique_ptr<TileScratchBuffer> tile_scratch_buffer =
frame_scratch_buffer->tile_scratch_buffer_pool.Get();
if (tile_scratch_buffer == nullptr) return kLibgav1StatusOutOfMemory;
for (int row4x4 = 0; row4x4 < frame_header.rows4x4;
row4x4 += block_width4x4) {
for (const auto& tile_ptr : tiles) {
if (!tile_ptr->ProcessSuperBlockRow<kProcessingModeParseAndDecode, true>(
row4x4, tile_scratch_buffer.get())) {
return kLibgav1StatusUnknownError;
}
}
post_filter->ApplyFilteringForOneSuperBlockRow(
row4x4, block_width4x4, row4x4 + block_width4x4 >= frame_header.rows4x4,
/*do_deblock=*/true);
}
frame_scratch_buffer->tile_scratch_buffer_pool.Release(
std::move(tile_scratch_buffer));
return kStatusOk;
}
StatusCode DecodeTilesThreadedNonFrameParallel(
const Vector<std::unique_ptr<Tile>>& tiles,
FrameScratchBuffer* const frame_scratch_buffer,
PostFilter* const post_filter,
BlockingCounterWithStatus* const pending_tiles) {
ThreadingStrategy& threading_strategy =
frame_scratch_buffer->threading_strategy;
const int num_workers = threading_strategy.tile_thread_count();
BlockingCounterWithStatus pending_workers(num_workers);
std::atomic<int> tile_counter(0);
const int tile_count = static_cast<int>(tiles.size());
bool tile_decoding_failed = false;
// Submit tile decoding jobs to the thread pool.
for (int i = 0; i < num_workers; ++i) {
threading_strategy.tile_thread_pool()->Schedule([&tiles, tile_count,
&tile_counter,
&pending_workers,
&pending_tiles]() {
bool failed = false;
int index;
while ((index = tile_counter.fetch_add(1, std::memory_order_relaxed)) <
tile_count) {
if (!failed) {
const auto& tile_ptr = tiles[index];
if (!tile_ptr->ParseAndDecode()) {
LIBGAV1_DLOG(ERROR, "Error decoding tile #%d", tile_ptr->number());
failed = true;
}
} else {
pending_tiles->Decrement(false);
}
}
pending_workers.Decrement(!failed);
});
}
// Have the current thread partake in tile decoding.
int index;
while ((index = tile_counter.fetch_add(1, std::memory_order_relaxed)) <
tile_count) {
if (!tile_decoding_failed) {
const auto& tile_ptr = tiles[index];
if (!tile_ptr->ParseAndDecode()) {
LIBGAV1_DLOG(ERROR, "Error decoding tile #%d", tile_ptr->number());
tile_decoding_failed = true;
}
} else {
pending_tiles->Decrement(false);
}
}
// Wait until all the workers are done. This ensures that all the tiles have
// been parsed.
tile_decoding_failed |= !pending_workers.Wait();
// Wait until all the tiles have been decoded.
tile_decoding_failed |= !pending_tiles->Wait();
if (tile_decoding_failed) return kStatusUnknownError;
assert(threading_strategy.post_filter_thread_pool() != nullptr);
post_filter->ApplyFilteringThreaded();
return kStatusOk;
}
StatusCode DecodeTilesFrameParallel(
const ObuSequenceHeader& sequence_header,
const ObuFrameHeader& frame_header,
const Vector<std::unique_ptr<Tile>>& tiles,
const SymbolDecoderContext& saved_symbol_decoder_context,
const SegmentationMap* const prev_segment_ids,
FrameScratchBuffer* const frame_scratch_buffer,
PostFilter* const post_filter, RefCountedBuffer* const current_frame) {
// Parse the frame.
for (const auto& tile : tiles) {
if (!tile->Parse()) {
LIBGAV1_DLOG(ERROR, "Failed to parse tile number: %d\n", tile->number());
return kStatusUnknownError;
}
}
if (frame_header.enable_frame_end_update_cdf) {
frame_scratch_buffer->symbol_decoder_context = saved_symbol_decoder_context;
}
current_frame->SetFrameContext(frame_scratch_buffer->symbol_decoder_context);
SetSegmentationMap(frame_header, prev_segment_ids, current_frame);
// Mark frame as parsed.
current_frame->SetFrameState(kFrameStateParsed);
std::unique_ptr<TileScratchBuffer> tile_scratch_buffer =
frame_scratch_buffer->tile_scratch_buffer_pool.Get();
if (tile_scratch_buffer == nullptr) {
return kStatusOutOfMemory;
}
const int block_width4x4 = sequence_header.use_128x128_superblock ? 32 : 16;
// Decode in superblock row order (inter prediction in the Tile class will
// block until the required superblocks in the reference frame are decoded).
for (int row4x4 = 0; row4x4 < frame_header.rows4x4;
row4x4 += block_width4x4) {
for (const auto& tile_ptr : tiles) {
if (!tile_ptr->ProcessSuperBlockRow<kProcessingModeDecodeOnly, false>(
row4x4, tile_scratch_buffer.get())) {
LIBGAV1_DLOG(ERROR, "Failed to decode tile number: %d\n",
tile_ptr->number());
return kStatusUnknownError;
}
}
const int progress_row = post_filter->ApplyFilteringForOneSuperBlockRow(
row4x4, block_width4x4, row4x4 + block_width4x4 >= frame_header.rows4x4,
/*do_deblock=*/true);
if (progress_row >= 0) {
current_frame->SetProgress(progress_row);
}
}
// Mark frame as decoded (we no longer care about row-level progress since the
// entire frame has been decoded).
current_frame->SetFrameState(kFrameStateDecoded);
frame_scratch_buffer->tile_scratch_buffer_pool.Release(
std::move(tile_scratch_buffer));
return kStatusOk;
}
// Helper function used by DecodeTilesThreadedFrameParallel. Applies the
// deblocking filter for tile boundaries for the superblock row at |row4x4|.
void ApplyDeblockingFilterForTileBoundaries(
PostFilter* const post_filter, const std::unique_ptr<Tile>* tile_row_base,
const ObuFrameHeader& frame_header, int row4x4, int block_width4x4,
int tile_columns, bool decode_entire_tiles_in_worker_threads) {
// Apply vertical deblock filtering for the first 64 columns of each tile.
for (int tile_column = 0; tile_column < tile_columns; ++tile_column) {
const Tile& tile = *tile_row_base[tile_column];
post_filter->ApplyDeblockFilter(
kLoopFilterTypeVertical, row4x4, tile.column4x4_start(),
tile.column4x4_start() + kNum4x4InLoopFilterUnit, block_width4x4);
}
if (decode_entire_tiles_in_worker_threads &&
row4x4 == tile_row_base[0]->row4x4_start()) {
// This is the first superblock row of a tile row. In this case, apply
// horizontal deblock filtering for the entire superblock row.
post_filter->ApplyDeblockFilter(kLoopFilterTypeHorizontal, row4x4, 0,
frame_header.columns4x4, block_width4x4);
} else {
// Apply horizontal deblock filtering for the first 64 columns of the
// first tile.
const Tile& first_tile = *tile_row_base[0];
post_filter->ApplyDeblockFilter(
kLoopFilterTypeHorizontal, row4x4, first_tile.column4x4_start(),
first_tile.column4x4_start() + kNum4x4InLoopFilterUnit, block_width4x4);
// Apply horizontal deblock filtering for the last 64 columns of the
// previous tile and the first 64 columns of the current tile.
for (int tile_column = 1; tile_column < tile_columns; ++tile_column) {
const Tile& tile = *tile_row_base[tile_column];
// If the previous tile has more than 64 columns, then include those
// for the horizontal deblock.
const Tile& previous_tile = *tile_row_base[tile_column - 1];
const int column4x4_start =
tile.column4x4_start() -
((tile.column4x4_start() - kNum4x4InLoopFilterUnit !=
previous_tile.column4x4_start())
? kNum4x4InLoopFilterUnit
: 0);
post_filter->ApplyDeblockFilter(
kLoopFilterTypeHorizontal, row4x4, column4x4_start,
tile.column4x4_start() + kNum4x4InLoopFilterUnit, block_width4x4);
}
// Apply horizontal deblock filtering for the last 64 columns of the
// last tile.
const Tile& last_tile = *tile_row_base[tile_columns - 1];
// Identify the last column4x4 value and do horizontal filtering for
// that column4x4. The value of last column4x4 is the nearest multiple
// of 16 that is before tile.column4x4_end().
const int column4x4_start = (last_tile.column4x4_end() - 1) & ~15;
// If column4x4_start is the same as tile.column4x4_start() then it
// means that the last tile has <= 64 columns. So there is nothing left
// to deblock (since it was already deblocked in the loop above).
if (column4x4_start != last_tile.column4x4_start()) {
post_filter->ApplyDeblockFilter(
kLoopFilterTypeHorizontal, row4x4, column4x4_start,
last_tile.column4x4_end(), block_width4x4);
}
}
}
// Helper function used by DecodeTilesThreadedFrameParallel. Decodes the
// superblock row starting at |row4x4| for tile at index |tile_index| in the
// list of tiles |tiles|. If the decoding is successful, then it does the
// following:
// * Schedule the next superblock row in the current tile column for decoding
// (the next superblock row may be in a different tile than the current
// one).
// * If an entire superblock row of the frame has been decoded, it notifies
// the waiters (if there are any).
void DecodeSuperBlockRowInTile(
const Vector<std::unique_ptr<Tile>>& tiles, size_t tile_index, int row4x4,
const int superblock_size4x4, const int tile_columns,
const int superblock_rows, FrameScratchBuffer* const frame_scratch_buffer,
PostFilter* const post_filter, BlockingCounter* const pending_jobs) {
std::unique_ptr<TileScratchBuffer> scratch_buffer =
frame_scratch_buffer->tile_scratch_buffer_pool.Get();
if (scratch_buffer == nullptr) {
SetFailureAndNotifyAll(frame_scratch_buffer, superblock_rows);
return;
}
Tile& tile = *tiles[tile_index];
const bool ok = tile.ProcessSuperBlockRow<kProcessingModeDecodeOnly, false>(
row4x4, scratch_buffer.get());
frame_scratch_buffer->tile_scratch_buffer_pool.Release(
std::move(scratch_buffer));
if (!ok) {
SetFailureAndNotifyAll(frame_scratch_buffer, superblock_rows);
return;
}
if (post_filter->DoDeblock()) {
// Apply vertical deblock filtering for all the columns in this tile except
// for the first 64 columns.
post_filter->ApplyDeblockFilter(
kLoopFilterTypeVertical, row4x4,
tile.column4x4_start() + kNum4x4InLoopFilterUnit, tile.column4x4_end(),
superblock_size4x4);
// Apply horizontal deblock filtering for all the columns in this tile
// except for the first and the last 64 columns.
// Note about the last tile of each row: For the last tile, column4x4_end
// may not be a multiple of 16. In that case it is still okay to simply
// subtract 16 since ApplyDeblockFilter() will only do the filters in
// increments of 64 columns (or 32 columns for chroma with subsampling).
post_filter->ApplyDeblockFilter(
kLoopFilterTypeHorizontal, row4x4,
tile.column4x4_start() + kNum4x4InLoopFilterUnit,
tile.column4x4_end() - kNum4x4InLoopFilterUnit, superblock_size4x4);
}
const int superblock_size4x4_log2 = FloorLog2(superblock_size4x4);
const int index = row4x4 >> superblock_size4x4_log2;
int* const superblock_row_progress =
frame_scratch_buffer->superblock_row_progress.get();
std::condition_variable* const superblock_row_progress_condvar =
frame_scratch_buffer->superblock_row_progress_condvar.get();
bool notify;
{
std::lock_guard<std::mutex> lock(
frame_scratch_buffer->superblock_row_mutex);
notify = ++superblock_row_progress[index] == tile_columns;
}
if (notify) {
// We are done decoding this superblock row. Notify the post filtering
// thread.
superblock_row_progress_condvar[index].notify_one();
}
// Schedule the next superblock row (if one exists).
ThreadPool& thread_pool =
*frame_scratch_buffer->threading_strategy.thread_pool();
const int next_row4x4 = row4x4 + superblock_size4x4;
if (!tile.IsRow4x4Inside(next_row4x4)) {
tile_index += tile_columns;
}
if (tile_index >= tiles.size()) return;
pending_jobs->IncrementBy(1);
thread_pool.Schedule([&tiles, tile_index, next_row4x4, superblock_size4x4,
tile_columns, superblock_rows, frame_scratch_buffer,
post_filter, pending_jobs]() {
DecodeSuperBlockRowInTile(tiles, tile_index, next_row4x4,
superblock_size4x4, tile_columns, superblock_rows,
frame_scratch_buffer, post_filter, pending_jobs);
pending_jobs->Decrement();
});
}
StatusCode DecodeTilesThreadedFrameParallel(
const ObuSequenceHeader& sequence_header,
const ObuFrameHeader& frame_header,
const Vector<std::unique_ptr<Tile>>& tiles,
const SymbolDecoderContext& saved_symbol_decoder_context,
const SegmentationMap* const prev_segment_ids,
FrameScratchBuffer* const frame_scratch_buffer,
PostFilter* const post_filter, RefCountedBuffer* const current_frame) {
// Parse the frame.
ThreadPool& thread_pool =
*frame_scratch_buffer->threading_strategy.thread_pool();
std::atomic<int> tile_counter(0);
const int tile_count = static_cast<int>(tiles.size());
const int num_workers = thread_pool.num_threads();
BlockingCounterWithStatus parse_workers(num_workers);
// Submit tile parsing jobs to the thread pool.
for (int i = 0; i < num_workers; ++i) {
thread_pool.Schedule([&tiles, tile_count, &tile_counter, &parse_workers]() {
bool failed = false;
int index;
while ((index = tile_counter.fetch_add(1, std::memory_order_relaxed)) <
tile_count) {
if (!failed) {
const auto& tile_ptr = tiles[index];
if (!tile_ptr->Parse()) {
LIBGAV1_DLOG(ERROR, "Error parsing tile #%d", tile_ptr->number());
failed = true;
}
}
}
parse_workers.Decrement(!failed);
});
}
// Have the current thread participate in parsing.
bool failed = false;
int index;
while ((index = tile_counter.fetch_add(1, std::memory_order_relaxed)) <
tile_count) {
if (!failed) {
const auto& tile_ptr = tiles[index];
if (!tile_ptr->Parse()) {
LIBGAV1_DLOG(ERROR, "Error parsing tile #%d", tile_ptr->number());
failed = true;
}
}
}
// Wait until all the parse workers are done. This ensures that all the tiles
// have been parsed.
if (!parse_workers.Wait() || failed) {
return kLibgav1StatusUnknownError;
}
if (frame_header.enable_frame_end_update_cdf) {
frame_scratch_buffer->symbol_decoder_context = saved_symbol_decoder_context;
}
current_frame->SetFrameContext(frame_scratch_buffer->symbol_decoder_context);
SetSegmentationMap(frame_header, prev_segment_ids, current_frame);
current_frame->SetFrameState(kFrameStateParsed);
// Decode the frame.
const int block_width4x4 = sequence_header.use_128x128_superblock ? 32 : 16;
const int block_width4x4_log2 =
sequence_header.use_128x128_superblock ? 5 : 4;
const int superblock_rows =
(frame_header.rows4x4 + block_width4x4 - 1) >> block_width4x4_log2;
if (!frame_scratch_buffer->superblock_row_progress.Resize(superblock_rows) ||
!frame_scratch_buffer->superblock_row_progress_condvar.Resize(
superblock_rows)) {
return kLibgav1StatusOutOfMemory;
}
int* const superblock_row_progress =
frame_scratch_buffer->superblock_row_progress.get();
memset(superblock_row_progress, 0,
superblock_rows * sizeof(superblock_row_progress[0]));
frame_scratch_buffer->tile_decoding_failed = false;
const int tile_columns = frame_header.tile_info.tile_columns;
const bool decode_entire_tiles_in_worker_threads =
num_workers >= tile_columns;
BlockingCounter pending_jobs(
decode_entire_tiles_in_worker_threads ? num_workers : tile_columns);
if (decode_entire_tiles_in_worker_threads) {
// Submit tile decoding jobs to the thread pool.
tile_counter = 0;
for (int i = 0; i < num_workers; ++i) {
thread_pool.Schedule([&tiles, tile_count, &tile_counter, &pending_jobs,
frame_scratch_buffer, superblock_rows]() {
bool failed = false;
int index;
while ((index = tile_counter.fetch_add(1, std::memory_order_relaxed)) <
tile_count) {
if (failed) continue;
const auto& tile_ptr = tiles[index];
if (!tile_ptr->Decode(
&frame_scratch_buffer->superblock_row_mutex,
frame_scratch_buffer->superblock_row_progress.get(),
frame_scratch_buffer->superblock_row_progress_condvar
.get())) {
LIBGAV1_DLOG(ERROR, "Error decoding tile #%d", tile_ptr->number());
failed = true;
SetFailureAndNotifyAll(frame_scratch_buffer, superblock_rows);
}
}
pending_jobs.Decrement();
});
}
} else {
// Schedule the jobs for first tile row.
for (int tile_index = 0; tile_index < tile_columns; ++tile_index) {
thread_pool.Schedule([&tiles, tile_index, block_width4x4, tile_columns,
superblock_rows, frame_scratch_buffer, post_filter,
&pending_jobs]() {
DecodeSuperBlockRowInTile(
tiles, tile_index, 0, block_width4x4, tile_columns, superblock_rows,
frame_scratch_buffer, post_filter, &pending_jobs);
pending_jobs.Decrement();
});
}
}
// Current thread will do the post filters.
std::condition_variable* const superblock_row_progress_condvar =
frame_scratch_buffer->superblock_row_progress_condvar.get();
const std::unique_ptr<Tile>* tile_row_base = &tiles[0];
for (int row4x4 = 0, index = 0; row4x4 < frame_header.rows4x4;
row4x4 += block_width4x4, ++index) {
if (!tile_row_base[0]->IsRow4x4Inside(row4x4)) {
tile_row_base += tile_columns;
}
{
std::unique_lock<std::mutex> lock(
frame_scratch_buffer->superblock_row_mutex);
while (superblock_row_progress[index] != tile_columns &&
!frame_scratch_buffer->tile_decoding_failed) {
superblock_row_progress_condvar[index].wait(lock);
}
if (frame_scratch_buffer->tile_decoding_failed) break;
}
if (post_filter->DoDeblock()) {
// Apply deblocking filter for the tile boundaries of this superblock row.
// The deblocking filter for the internal blocks will be applied in the
// tile worker threads. In this thread, we will only have to apply
// deblocking filter for the tile boundaries.
ApplyDeblockingFilterForTileBoundaries(
post_filter, tile_row_base, frame_header, row4x4, block_width4x4,
tile_columns, decode_entire_tiles_in_worker_threads);
}
// Apply all the post filters other than deblocking.
const int progress_row = post_filter->ApplyFilteringForOneSuperBlockRow(
row4x4, block_width4x4, row4x4 + block_width4x4 >= frame_header.rows4x4,
/*do_deblock=*/false);
if (progress_row >= 0) {
current_frame->SetProgress(progress_row);
}
}
// Wait until all the pending jobs are done. This ensures that all the tiles
// have been decoded and wrapped up.
pending_jobs.Wait();
{
std::lock_guard<std::mutex> lock(
frame_scratch_buffer->superblock_row_mutex);
if (frame_scratch_buffer->tile_decoding_failed) {
return kLibgav1StatusUnknownError;
}
}
current_frame->SetFrameState(kFrameStateDecoded);
return kStatusOk;
}
} // namespace
// static
StatusCode DecoderImpl::Create(const DecoderSettings* settings,
std::unique_ptr<DecoderImpl>* output) {
if (settings->threads <= 0) {
LIBGAV1_DLOG(ERROR, "Invalid settings->threads: %d.", settings->threads);
return kStatusInvalidArgument;
}
if (settings->frame_parallel) {
if (settings->release_input_buffer == nullptr) {
LIBGAV1_DLOG(ERROR,
"release_input_buffer callback must not be null when "
"frame_parallel is true.");
return kStatusInvalidArgument;
}
}
std::unique_ptr<DecoderImpl> impl(new (std::nothrow) DecoderImpl(settings));
if (impl == nullptr) {
LIBGAV1_DLOG(ERROR, "Failed to allocate DecoderImpl.");
return kStatusOutOfMemory;
}
const StatusCode status = impl->Init();
if (status != kStatusOk) return status;
*output = std::move(impl);
return kStatusOk;
}
DecoderImpl::DecoderImpl(const DecoderSettings* settings)
: buffer_pool_(settings->on_frame_buffer_size_changed,
settings->get_frame_buffer, settings->release_frame_buffer,
settings->callback_private_data),
settings_(*settings) {
dsp::DspInit();
}
DecoderImpl::~DecoderImpl() {
// Clean up and wait until all the threads have stopped. We just have to pass
// in a dummy status that is not kStatusOk or kStatusTryAgain to trigger the
// path that clears all the threads and structs.
SignalFailure(kStatusUnknownError);
// Release any other frame buffer references that we may be holding on to.
ReleaseOutputFrame();
output_frame_queue_.Clear();
for (auto& reference_frame : state_.reference_frame) {
reference_frame = nullptr;
}
}
StatusCode DecoderImpl::Init() {
if (!output_frame_queue_.Init(kMaxLayers)) {
LIBGAV1_DLOG(ERROR, "output_frame_queue_.Init() failed.");
return kStatusOutOfMemory;
}
return kStatusOk;
}
StatusCode DecoderImpl::InitializeFrameThreadPoolAndTemporalUnitQueue(
const uint8_t* data, size_t size) {
is_frame_parallel_ = false;
if (settings_.frame_parallel) {
DecoderState state;
std::unique_ptr<ObuParser> obu(new (std::nothrow) ObuParser(
data, size, settings_.operating_point, &buffer_pool_, &state));
if (obu == nullptr) {
LIBGAV1_DLOG(ERROR, "Failed to allocate OBU parser.");
return kStatusOutOfMemory;
}
RefCountedBufferPtr current_frame;
const StatusCode status = obu->ParseOneFrame(¤t_frame);
if (status != kStatusOk) {
LIBGAV1_DLOG(ERROR, "Failed to parse OBU.");
return status;
}
current_frame = nullptr;
// We assume that the first frame that was parsed will contain the frame
// header. This assumption is usually true in practice. So we will simply
// not use frame parallel mode if this is not the case.
if (settings_.threads > 1 &&
!InitializeThreadPoolsForFrameParallel(
settings_.threads, obu->frame_header().tile_info.tile_count,
obu->frame_header().tile_info.tile_columns, &frame_thread_pool_,
&frame_scratch_buffer_pool_)) {
return kStatusOutOfMemory;
}
}
const int max_allowed_frames =
(frame_thread_pool_ != nullptr) ? frame_thread_pool_->num_threads() : 1;
assert(max_allowed_frames > 0);
if (!temporal_units_.Init(max_allowed_frames)) {
LIBGAV1_DLOG(ERROR, "temporal_units_.Init() failed.");
return kStatusOutOfMemory;
}
is_frame_parallel_ = frame_thread_pool_ != nullptr;
return kStatusOk;
}
StatusCode DecoderImpl::EnqueueFrame(const uint8_t* data, size_t size,
int64_t user_private_data,
void* buffer_private_data) {
if (data == nullptr || size == 0) return kStatusInvalidArgument;
if (HasFailure()) return kStatusUnknownError;
if (!seen_first_frame_) {
seen_first_frame_ = true;
const StatusCode status =
InitializeFrameThreadPoolAndTemporalUnitQueue(data, size);
if (status != kStatusOk) {
return SignalFailure(status);
}
}
if (temporal_units_.Full()) {
return kStatusTryAgain;
}
if (is_frame_parallel_) {
return ParseAndSchedule(data, size, user_private_data, buffer_private_data);
}
TemporalUnit temporal_unit(data, size, user_private_data,
buffer_private_data);
temporal_units_.Push(std::move(temporal_unit));
return kStatusOk;
}
StatusCode DecoderImpl::SignalFailure(StatusCode status) {
if (status == kStatusOk || status == kStatusTryAgain) return status;
// Set the |failure_status_| first so that any pending jobs in
// |frame_thread_pool_| will exit right away when the thread pool is being
// released below.
{
std::lock_guard<std::mutex> lock(mutex_);
failure_status_ = status;
}
// Make sure all waiting threads exit.
buffer_pool_.Abort();
frame_thread_pool_ = nullptr;
while (!temporal_units_.Empty()) {
if (settings_.release_input_buffer != nullptr) {
settings_.release_input_buffer(
settings_.callback_private_data,
temporal_units_.Front().buffer_private_data);
}
temporal_units_.Pop();
}
return status;
}
// DequeueFrame() follows the following policy to avoid holding unnecessary
// frame buffer references in output_frame_: output_frame_ must be null when
// DequeueFrame() returns false.
StatusCode DecoderImpl::DequeueFrame(const DecoderBuffer** out_ptr) {
if (out_ptr == nullptr) {
LIBGAV1_DLOG(ERROR, "Invalid argument: out_ptr == nullptr.");
return kStatusInvalidArgument;
}
// We assume a call to DequeueFrame() indicates that the caller is no longer
// using the previous output frame, so we can release it.
ReleaseOutputFrame();
if (temporal_units_.Empty()) {
// No input frames to decode.
*out_ptr = nullptr;
return kStatusNothingToDequeue;
}
TemporalUnit& temporal_unit = temporal_units_.Front();
if (!is_frame_parallel_) {
// If |output_frame_queue_| is not empty, then return the first frame from
// that queue.
if (!output_frame_queue_.Empty()) {
RefCountedBufferPtr frame = std::move(output_frame_queue_.Front());
output_frame_queue_.Pop();
buffer_.user_private_data = temporal_unit.user_private_data;
if (output_frame_queue_.Empty()) {
temporal_units_.Pop();
}
const StatusCode status = CopyFrameToOutputBuffer(frame);
if (status != kStatusOk) {
return status;
}
*out_ptr = &buffer_;
return kStatusOk;
}
// Decode the next available temporal unit and return.
const StatusCode status = DecodeTemporalUnit(temporal_unit, out_ptr);
if (status != kStatusOk) {
// In case of failure, discard all the output frames that we may be
// holding on references to.
output_frame_queue_.Clear();
}
if (settings_.release_input_buffer != nullptr) {
settings_.release_input_buffer(settings_.callback_private_data,
temporal_unit.buffer_private_data);
}
if (output_frame_queue_.Empty()) {
temporal_units_.Pop();
}
return status;
}
{
std::unique_lock<std::mutex> lock(mutex_);
if (settings_.blocking_dequeue) {
while (!temporal_unit.decoded && failure_status_ == kStatusOk) {
decoded_condvar_.wait(lock);
}
} else {
if (!temporal_unit.decoded && failure_status_ == kStatusOk) {
return kStatusTryAgain;
}
}
if (failure_status_ != kStatusOk) {
const StatusCode failure_status = failure_status_;
lock.unlock();
return SignalFailure(failure_status);
}
}
if (settings_.release_input_buffer != nullptr &&
!temporal_unit.released_input_buffer) {
temporal_unit.released_input_buffer = true;
settings_.release_input_buffer(settings_.callback_private_data,
temporal_unit.buffer_private_data);
}
if (temporal_unit.status != kStatusOk) {
temporal_units_.Pop();
return SignalFailure(temporal_unit.status);
}
if (!temporal_unit.has_displayable_frame) {
*out_ptr = nullptr;
temporal_units_.Pop();
return kStatusOk;
}
assert(temporal_unit.output_layer_count > 0);
StatusCode status = CopyFrameToOutputBuffer(
temporal_unit.output_layers[temporal_unit.output_layer_count - 1].frame);
temporal_unit.output_layers[temporal_unit.output_layer_count - 1].frame =
nullptr;
if (status != kStatusOk) {
temporal_units_.Pop();
return SignalFailure(status);
}
buffer_.user_private_data = temporal_unit.user_private_data;
*out_ptr = &buffer_;
if (--temporal_unit.output_layer_count == 0) {
temporal_units_.Pop();
}
return kStatusOk;
}
StatusCode DecoderImpl::ParseAndSchedule(const uint8_t* data, size_t size,
int64_t user_private_data,
void* buffer_private_data) {
TemporalUnit temporal_unit(data, size, user_private_data,
buffer_private_data);
std::unique_ptr<ObuParser> obu(new (std::nothrow) ObuParser(
temporal_unit.data, temporal_unit.size, settings_.operating_point,
&buffer_pool_, &state_));
if (obu == nullptr) {
LIBGAV1_DLOG(ERROR, "Failed to allocate OBU parser.");
return kStatusOutOfMemory;
}
if (has_sequence_header_) {
obu->set_sequence_header(sequence_header_);
}
StatusCode status;
int position_in_temporal_unit = 0;
while (obu->HasData()) {
RefCountedBufferPtr current_frame;
status = obu->ParseOneFrame(¤t_frame);
if (status != kStatusOk) {
LIBGAV1_DLOG(ERROR, "Failed to parse OBU.");
return status;
}
if (!MaybeInitializeQuantizerMatrix(obu->frame_header())) {
LIBGAV1_DLOG(ERROR, "InitializeQuantizerMatrix() failed.");
return kStatusOutOfMemory;
}
if (!MaybeInitializeWedgeMasks(obu->frame_header().frame_type)) {
LIBGAV1_DLOG(ERROR, "InitializeWedgeMasks() failed.");
return kStatusOutOfMemory;
}
if (IsNewSequenceHeader(*obu)) {
const ObuSequenceHeader& sequence_header = obu->sequence_header();
const Libgav1ImageFormat image_format =
ComposeImageFormat(sequence_header.color_config.is_monochrome,
sequence_header.color_config.subsampling_x,
sequence_header.color_config.subsampling_y);
const int max_bottom_border = GetBottomBorderPixels(
/*do_cdef=*/true, /*do_restoration=*/true,
/*do_superres=*/true, sequence_header.color_config.subsampling_y);
// TODO(vigneshv): This may not be the right place to call this callback
// for the frame parallel case. Investigate and fix it.
if (!buffer_pool_.OnFrameBufferSizeChanged(
sequence_header.color_config.bitdepth, image_format,
sequence_header.max_frame_width, sequence_header.max_frame_height,
kBorderPixels, kBorderPixels, kBorderPixels, max_bottom_border)) {
LIBGAV1_DLOG(ERROR, "buffer_pool_.OnFrameBufferSizeChanged failed.");
return kStatusUnknownError;
}
}
// This can happen when there are multiple spatial/temporal layers and if
// all the layers are outside the current operating point.
if (current_frame == nullptr) {
continue;
}
// Note that we cannot set EncodedFrame.temporal_unit here. It will be set
// in the code below after |temporal_unit| is std::move'd into the
// |temporal_units_| queue.
if (!temporal_unit.frames.emplace_back(obu.get(), state_, current_frame,
position_in_temporal_unit++)) {
LIBGAV1_DLOG(ERROR, "temporal_unit.frames.emplace_back failed.");
return kStatusOutOfMemory;
}
state_.UpdateReferenceFrames(current_frame,
obu->frame_header().refresh_frame_flags);
}
// This function cannot fail after this point. So it is okay to move the
// |temporal_unit| into |temporal_units_| queue.
temporal_units_.Push(std::move(temporal_unit));
if (temporal_units_.Back().frames.empty()) {
std::lock_guard<std::mutex> lock(mutex_);
temporal_units_.Back().has_displayable_frame = false;
temporal_units_.Back().decoded = true;
return kStatusOk;
}
for (auto& frame : temporal_units_.Back().frames) {
EncodedFrame* const encoded_frame = &frame;
encoded_frame->temporal_unit = &temporal_units_.Back();
frame_thread_pool_->Schedule([this, encoded_frame]() {
if (HasFailure()) return;
const StatusCode status = DecodeFrame(encoded_frame);
encoded_frame->state = {};
encoded_frame->frame = nullptr;
TemporalUnit& temporal_unit = *encoded_frame->temporal_unit;
std::lock_guard<std::mutex> lock(mutex_);
if (failure_status_ != kStatusOk) return;
// temporal_unit's status defaults to kStatusOk. So we need to set it only
// on error. If |failure_status_| is not kStatusOk at this point, it means
// that there has already been a failure. So we don't care about this
// subsequent failure. We will simply return the error code of the first
// failure.
if (status != kStatusOk) {
temporal_unit.status = status;
if (failure_status_ == kStatusOk) {
failure_status_ = status;
}
}
temporal_unit.decoded =
++temporal_unit.decoded_count == temporal_unit.frames.size();
if (temporal_unit.decoded && settings_.output_all_layers &&
temporal_unit.output_layer_count > 1) {
std::sort(
temporal_unit.output_layers,
temporal_unit.output_layers + temporal_unit.output_layer_count);
}
if (temporal_unit.decoded || failure_status_ != kStatusOk) {
decoded_condvar_.notify_one();
}
});
}
return kStatusOk;
}
StatusCode DecoderImpl::DecodeFrame(EncodedFrame* const encoded_frame) {
const ObuSequenceHeader& sequence_header = encoded_frame->sequence_header;
const ObuFrameHeader& frame_header = encoded_frame->frame_header;
RefCountedBufferPtr current_frame = std::move(encoded_frame->frame);
std::unique_ptr<FrameScratchBuffer> frame_scratch_buffer =
frame_scratch_buffer_pool_.Get();
if (frame_scratch_buffer == nullptr) {
LIBGAV1_DLOG(ERROR, "Error when getting FrameScratchBuffer.");
return kStatusOutOfMemory;
}
// |frame_scratch_buffer| will be released when this local variable goes out
// of scope (i.e.) on any return path in this function.
FrameScratchBufferReleaser frame_scratch_buffer_releaser(
&frame_scratch_buffer_pool_, &frame_scratch_buffer);
StatusCode status;
if (!frame_header.show_existing_frame) {
if (encoded_frame->tile_buffers.empty()) {
// This means that the last call to ParseOneFrame() did not actually
// have any tile groups. This could happen in rare cases (for example,
// if there is a Metadata OBU after the TileGroup OBU). We currently do
// not have a reason to handle those cases, so we simply continue.
return kStatusOk;
}
status = DecodeTiles(sequence_header, frame_header,
encoded_frame->tile_buffers, encoded_frame->state,
frame_scratch_buffer.get(), current_frame.get());
if (status != kStatusOk) {
return status;
}
} else {
if (!current_frame->WaitUntilDecoded()) {
return kStatusUnknownError;
}
}
if (!frame_header.show_frame && !frame_header.show_existing_frame) {
// This frame is not displayable. Not an error.
return kStatusOk;
}
RefCountedBufferPtr film_grain_frame;
status = ApplyFilmGrain(
sequence_header, frame_header, current_frame, &film_grain_frame,
frame_scratch_buffer->threading_strategy.thread_pool());
if (status != kStatusOk) {
return status;
}
TemporalUnit& temporal_unit = *encoded_frame->temporal_unit;
std::lock_guard<std::mutex> lock(mutex_);
if (temporal_unit.has_displayable_frame && !settings_.output_all_layers) {
assert(temporal_unit.output_frame_position >= 0);
// A displayable frame was already found in this temporal unit. This can
// happen if there are multiple spatial/temporal layers. Since
// |settings_.output_all_layers| is false, we will output only the last
// displayable frame.
if (temporal_unit.output_frame_position >
encoded_frame->position_in_temporal_unit) {
return kStatusOk;
}
// Replace any output frame that we may have seen before with the current
// frame.
assert(temporal_unit.output_layer_count == 1);
--temporal_unit.output_layer_count;
}
temporal_unit.has_displayable_frame = true;
temporal_unit.output_layers[temporal_unit.output_layer_count].frame =
std::move(film_grain_frame);
temporal_unit.output_layers[temporal_unit.output_layer_count]
.position_in_temporal_unit = encoded_frame->position_in_temporal_unit;
++temporal_unit.output_layer_count;
temporal_unit.output_frame_position =
encoded_frame->position_in_temporal_unit;
return kStatusOk;
}
StatusCode DecoderImpl::DecodeTemporalUnit(const TemporalUnit& temporal_unit,
const DecoderBuffer** out_ptr) {
std::unique_ptr<ObuParser> obu(new (std::nothrow) ObuParser(
temporal_unit.data, temporal_unit.size, settings_.operating_point,
&buffer_pool_, &state_));
if (obu == nullptr) {
LIBGAV1_DLOG(ERROR, "Failed to allocate OBU parser.");
return kStatusOutOfMemory;
}
if (has_sequence_header_) {
obu->set_sequence_header(sequence_header_);
}
StatusCode status;
std::unique_ptr<FrameScratchBuffer> frame_scratch_buffer =
frame_scratch_buffer_pool_.Get();
if (frame_scratch_buffer == nullptr) {
LIBGAV1_DLOG(ERROR, "Error when getting FrameScratchBuffer.");
return kStatusOutOfMemory;
}
// |frame_scratch_buffer| will be released when this local variable goes out
// of scope (i.e.) on any return path in this function.
FrameScratchBufferReleaser frame_scratch_buffer_releaser(
&frame_scratch_buffer_pool_, &frame_scratch_buffer);
while (obu->HasData()) {
RefCountedBufferPtr current_frame;
status = obu->ParseOneFrame(¤t_frame);
if (status != kStatusOk) {
LIBGAV1_DLOG(ERROR, "Failed to parse OBU.");
return status;
}
if (!MaybeInitializeQuantizerMatrix(obu->frame_header())) {
LIBGAV1_DLOG(ERROR, "InitializeQuantizerMatrix() failed.");
return kStatusOutOfMemory;
}
if (!MaybeInitializeWedgeMasks(obu->frame_header().frame_type)) {
LIBGAV1_DLOG(ERROR, "InitializeWedgeMasks() failed.");
return kStatusOutOfMemory;
}
if (IsNewSequenceHeader(*obu)) {
const ObuSequenceHeader& sequence_header = obu->sequence_header();
const Libgav1ImageFormat image_format =
ComposeImageFormat(sequence_header.color_config.is_monochrome,
sequence_header.color_config.subsampling_x,
sequence_header.color_config.subsampling_y);
const int max_bottom_border = GetBottomBorderPixels(
/*do_cdef=*/true, /*do_restoration=*/true,
/*do_superres=*/true, sequence_header.color_config.subsampling_y);
if (!buffer_pool_.OnFrameBufferSizeChanged(
sequence_header.color_config.bitdepth, image_format,
sequence_header.max_frame_width, sequence_header.max_frame_height,
kBorderPixels, kBorderPixels, kBorderPixels, max_bottom_border)) {
LIBGAV1_DLOG(ERROR, "buffer_pool_.OnFrameBufferSizeChanged failed.");
return kStatusUnknownError;
}
}
if (!obu->frame_header().show_existing_frame) {
if (obu->tile_buffers().empty()) {
// This means that the last call to ParseOneFrame() did not actually
// have any tile groups. This could happen in rare cases (for example,
// if there is a Metadata OBU after the TileGroup OBU). We currently do
// not have a reason to handle those cases, so we simply continue.
continue;
}
status = DecodeTiles(obu->sequence_header(), obu->frame_header(),
obu->tile_buffers(), state_,
frame_scratch_buffer.get(), current_frame.get());
if (status != kStatusOk) {
return status;
}
}
state_.UpdateReferenceFrames(current_frame,
obu->frame_header().refresh_frame_flags);
if (obu->frame_header().show_frame ||
obu->frame_header().show_existing_frame) {
if (!output_frame_queue_.Empty() && !settings_.output_all_layers) {
// There is more than one displayable frame in the current operating
// point and |settings_.output_all_layers| is false. In this case, we
// simply return the last displayable frame as the output frame and
// ignore the rest.
assert(output_frame_queue_.Size() == 1);
output_frame_queue_.Pop();
}
RefCountedBufferPtr film_grain_frame;
status = ApplyFilmGrain(
obu->sequence_header(), obu->frame_header(), current_frame,
&film_grain_frame,
frame_scratch_buffer->threading_strategy.film_grain_thread_pool());
if (status != kStatusOk) return status;
output_frame_queue_.Push(std::move(film_grain_frame));
}
}
if (output_frame_queue_.Empty()) {
// No displayable frame in the temporal unit. Not an error.
*out_ptr = nullptr;
return kStatusOk;
}
status = CopyFrameToOutputBuffer(output_frame_queue_.Front());
output_frame_queue_.Pop();
if (status != kStatusOk) {
return status;
}
buffer_.user_private_data = temporal_unit.user_private_data;
*out_ptr = &buffer_;
return kStatusOk;
}
StatusCode DecoderImpl::CopyFrameToOutputBuffer(
const RefCountedBufferPtr& frame) {
YuvBuffer* yuv_buffer = frame->buffer();
buffer_.chroma_sample_position = frame->chroma_sample_position();
if (yuv_buffer->is_monochrome()) {
buffer_.image_format = kImageFormatMonochrome400;
} else {
if (yuv_buffer->subsampling_x() == 0 && yuv_buffer->subsampling_y() == 0) {
buffer_.image_format = kImageFormatYuv444;
} else if (yuv_buffer->subsampling_x() == 1 &&
yuv_buffer->subsampling_y() == 0) {
buffer_.image_format = kImageFormatYuv422;
} else if (yuv_buffer->subsampling_x() == 1 &&
yuv_buffer->subsampling_y() == 1) {
buffer_.image_format = kImageFormatYuv420;
} else {
LIBGAV1_DLOG(ERROR,
"Invalid chroma subsampling values: cannot determine buffer "
"image format.");
return kStatusInvalidArgument;
}
}
buffer_.color_range = sequence_header_.color_config.color_range;
buffer_.color_primary = sequence_header_.color_config.color_primary;
buffer_.transfer_characteristics =
sequence_header_.color_config.transfer_characteristics;
buffer_.matrix_coefficients =
sequence_header_.color_config.matrix_coefficients;
buffer_.bitdepth = yuv_buffer->bitdepth();
const int num_planes =
yuv_buffer->is_monochrome() ? kMaxPlanesMonochrome : kMaxPlanes;
int plane = kPlaneY;
for (; plane < num_planes; ++plane) {
buffer_.stride[plane] = yuv_buffer->stride(plane);
buffer_.plane[plane] = yuv_buffer->data(plane);
buffer_.displayed_width[plane] = yuv_buffer->width(plane);
buffer_.displayed_height[plane] = yuv_buffer->height(plane);
}
for (; plane < kMaxPlanes; ++plane) {
buffer_.stride[plane] = 0;
buffer_.plane[plane] = nullptr;
buffer_.displayed_width[plane] = 0;
buffer_.displayed_height[plane] = 0;
}
buffer_.spatial_id = frame->spatial_id();
buffer_.temporal_id = frame->temporal_id();
buffer_.buffer_private_data = frame->buffer_private_data();
output_frame_ = frame;
return kStatusOk;
}
void DecoderImpl::ReleaseOutputFrame() {
for (auto& plane : buffer_.plane) {
plane = nullptr;
}
output_frame_ = nullptr;
}
StatusCode DecoderImpl::DecodeTiles(
const ObuSequenceHeader& sequence_header,
const ObuFrameHeader& frame_header, const Vector<TileBuffer>& tile_buffers,
const DecoderState& state, FrameScratchBuffer* const frame_scratch_buffer,
RefCountedBuffer* const current_frame) {
frame_scratch_buffer->tile_scratch_buffer_pool.Reset(
sequence_header.color_config.bitdepth);
if (!frame_scratch_buffer->loop_restoration_info.Reset(
&frame_header.loop_restoration, frame_header.upscaled_width,
frame_header.height, sequence_header.color_config.subsampling_x,
sequence_header.color_config.subsampling_y,
sequence_header.color_config.is_monochrome)) {
LIBGAV1_DLOG(ERROR,
"Failed to allocate memory for loop restoration info units.");
return kStatusOutOfMemory;
}
ThreadingStrategy& threading_strategy =
frame_scratch_buffer->threading_strategy;
if (!is_frame_parallel_ &&
!threading_strategy.Reset(frame_header, settings_.threads)) {
return kStatusOutOfMemory;
}
const bool do_cdef =
PostFilter::DoCdef(frame_header, settings_.post_filter_mask);
const int num_planes = sequence_header.color_config.is_monochrome
? kMaxPlanesMonochrome
: kMaxPlanes;
const bool do_restoration = PostFilter::DoRestoration(
frame_header.loop_restoration, settings_.post_filter_mask, num_planes);
const bool do_superres =
PostFilter::DoSuperRes(frame_header, settings_.post_filter_mask);
// Use kBorderPixels for the left, right, and top borders. Only the bottom
// border may need to be bigger. Cdef border is needed only if we apply Cdef
// without multithreading.
const int bottom_border = GetBottomBorderPixels(
do_cdef && threading_strategy.post_filter_thread_pool() == nullptr,
do_restoration, do_superres, sequence_header.color_config.subsampling_y);
current_frame->set_chroma_sample_position(
sequence_header.color_config.chroma_sample_position);
if (!current_frame->Realloc(sequence_header.color_config.bitdepth,
sequence_header.color_config.is_monochrome,
frame_header.upscaled_width, frame_header.height,
sequence_header.color_config.subsampling_x,
sequence_header.color_config.subsampling_y,
/*left_border=*/kBorderPixels,
/*right_border=*/kBorderPixels,
/*top_border=*/kBorderPixels, bottom_border)) {
LIBGAV1_DLOG(ERROR, "Failed to allocate memory for the decoder buffer.");
return kStatusOutOfMemory;
}
if (frame_header.cdef.bits > 0) {
if (!frame_scratch_buffer->cdef_index.Reset(
DivideBy16(frame_header.rows4x4 + kMaxBlockHeight4x4),
DivideBy16(frame_header.columns4x4 + kMaxBlockWidth4x4),
/*zero_initialize=*/false)) {
LIBGAV1_DLOG(ERROR, "Failed to allocate memory for cdef index.");
return kStatusOutOfMemory;
}
}
if (do_cdef) {
if (!frame_scratch_buffer->cdef_skip.Reset(
DivideBy2(frame_header.rows4x4 + kMaxBlockHeight4x4),
DivideBy16(frame_header.columns4x4 + kMaxBlockWidth4x4),
/*zero_initialize=*/true)) {
LIBGAV1_DLOG(ERROR, "Failed to allocate memory for cdef skip.");
return kStatusOutOfMemory;
}
}
if (!frame_scratch_buffer->inter_transform_sizes.Reset(
frame_header.rows4x4 + kMaxBlockHeight4x4,
frame_header.columns4x4 + kMaxBlockWidth4x4,
/*zero_initialize=*/false)) {
LIBGAV1_DLOG(ERROR, "Failed to allocate memory for inter_transform_sizes.");
return kStatusOutOfMemory;
}
if (frame_header.use_ref_frame_mvs) {
if (!frame_scratch_buffer->motion_field.mv.Reset(
DivideBy2(frame_header.rows4x4), DivideBy2(frame_header.columns4x4),
/*zero_initialize=*/false) ||
!frame_scratch_buffer->motion_field.reference_offset.Reset(
DivideBy2(frame_header.rows4x4), DivideBy2(frame_header.columns4x4),
/*zero_initialize=*/false)) {
LIBGAV1_DLOG(ERROR,
"Failed to allocate memory for temporal motion vectors.");
return kStatusOutOfMemory;
}
// For each motion vector, only mv[0] needs to be initialized to
// kInvalidMvValue, mv[1] is not necessary to be initialized and can be
// set to an arbitrary value. For simplicity, mv[1] is set to 0.
// The following memory initialization of contiguous memory is very fast. It
// is not recommended to make the initialization multi-threaded, unless the
// memory which needs to be initialized in each thread is still contiguous.
MotionVector invalid_mv;
invalid_mv.mv[0] = kInvalidMvValue;
invalid_mv.mv[1] = 0;
MotionVector* const motion_field_mv =
&frame_scratch_buffer->motion_field.mv[0][0];
std::fill(motion_field_mv,
motion_field_mv + frame_scratch_buffer->motion_field.mv.size(),
invalid_mv);
}
// The addition of kMaxBlockHeight4x4 and kMaxBlockWidth4x4 is necessary so
// that the block parameters cache can be filled in for the last row/column
// without having to check for boundary conditions.
if (!frame_scratch_buffer->block_parameters_holder.Reset(
frame_header.rows4x4 + kMaxBlockHeight4x4,
frame_header.columns4x4 + kMaxBlockWidth4x4)) {
return kStatusOutOfMemory;
}
const dsp::Dsp* const dsp =
dsp::GetDspTable(sequence_header.color_config.bitdepth);
if (dsp == nullptr) {
LIBGAV1_DLOG(ERROR, "Failed to get the dsp table for bitdepth %d.",
sequence_header.color_config.bitdepth);
return kStatusInternalError;
}
const int tile_count = frame_header.tile_info.tile_count;
assert(tile_count >= 1);
Vector<std::unique_ptr<Tile>> tiles;
if (!tiles.reserve(tile_count)) {
LIBGAV1_DLOG(ERROR, "tiles.reserve(%d) failed.\n", tile_count);
return kStatusOutOfMemory;
}
if (threading_strategy.row_thread_pool(0) != nullptr || is_frame_parallel_) {
if (frame_scratch_buffer->residual_buffer_pool == nullptr) {
frame_scratch_buffer->residual_buffer_pool.reset(
new (std::nothrow) ResidualBufferPool(
sequence_header.use_128x128_superblock,
sequence_header.color_config.subsampling_x,
sequence_header.color_config.subsampling_y,
sequence_header.color_config.bitdepth == 8 ? sizeof(int16_t)
: sizeof(int32_t)));
if (frame_scratch_buffer->residual_buffer_pool == nullptr) {
LIBGAV1_DLOG(ERROR, "Failed to allocate residual buffer.\n");
return kStatusOutOfMemory;
}
} else {
frame_scratch_buffer->residual_buffer_pool->Reset(
sequence_header.use_128x128_superblock,
sequence_header.color_config.subsampling_x,
sequence_header.color_config.subsampling_y,
sequence_header.color_config.bitdepth == 8 ? sizeof(int16_t)
: sizeof(int32_t));
}
}
if (threading_strategy.post_filter_thread_pool() != nullptr && do_cdef) {
// We need to store 4 rows per 64x64 unit.
const int num_units =
MultiplyBy4(RightShiftWithCeiling(frame_header.rows4x4, 4));
// subsampling_y is set to zero irrespective of the actual frame's
// subsampling since we need to store exactly |num_units| rows of the loop
// restoration border pixels.
if (!frame_scratch_buffer->cdef_border.Realloc(
sequence_header.color_config.bitdepth,
sequence_header.color_config.is_monochrome,
MultiplyBy4(frame_header.columns4x4), num_units,
sequence_header.color_config.subsampling_x,
/*subsampling_y=*/0, kBorderPixels, kBorderPixels, kBorderPixels,
kBorderPixels, nullptr, nullptr, nullptr)) {
return kStatusOutOfMemory;
}
}
if (do_restoration &&
(do_cdef || threading_strategy.post_filter_thread_pool() != nullptr)) {
// We need to store 4 rows per 64x64 unit.
const int num_units =
MultiplyBy4(RightShiftWithCeiling(frame_header.rows4x4, 4));
// subsampling_y is set to zero irrespective of the actual frame's
// subsampling since we need to store exactly |num_units| rows of the loop
// restoration border pixels.
if (!frame_scratch_buffer->loop_restoration_border.Realloc(
sequence_header.color_config.bitdepth,
sequence_header.color_config.is_monochrome,
frame_header.upscaled_width, num_units,
sequence_header.color_config.subsampling_x,
/*subsampling_y=*/0, kBorderPixels, kBorderPixels, kBorderPixels,
kBorderPixels, nullptr, nullptr, nullptr)) {
return kStatusOutOfMemory;
}
}
if (do_superres) {
const int pixel_size = sequence_header.color_config.bitdepth == 8
? sizeof(uint8_t)
: sizeof(uint16_t);
const int coefficients_size = kSuperResFilterTaps *
Align(frame_header.upscaled_width, 16) *
pixel_size;
if (!frame_scratch_buffer->superres_coefficients[kPlaneTypeY].Resize(
coefficients_size)) {
LIBGAV1_DLOG(ERROR,
"Failed to Resize superres_coefficients[kPlaneTypeY].");
return kStatusOutOfMemory;
}
#if LIBGAV1_MSAN
// Quiet SuperRes_NEON() msan warnings.
memset(frame_scratch_buffer->superres_coefficients[kPlaneTypeY].get(), 0,
coefficients_size);
#endif
const int uv_coefficients_size =
kSuperResFilterTaps *
Align(SubsampledValue(frame_header.upscaled_width, 1), 16) * pixel_size;
if (!sequence_header.color_config.is_monochrome &&
sequence_header.color_config.subsampling_x != 0 &&
!frame_scratch_buffer->superres_coefficients[kPlaneTypeUV].Resize(
uv_coefficients_size)) {
LIBGAV1_DLOG(ERROR,
"Failed to Resize superres_coefficients[kPlaneTypeUV].");
return kStatusOutOfMemory;
}
#if LIBGAV1_MSAN
if (!sequence_header.color_config.is_monochrome &&
sequence_header.color_config.subsampling_x != 0) {
// Quiet SuperRes_NEON() msan warnings.
memset(frame_scratch_buffer->superres_coefficients[kPlaneTypeUV].get(), 0,
uv_coefficients_size);
}
#endif
}
if (do_superres && threading_strategy.post_filter_thread_pool() != nullptr) {
const int num_threads =
threading_strategy.post_filter_thread_pool()->num_threads() + 1;
// subsampling_y is set to zero irrespective of the actual frame's
// subsampling since we need to store exactly |num_threads| rows of the
// down-scaled pixels.
// Left and right borders are for line extension. They are doubled for the Y
// plane to make sure the U and V planes have enough space after possible
// subsampling.
if (!frame_scratch_buffer->superres_line_buffer.Realloc(
sequence_header.color_config.bitdepth,
sequence_header.color_config.is_monochrome,
MultiplyBy4(frame_header.columns4x4), num_threads,
sequence_header.color_config.subsampling_x,
/*subsampling_y=*/0, 2 * kSuperResHorizontalBorder,
2 * (kSuperResHorizontalBorder + kSuperResHorizontalPadding), 0, 0,
nullptr, nullptr, nullptr)) {
LIBGAV1_DLOG(ERROR, "Failed to resize superres line buffer.\n");
return kStatusOutOfMemory;
}
}
if (is_frame_parallel_ && !IsIntraFrame(frame_header.frame_type)) {
// We can parse the current frame if all the reference frames have been
// parsed.
for (const int index : frame_header.reference_frame_index) {
if (!state.reference_frame[index]->WaitUntilParsed()) {
return kStatusUnknownError;
}
}
}
// If prev_segment_ids is a null pointer, it is treated as if it pointed to
// a segmentation map containing all 0s.
const SegmentationMap* prev_segment_ids = nullptr;
if (frame_header.primary_reference_frame == kPrimaryReferenceNone) {
frame_scratch_buffer->symbol_decoder_context.Initialize(
frame_header.quantizer.base_index);
} else {
const int index =
frame_header
.reference_frame_index[frame_header.primary_reference_frame];
assert(index != -1);
const RefCountedBuffer* prev_frame = state.reference_frame[index].get();
frame_scratch_buffer->symbol_decoder_context = prev_frame->FrameContext();
if (frame_header.segmentation.enabled &&
prev_frame->columns4x4() == frame_header.columns4x4 &&
prev_frame->rows4x4() == frame_header.rows4x4) {
prev_segment_ids = prev_frame->segmentation_map();
}
}
// The Tile class must make use of a separate buffer to store the unfiltered
// pixels for the intra prediction of the next superblock row. This is done
// only when one of the following conditions are true:
// * is_frame_parallel_ is true.
// * settings_.threads == 1.
// In the non-frame-parallel multi-threaded case, we do not run the post
// filters in the decode loop. So this buffer need not be used.
const bool use_intra_prediction_buffer =
is_frame_parallel_ || settings_.threads == 1;
if (use_intra_prediction_buffer) {
if (!frame_scratch_buffer->intra_prediction_buffers.Resize(
frame_header.tile_info.tile_rows)) {
LIBGAV1_DLOG(ERROR, "Failed to Resize intra_prediction_buffers.");
return kStatusOutOfMemory;
}
IntraPredictionBuffer* const intra_prediction_buffers =
frame_scratch_buffer->intra_prediction_buffers.get();
for (int plane = kPlaneY; plane < num_planes; ++plane) {
const int subsampling =
(plane == kPlaneY) ? 0 : sequence_header.color_config.subsampling_x;
const size_t intra_prediction_buffer_size =
((MultiplyBy4(frame_header.columns4x4) >> subsampling) *
(sequence_header.color_config.bitdepth == 8 ? sizeof(uint8_t)
: sizeof(uint16_t)));
for (int tile_row = 0; tile_row < frame_header.tile_info.tile_rows;
++tile_row) {
if (!intra_prediction_buffers[tile_row][plane].Resize(
intra_prediction_buffer_size)) {
LIBGAV1_DLOG(ERROR,
"Failed to allocate intra prediction buffer for tile "
"row %d plane %d.\n",
tile_row, plane);
return kStatusOutOfMemory;
}
}
}
}
PostFilter post_filter(frame_header, sequence_header, frame_scratch_buffer,
current_frame->buffer(), dsp,
settings_.post_filter_mask);
SymbolDecoderContext saved_symbol_decoder_context;
BlockingCounterWithStatus pending_tiles(tile_count);
for (int tile_number = 0; tile_number < tile_count; ++tile_number) {
std::unique_ptr<Tile> tile = Tile::Create(
tile_number, tile_buffers[tile_number].data,
tile_buffers[tile_number].size, sequence_header, frame_header,
current_frame, state, frame_scratch_buffer, wedge_masks_,
quantizer_matrix_, &saved_symbol_decoder_context, prev_segment_ids,
&post_filter, dsp, threading_strategy.row_thread_pool(tile_number),
&pending_tiles, is_frame_parallel_, use_intra_prediction_buffer);
if (tile == nullptr) {
LIBGAV1_DLOG(ERROR, "Failed to create tile.");
return kStatusOutOfMemory;
}
tiles.push_back_unchecked(std::move(tile));
}
assert(tiles.size() == static_cast<size_t>(tile_count));
if (is_frame_parallel_) {
if (frame_scratch_buffer->threading_strategy.thread_pool() == nullptr) {
return DecodeTilesFrameParallel(
sequence_header, frame_header, tiles, saved_symbol_decoder_context,
prev_segment_ids, frame_scratch_buffer, &post_filter, current_frame);
}
return DecodeTilesThreadedFrameParallel(
sequence_header, frame_header, tiles, saved_symbol_decoder_context,
prev_segment_ids, frame_scratch_buffer, &post_filter, current_frame);
}
StatusCode status;
if (settings_.threads == 1) {
status = DecodeTilesNonFrameParallel(sequence_header, frame_header, tiles,
frame_scratch_buffer, &post_filter);
} else {
status = DecodeTilesThreadedNonFrameParallel(tiles, frame_scratch_buffer,
&post_filter, &pending_tiles);
}
if (status != kStatusOk) return status;
if (frame_header.enable_frame_end_update_cdf) {
frame_scratch_buffer->symbol_decoder_context = saved_symbol_decoder_context;
}
current_frame->SetFrameContext(frame_scratch_buffer->symbol_decoder_context);
SetSegmentationMap(frame_header, prev_segment_ids, current_frame);
return kStatusOk;
}
StatusCode DecoderImpl::ApplyFilmGrain(
const ObuSequenceHeader& sequence_header,
const ObuFrameHeader& frame_header,
const RefCountedBufferPtr& displayable_frame,
RefCountedBufferPtr* film_grain_frame, ThreadPool* thread_pool) {
if (!sequence_header.film_grain_params_present ||
!displayable_frame->film_grain_params().apply_grain ||
(settings_.post_filter_mask & 0x10) == 0) {
*film_grain_frame = displayable_frame;
return kStatusOk;
}
if (!frame_header.show_existing_frame &&
frame_header.refresh_frame_flags == 0) {
// If show_existing_frame is true, then the current frame is a previously
// saved reference frame. If refresh_frame_flags is nonzero, then the
// state_.UpdateReferenceFrames() call above has saved the current frame as
// a reference frame. Therefore, if both of these conditions are false, then
// the current frame is not saved as a reference frame. displayable_frame
// should hold the only reference to the current frame.
assert(displayable_frame.use_count() == 1);
// Add film grain noise in place.
*film_grain_frame = displayable_frame;
} else {
*film_grain_frame = buffer_pool_.GetFreeBuffer();
if (*film_grain_frame == nullptr) {
LIBGAV1_DLOG(ERROR,
"Could not get film_grain_frame from the buffer pool.");
return kStatusResourceExhausted;
}
if (!(*film_grain_frame)
->Realloc(displayable_frame->buffer()->bitdepth(),
displayable_frame->buffer()->is_monochrome(),
displayable_frame->upscaled_width(),
displayable_frame->frame_height(),
displayable_frame->buffer()->subsampling_x(),
displayable_frame->buffer()->subsampling_y(),
kBorderPixelsFilmGrain, kBorderPixelsFilmGrain,
kBorderPixelsFilmGrain, kBorderPixelsFilmGrain)) {
LIBGAV1_DLOG(ERROR, "film_grain_frame->Realloc() failed.");
return kStatusOutOfMemory;
}
(*film_grain_frame)
->set_chroma_sample_position(
displayable_frame->chroma_sample_position());
(*film_grain_frame)->set_spatial_id(displayable_frame->spatial_id());
(*film_grain_frame)->set_temporal_id(displayable_frame->temporal_id());
}
const bool color_matrix_is_identity =
sequence_header.color_config.matrix_coefficients ==
kMatrixCoefficientsIdentity;
assert(displayable_frame->buffer()->stride(kPlaneU) ==
displayable_frame->buffer()->stride(kPlaneV));
const int input_stride_uv = displayable_frame->buffer()->stride(kPlaneU);
assert((*film_grain_frame)->buffer()->stride(kPlaneU) ==
(*film_grain_frame)->buffer()->stride(kPlaneV));
const int output_stride_uv = (*film_grain_frame)->buffer()->stride(kPlaneU);
#if LIBGAV1_MAX_BITDEPTH >= 10
if (displayable_frame->buffer()->bitdepth() > 8) {
FilmGrain<10> film_grain(displayable_frame->film_grain_params(),
displayable_frame->buffer()->is_monochrome(),
color_matrix_is_identity,
displayable_frame->buffer()->subsampling_x(),
displayable_frame->buffer()->subsampling_y(),
displayable_frame->upscaled_width(),
displayable_frame->frame_height(), thread_pool);
if (!film_grain.AddNoise(
displayable_frame->buffer()->data(kPlaneY),
displayable_frame->buffer()->stride(kPlaneY),
displayable_frame->buffer()->data(kPlaneU),
displayable_frame->buffer()->data(kPlaneV), input_stride_uv,
(*film_grain_frame)->buffer()->data(kPlaneY),
(*film_grain_frame)->buffer()->stride(kPlaneY),
(*film_grain_frame)->buffer()->data(kPlaneU),
(*film_grain_frame)->buffer()->data(kPlaneV), output_stride_uv)) {
LIBGAV1_DLOG(ERROR, "film_grain.AddNoise() failed.");
return kStatusOutOfMemory;
}
return kStatusOk;
}
#endif // LIBGAV1_MAX_BITDEPTH >= 10
FilmGrain<8> film_grain(displayable_frame->film_grain_params(),
displayable_frame->buffer()->is_monochrome(),
color_matrix_is_identity,
displayable_frame->buffer()->subsampling_x(),
displayable_frame->buffer()->subsampling_y(),
displayable_frame->upscaled_width(),
displayable_frame->frame_height(), thread_pool);
if (!film_grain.AddNoise(
displayable_frame->buffer()->data(kPlaneY),
displayable_frame->buffer()->stride(kPlaneY),
displayable_frame->buffer()->data(kPlaneU),
displayable_frame->buffer()->data(kPlaneV), input_stride_uv,
(*film_grain_frame)->buffer()->data(kPlaneY),
(*film_grain_frame)->buffer()->stride(kPlaneY),
(*film_grain_frame)->buffer()->data(kPlaneU),
(*film_grain_frame)->buffer()->data(kPlaneV), output_stride_uv)) {
LIBGAV1_DLOG(ERROR, "film_grain.AddNoise() failed.");
return kStatusOutOfMemory;
}
return kStatusOk;
}
bool DecoderImpl::IsNewSequenceHeader(const ObuParser& obu) {
if (std::find_if(obu.obu_headers().begin(), obu.obu_headers().end(),
[](const ObuHeader& obu_header) {
return obu_header.type == kObuSequenceHeader;
}) == obu.obu_headers().end()) {
return false;
}
const ObuSequenceHeader sequence_header = obu.sequence_header();
const bool sequence_header_changed =
!has_sequence_header_ ||
sequence_header_.color_config.bitdepth !=
sequence_header.color_config.bitdepth ||
sequence_header_.color_config.is_monochrome !=
sequence_header.color_config.is_monochrome ||
sequence_header_.color_config.subsampling_x !=
sequence_header.color_config.subsampling_x ||
sequence_header_.color_config.subsampling_y !=
sequence_header.color_config.subsampling_y ||
sequence_header_.max_frame_width != sequence_header.max_frame_width ||
sequence_header_.max_frame_height != sequence_header.max_frame_height;
sequence_header_ = sequence_header;
has_sequence_header_ = true;
return sequence_header_changed;
}
bool DecoderImpl::MaybeInitializeWedgeMasks(FrameType frame_type) {
if (IsIntraFrame(frame_type) || wedge_masks_initialized_) {
return true;
}
if (!GenerateWedgeMask(&wedge_masks_)) {
return false;
}
wedge_masks_initialized_ = true;
return true;
}
bool DecoderImpl::MaybeInitializeQuantizerMatrix(
const ObuFrameHeader& frame_header) {
if (quantizer_matrix_initialized_ || !frame_header.quantizer.use_matrix) {
return true;
}
if (!InitializeQuantizerMatrix(&quantizer_matrix_)) {
return false;
}
quantizer_matrix_initialized_ = true;
return true;
}
} // namespace libgav1
|