1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
|
/*
* Copyright 2019 The libgav1 Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LIBGAV1_SRC_DSP_ARM_COMMON_NEON_H_
#define LIBGAV1_SRC_DSP_ARM_COMMON_NEON_H_
#include "src/utils/cpu.h"
#if LIBGAV1_ENABLE_NEON
#include <arm_neon.h>
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include "src/utils/compiler_attributes.h"
#if 0
#include <cstdio>
#include <string>
constexpr bool kEnablePrintRegs = true;
union DebugRegister {
int8_t i8[8];
int16_t i16[4];
int32_t i32[2];
uint8_t u8[8];
uint16_t u16[4];
uint32_t u32[2];
};
union DebugRegisterQ {
int8_t i8[16];
int16_t i16[8];
int32_t i32[4];
uint8_t u8[16];
uint16_t u16[8];
uint32_t u32[4];
};
// Quite useful macro for debugging. Left here for convenience.
inline void PrintVect(const DebugRegister r, const char* const name, int size) {
int n;
if (kEnablePrintRegs) {
fprintf(stderr, "%s\t: ", name);
if (size == 8) {
for (n = 0; n < 8; ++n) fprintf(stderr, "%.2x ", r.u8[n]);
} else if (size == 16) {
for (n = 0; n < 4; ++n) fprintf(stderr, "%.4x ", r.u16[n]);
} else if (size == 32) {
for (n = 0; n < 2; ++n) fprintf(stderr, "%.8x ", r.u32[n]);
}
fprintf(stderr, "\n");
}
}
// Debugging macro for 128-bit types.
inline void PrintVectQ(const DebugRegisterQ r, const char* const name,
int size) {
int n;
if (kEnablePrintRegs) {
fprintf(stderr, "%s\t: ", name);
if (size == 8) {
for (n = 0; n < 16; ++n) fprintf(stderr, "%.2x ", r.u8[n]);
} else if (size == 16) {
for (n = 0; n < 8; ++n) fprintf(stderr, "%.4x ", r.u16[n]);
} else if (size == 32) {
for (n = 0; n < 4; ++n) fprintf(stderr, "%.8x ", r.u32[n]);
}
fprintf(stderr, "\n");
}
}
inline void PrintReg(const int32x4x2_t val, const std::string& name) {
DebugRegisterQ r;
vst1q_s32(r.i32, val.val[0]);
const std::string name0 = name + std::string(".val[0]");
PrintVectQ(r, name0.c_str(), 32);
vst1q_s32(r.i32, val.val[1]);
const std::string name1 = name + std::string(".val[1]");
PrintVectQ(r, name1.c_str(), 32);
}
inline void PrintReg(const uint32x4_t val, const char* name) {
DebugRegisterQ r;
vst1q_u32(r.u32, val);
PrintVectQ(r, name, 32);
}
inline void PrintReg(const uint32x2_t val, const char* name) {
DebugRegister r;
vst1_u32(r.u32, val);
PrintVect(r, name, 32);
}
inline void PrintReg(const uint16x8_t val, const char* name) {
DebugRegisterQ r;
vst1q_u16(r.u16, val);
PrintVectQ(r, name, 16);
}
inline void PrintReg(const uint16x4_t val, const char* name) {
DebugRegister r;
vst1_u16(r.u16, val);
PrintVect(r, name, 16);
}
inline void PrintReg(const uint8x16_t val, const char* name) {
DebugRegisterQ r;
vst1q_u8(r.u8, val);
PrintVectQ(r, name, 8);
}
inline void PrintReg(const uint8x8_t val, const char* name) {
DebugRegister r;
vst1_u8(r.u8, val);
PrintVect(r, name, 8);
}
inline void PrintReg(const int32x4_t val, const char* name) {
DebugRegisterQ r;
vst1q_s32(r.i32, val);
PrintVectQ(r, name, 32);
}
inline void PrintReg(const int32x2_t val, const char* name) {
DebugRegister r;
vst1_s32(r.i32, val);
PrintVect(r, name, 32);
}
inline void PrintReg(const int16x8_t val, const char* name) {
DebugRegisterQ r;
vst1q_s16(r.i16, val);
PrintVectQ(r, name, 16);
}
inline void PrintReg(const int16x4_t val, const char* name) {
DebugRegister r;
vst1_s16(r.i16, val);
PrintVect(r, name, 16);
}
inline void PrintReg(const int8x16_t val, const char* name) {
DebugRegisterQ r;
vst1q_s8(r.i8, val);
PrintVectQ(r, name, 8);
}
inline void PrintReg(const int8x8_t val, const char* name) {
DebugRegister r;
vst1_s8(r.i8, val);
PrintVect(r, name, 8);
}
// Print an individual (non-vector) value in decimal format.
inline void PrintReg(const int x, const char* name) {
if (kEnablePrintRegs) {
fprintf(stderr, "%s: %d\n", name, x);
}
}
// Print an individual (non-vector) value in hexadecimal format.
inline void PrintHex(const int x, const char* name) {
if (kEnablePrintRegs) {
fprintf(stderr, "%s: %x\n", name, x);
}
}
#define PR(x) PrintReg(x, #x)
#define PD(x) PrintReg(x, #x)
#define PX(x) PrintHex(x, #x)
#if LIBGAV1_MSAN
#include <sanitizer/msan_interface.h>
inline void PrintShadow(const void* r, const char* const name,
const size_t size) {
if (kEnablePrintRegs) {
fprintf(stderr, "Shadow for %s:\n", name);
__msan_print_shadow(r, size);
}
}
#define PS(var, N) PrintShadow(var, #var, N)
#endif // LIBGAV1_MSAN
#endif // 0
namespace libgav1 {
namespace dsp {
//------------------------------------------------------------------------------
// Load functions.
// Load 2 uint8_t values into lanes 0 and 1. Zeros the register before loading
// the values. Use caution when using this in loops because it will re-zero the
// register before loading on every iteration.
inline uint8x8_t Load2(const void* const buf) {
const uint16x4_t zero = vdup_n_u16(0);
uint16_t temp;
memcpy(&temp, buf, 2);
return vreinterpret_u8_u16(vld1_lane_u16(&temp, zero, 0));
}
// Load 2 uint8_t values into |lane| * 2 and |lane| * 2 + 1.
template <int lane>
inline uint8x8_t Load2(const void* const buf, uint8x8_t val) {
uint16_t temp;
memcpy(&temp, buf, 2);
return vreinterpret_u8_u16(
vld1_lane_u16(&temp, vreinterpret_u16_u8(val), lane));
}
template <int lane>
inline uint16x4_t Load2(const void* const buf, uint16x4_t val) {
uint32_t temp;
memcpy(&temp, buf, 4);
return vreinterpret_u16_u32(
vld1_lane_u32(&temp, vreinterpret_u32_u16(val), lane));
}
// Load 4 uint8_t values into the low half of a uint8x8_t register. Zeros the
// register before loading the values. Use caution when using this in loops
// because it will re-zero the register before loading on every iteration.
inline uint8x8_t Load4(const void* const buf) {
const uint32x2_t zero = vdup_n_u32(0);
uint32_t temp;
memcpy(&temp, buf, 4);
return vreinterpret_u8_u32(vld1_lane_u32(&temp, zero, 0));
}
// Load 4 uint8_t values into 4 lanes staring with |lane| * 4.
template <int lane>
inline uint8x8_t Load4(const void* const buf, uint8x8_t val) {
uint32_t temp;
memcpy(&temp, buf, 4);
return vreinterpret_u8_u32(
vld1_lane_u32(&temp, vreinterpret_u32_u8(val), lane));
}
// Convenience functions for 16-bit loads from a uint8_t* source.
inline uint16x4_t Load4U16(const void* const buf) {
return vld1_u16(static_cast<const uint16_t*>(buf));
}
inline uint16x8_t Load8U16(const void* const buf) {
return vld1q_u16(static_cast<const uint16_t*>(buf));
}
//------------------------------------------------------------------------------
// Load functions to avoid MemorySanitizer's use-of-uninitialized-value warning.
inline uint8x8_t MaskOverreads(const uint8x8_t source,
const ptrdiff_t over_read_in_bytes) {
uint8x8_t dst = source;
#if LIBGAV1_MSAN
if (over_read_in_bytes > 0) {
uint8x8_t mask = vdup_n_u8(0);
uint8x8_t valid_element_mask = vdup_n_u8(-1);
const int valid_bytes =
std::min(8, 8 - static_cast<int>(over_read_in_bytes));
for (int i = 0; i < valid_bytes; ++i) {
// Feed ff bytes into |mask| one at a time.
mask = vext_u8(valid_element_mask, mask, 7);
}
dst = vand_u8(dst, mask);
}
#else
static_cast<void>(over_read_in_bytes);
#endif
return dst;
}
inline uint8x16_t MaskOverreadsQ(const uint8x16_t source,
const ptrdiff_t over_read_in_bytes) {
uint8x16_t dst = source;
#if LIBGAV1_MSAN
if (over_read_in_bytes > 0) {
uint8x16_t mask = vdupq_n_u8(0);
uint8x16_t valid_element_mask = vdupq_n_u8(-1);
const int valid_bytes =
std::min(16, 16 - static_cast<int>(over_read_in_bytes));
for (int i = 0; i < valid_bytes; ++i) {
// Feed ff bytes into |mask| one at a time.
mask = vextq_u8(valid_element_mask, mask, 15);
}
dst = vandq_u8(dst, mask);
}
#else
static_cast<void>(over_read_in_bytes);
#endif
return dst;
}
inline uint16x8_t MaskOverreadsQ(const uint16x8_t source,
const ptrdiff_t over_read_in_bytes) {
return vreinterpretq_u16_u8(
MaskOverreadsQ(vreinterpretq_u8_u16(source), over_read_in_bytes));
}
inline uint8x8_t Load1MsanU8(const uint8_t* const source,
const ptrdiff_t over_read_in_bytes) {
return MaskOverreads(vld1_u8(source), over_read_in_bytes);
}
inline uint8x16_t Load1QMsanU8(const uint8_t* const source,
const ptrdiff_t over_read_in_bytes) {
return MaskOverreadsQ(vld1q_u8(source), over_read_in_bytes);
}
inline uint16x8_t Load1QMsanU16(const uint16_t* const source,
const ptrdiff_t over_read_in_bytes) {
return vreinterpretq_u16_u8(MaskOverreadsQ(
vreinterpretq_u8_u16(vld1q_u16(source)), over_read_in_bytes));
}
inline uint32x4_t Load1QMsanU32(const uint32_t* const source,
const ptrdiff_t over_read_in_bytes) {
return vreinterpretq_u32_u8(MaskOverreadsQ(
vreinterpretq_u8_u32(vld1q_u32(source)), over_read_in_bytes));
}
//------------------------------------------------------------------------------
// Store functions.
// Propagate type information to the compiler. Without this the compiler may
// assume the required alignment of the type (4 bytes in the case of uint32_t)
// and add alignment hints to the memory access.
template <typename T>
inline void ValueToMem(void* const buf, T val) {
memcpy(buf, &val, sizeof(val));
}
// Store 4 int8_t values from the low half of an int8x8_t register.
inline void StoreLo4(void* const buf, const int8x8_t val) {
ValueToMem<int32_t>(buf, vget_lane_s32(vreinterpret_s32_s8(val), 0));
}
// Store 4 uint8_t values from the low half of a uint8x8_t register.
inline void StoreLo4(void* const buf, const uint8x8_t val) {
ValueToMem<uint32_t>(buf, vget_lane_u32(vreinterpret_u32_u8(val), 0));
}
// Store 4 uint8_t values from the high half of a uint8x8_t register.
inline void StoreHi4(void* const buf, const uint8x8_t val) {
ValueToMem<uint32_t>(buf, vget_lane_u32(vreinterpret_u32_u8(val), 1));
}
// Store 2 uint8_t values from |lane| * 2 and |lane| * 2 + 1 of a uint8x8_t
// register.
template <int lane>
inline void Store2(void* const buf, const uint8x8_t val) {
ValueToMem<uint16_t>(buf, vget_lane_u16(vreinterpret_u16_u8(val), lane));
}
// Store 2 uint16_t values from |lane| * 2 and |lane| * 2 + 1 of a uint16x8_t
// register.
template <int lane>
inline void Store2(void* const buf, const uint16x8_t val) {
ValueToMem<uint32_t>(buf, vgetq_lane_u32(vreinterpretq_u32_u16(val), lane));
}
// Store 2 uint16_t values from |lane| * 2 and |lane| * 2 + 1 of a uint16x4_t
// register.
template <int lane>
inline void Store2(void* const buf, const uint16x4_t val) {
ValueToMem<uint32_t>(buf, vget_lane_u32(vreinterpret_u32_u16(val), lane));
}
// Simplify code when caller has |buf| cast as uint8_t*.
inline void Store4(void* const buf, const uint16x4_t val) {
vst1_u16(static_cast<uint16_t*>(buf), val);
}
// Simplify code when caller has |buf| cast as uint8_t*.
inline void Store8(void* const buf, const uint16x8_t val) {
vst1q_u16(static_cast<uint16_t*>(buf), val);
}
inline void Store4QMsanS16(void* const buf, const int16x8x4_t src) {
#if LIBGAV1_MSAN
// The memory shadow is incorrect for vst4q_u16, only marking the first 16
// bytes of the destination as initialized. To avoid missing truly
// uninitialized memory, check the input vectors first, before marking the
// whole 64 bytes initialized. If any input vector contains unused values, it
// should pass through MaskOverreadsQ first.
__msan_check_mem_is_initialized(&src.val[0], sizeof(src.val[0]));
__msan_check_mem_is_initialized(&src.val[1], sizeof(src.val[1]));
__msan_check_mem_is_initialized(&src.val[2], sizeof(src.val[2]));
__msan_check_mem_is_initialized(&src.val[3], sizeof(src.val[3]));
vst4q_s16(static_cast<int16_t*>(buf), src);
__msan_unpoison(buf, sizeof(int16x8x4_t));
#else
vst4q_s16(static_cast<int16_t*>(buf), src);
#endif // LIBGAV1_MSAN
}
//------------------------------------------------------------------------------
// Pointer helpers.
// This function adds |stride|, given as a number of bytes, to a pointer to a
// larger type, using native pointer arithmetic.
template <typename T>
inline T* AddByteStride(T* ptr, const ptrdiff_t stride) {
return reinterpret_cast<T*>(
const_cast<uint8_t*>(reinterpret_cast<const uint8_t*>(ptr) + stride));
}
//------------------------------------------------------------------------------
// Multiply.
// Shim vmull_high_u16 for armv7.
inline uint32x4_t VMullHighU16(const uint16x8_t a, const uint16x8_t b) {
#if defined(__aarch64__)
return vmull_high_u16(a, b);
#else
return vmull_u16(vget_high_u16(a), vget_high_u16(b));
#endif
}
// Shim vmull_high_s16 for armv7.
inline int32x4_t VMullHighS16(const int16x8_t a, const int16x8_t b) {
#if defined(__aarch64__)
return vmull_high_s16(a, b);
#else
return vmull_s16(vget_high_s16(a), vget_high_s16(b));
#endif
}
// Shim vmlal_high_u16 for armv7.
inline uint32x4_t VMlalHighU16(const uint32x4_t a, const uint16x8_t b,
const uint16x8_t c) {
#if defined(__aarch64__)
return vmlal_high_u16(a, b, c);
#else
return vmlal_u16(a, vget_high_u16(b), vget_high_u16(c));
#endif
}
// Shim vmlal_high_s16 for armv7.
inline int32x4_t VMlalHighS16(const int32x4_t a, const int16x8_t b,
const int16x8_t c) {
#if defined(__aarch64__)
return vmlal_high_s16(a, b, c);
#else
return vmlal_s16(a, vget_high_s16(b), vget_high_s16(c));
#endif
}
// Shim vmul_laneq_u16 for armv7.
template <int lane>
inline uint16x4_t VMulLaneQU16(const uint16x4_t a, const uint16x8_t b) {
#if defined(__aarch64__)
return vmul_laneq_u16(a, b, lane);
#else
if (lane < 4) return vmul_lane_u16(a, vget_low_u16(b), lane & 0x3);
return vmul_lane_u16(a, vget_high_u16(b), (lane - 4) & 0x3);
#endif
}
// Shim vmulq_laneq_u16 for armv7.
template <int lane>
inline uint16x8_t VMulQLaneQU16(const uint16x8_t a, const uint16x8_t b) {
#if defined(__aarch64__)
return vmulq_laneq_u16(a, b, lane);
#else
if (lane < 4) return vmulq_lane_u16(a, vget_low_u16(b), lane & 0x3);
return vmulq_lane_u16(a, vget_high_u16(b), (lane - 4) & 0x3);
#endif
}
// Shim vmla_laneq_u16 for armv7.
template <int lane>
inline uint16x4_t VMlaLaneQU16(const uint16x4_t a, const uint16x4_t b,
const uint16x8_t c) {
#if defined(__aarch64__)
return vmla_laneq_u16(a, b, c, lane);
#else
if (lane < 4) return vmla_lane_u16(a, b, vget_low_u16(c), lane & 0x3);
return vmla_lane_u16(a, b, vget_high_u16(c), (lane - 4) & 0x3);
#endif
}
// Shim vmlaq_laneq_u16 for armv7.
template <int lane>
inline uint16x8_t VMlaQLaneQU16(const uint16x8_t a, const uint16x8_t b,
const uint16x8_t c) {
#if defined(__aarch64__)
return vmlaq_laneq_u16(a, b, c, lane);
#else
if (lane < 4) return vmlaq_lane_u16(a, b, vget_low_u16(c), lane & 0x3);
return vmlaq_lane_u16(a, b, vget_high_u16(c), (lane - 4) & 0x3);
#endif
}
//------------------------------------------------------------------------------
// Bit manipulation.
// vshXX_n_XX() requires an immediate.
template <int shift>
inline uint8x8_t LeftShiftVector(const uint8x8_t vector) {
return vreinterpret_u8_u64(vshl_n_u64(vreinterpret_u64_u8(vector), shift));
}
template <int shift>
inline uint8x8_t RightShiftVector(const uint8x8_t vector) {
return vreinterpret_u8_u64(vshr_n_u64(vreinterpret_u64_u8(vector), shift));
}
template <int shift>
inline int8x8_t RightShiftVector(const int8x8_t vector) {
return vreinterpret_s8_u64(vshr_n_u64(vreinterpret_u64_s8(vector), shift));
}
// Shim vqtbl1_u8 for armv7.
inline uint8x8_t VQTbl1U8(const uint8x16_t a, const uint8x8_t index) {
#if defined(__aarch64__)
return vqtbl1_u8(a, index);
#else
const uint8x8x2_t b = {vget_low_u8(a), vget_high_u8(a)};
return vtbl2_u8(b, index);
#endif
}
// Shim vqtbl2_u8 for armv7.
inline uint8x8_t VQTbl2U8(const uint8x16x2_t a, const uint8x8_t index) {
#if defined(__aarch64__)
return vqtbl2_u8(a, index);
#else
const uint8x8x4_t b = {vget_low_u8(a.val[0]), vget_high_u8(a.val[0]),
vget_low_u8(a.val[1]), vget_high_u8(a.val[1])};
return vtbl4_u8(b, index);
#endif
}
// Shim vqtbl2q_u8 for armv7.
inline uint8x16_t VQTbl2QU8(const uint8x16x2_t a, const uint8x16_t index) {
#if defined(__aarch64__)
return vqtbl2q_u8(a, index);
#else
return vcombine_u8(VQTbl2U8(a, vget_low_u8(index)),
VQTbl2U8(a, vget_high_u8(index)));
#endif
}
// Shim vqtbl3q_u8 for armv7.
inline uint8x8_t VQTbl3U8(const uint8x16x3_t a, const uint8x8_t index) {
#if defined(__aarch64__)
return vqtbl3_u8(a, index);
#else
const uint8x8x4_t b = {vget_low_u8(a.val[0]), vget_high_u8(a.val[0]),
vget_low_u8(a.val[1]), vget_high_u8(a.val[1])};
const uint8x8x2_t c = {vget_low_u8(a.val[2]), vget_high_u8(a.val[2])};
const uint8x8_t index_ext = vsub_u8(index, vdup_n_u8(32));
const uint8x8_t partial_lookup = vtbl4_u8(b, index);
return vtbx2_u8(partial_lookup, c, index_ext);
#endif
}
// Shim vqtbl3q_u8 for armv7.
inline uint8x16_t VQTbl3QU8(const uint8x16x3_t a, const uint8x16_t index) {
#if defined(__aarch64__)
return vqtbl3q_u8(a, index);
#else
return vcombine_u8(VQTbl3U8(a, vget_low_u8(index)),
VQTbl3U8(a, vget_high_u8(index)));
#endif
}
// Shim vqtbl1_s8 for armv7.
inline int8x8_t VQTbl1S8(const int8x16_t a, const uint8x8_t index) {
#if defined(__aarch64__)
return vqtbl1_s8(a, index);
#else
const int8x8x2_t b = {vget_low_s8(a), vget_high_s8(a)};
return vtbl2_s8(b, vreinterpret_s8_u8(index));
#endif
}
//------------------------------------------------------------------------------
// Saturation helpers.
inline int16x4_t Clip3S16(const int16x4_t val, const int16x4_t low,
const int16x4_t high) {
return vmin_s16(vmax_s16(val, low), high);
}
inline int16x8_t Clip3S16(const int16x8_t val, const int16x8_t low,
const int16x8_t high) {
return vminq_s16(vmaxq_s16(val, low), high);
}
inline uint16x8_t ConvertToUnsignedPixelU16(const int16x8_t val, int bitdepth) {
const int16x8_t low = vdupq_n_s16(0);
const uint16x8_t high = vdupq_n_u16((1 << bitdepth) - 1);
return vminq_u16(vreinterpretq_u16_s16(vmaxq_s16(val, low)), high);
}
//------------------------------------------------------------------------------
// Interleave.
// vzipN is exclusive to A64.
inline uint8x8_t InterleaveLow8(const uint8x8_t a, const uint8x8_t b) {
#if defined(__aarch64__)
return vzip1_u8(a, b);
#else
// Discard |.val[1]|
return vzip_u8(a, b).val[0];
#endif
}
inline uint8x8_t InterleaveLow32(const uint8x8_t a, const uint8x8_t b) {
#if defined(__aarch64__)
return vreinterpret_u8_u32(
vzip1_u32(vreinterpret_u32_u8(a), vreinterpret_u32_u8(b)));
#else
// Discard |.val[1]|
return vreinterpret_u8_u32(
vzip_u32(vreinterpret_u32_u8(a), vreinterpret_u32_u8(b)).val[0]);
#endif
}
inline int8x8_t InterleaveLow32(const int8x8_t a, const int8x8_t b) {
#if defined(__aarch64__)
return vreinterpret_s8_u32(
vzip1_u32(vreinterpret_u32_s8(a), vreinterpret_u32_s8(b)));
#else
// Discard |.val[1]|
return vreinterpret_s8_u32(
vzip_u32(vreinterpret_u32_s8(a), vreinterpret_u32_s8(b)).val[0]);
#endif
}
inline uint8x8_t InterleaveHigh32(const uint8x8_t a, const uint8x8_t b) {
#if defined(__aarch64__)
return vreinterpret_u8_u32(
vzip2_u32(vreinterpret_u32_u8(a), vreinterpret_u32_u8(b)));
#else
// Discard |.val[0]|
return vreinterpret_u8_u32(
vzip_u32(vreinterpret_u32_u8(a), vreinterpret_u32_u8(b)).val[1]);
#endif
}
inline int8x8_t InterleaveHigh32(const int8x8_t a, const int8x8_t b) {
#if defined(__aarch64__)
return vreinterpret_s8_u32(
vzip2_u32(vreinterpret_u32_s8(a), vreinterpret_u32_s8(b)));
#else
// Discard |.val[0]|
return vreinterpret_s8_u32(
vzip_u32(vreinterpret_u32_s8(a), vreinterpret_u32_s8(b)).val[1]);
#endif
}
//------------------------------------------------------------------------------
// Sum.
inline uint16_t SumVector(const uint8x8_t a) {
#if defined(__aarch64__)
return vaddlv_u8(a);
#else
const uint16x4_t c = vpaddl_u8(a);
const uint32x2_t d = vpaddl_u16(c);
const uint64x1_t e = vpaddl_u32(d);
return static_cast<uint16_t>(vget_lane_u64(e, 0));
#endif // defined(__aarch64__)
}
inline uint32_t SumVector(const uint32x2_t a) {
#if defined(__aarch64__)
return vaddv_u32(a);
#else
const uint64x1_t b = vpaddl_u32(a);
return vget_lane_u32(vreinterpret_u32_u64(b), 0);
#endif // defined(__aarch64__)
}
inline uint32_t SumVector(const uint32x4_t a) {
#if defined(__aarch64__)
return vaddvq_u32(a);
#else
const uint64x2_t b = vpaddlq_u32(a);
const uint64x1_t c = vadd_u64(vget_low_u64(b), vget_high_u64(b));
return static_cast<uint32_t>(vget_lane_u64(c, 0));
#endif
}
//------------------------------------------------------------------------------
// Transpose.
// Transpose 32 bit elements such that:
// a: 00 01
// b: 02 03
// returns
// val[0]: 00 02
// val[1]: 01 03
inline uint8x8x2_t Interleave32(const uint8x8_t a, const uint8x8_t b) {
const uint32x2_t a_32 = vreinterpret_u32_u8(a);
const uint32x2_t b_32 = vreinterpret_u32_u8(b);
const uint32x2x2_t c = vtrn_u32(a_32, b_32);
const uint8x8x2_t d = {vreinterpret_u8_u32(c.val[0]),
vreinterpret_u8_u32(c.val[1])};
return d;
}
// Swap high and low 32 bit elements.
inline uint8x8_t Transpose32(const uint8x8_t a) {
const uint32x2_t b = vrev64_u32(vreinterpret_u32_u8(a));
return vreinterpret_u8_u32(b);
}
// Swap high and low halves.
inline uint16x8_t Transpose64(const uint16x8_t a) { return vextq_u16(a, a, 4); }
// Implement vtrnq_s64().
// Input:
// a0: 00 01 02 03 04 05 06 07
// a1: 16 17 18 19 20 21 22 23
// Output:
// b0.val[0]: 00 01 02 03 16 17 18 19
// b0.val[1]: 04 05 06 07 20 21 22 23
inline int16x8x2_t VtrnqS64(const int32x4_t a0, const int32x4_t a1) {
int16x8x2_t b0;
b0.val[0] = vcombine_s16(vreinterpret_s16_s32(vget_low_s32(a0)),
vreinterpret_s16_s32(vget_low_s32(a1)));
b0.val[1] = vcombine_s16(vreinterpret_s16_s32(vget_high_s32(a0)),
vreinterpret_s16_s32(vget_high_s32(a1)));
return b0;
}
inline uint16x8x2_t VtrnqU64(const uint32x4_t a0, const uint32x4_t a1) {
uint16x8x2_t b0;
b0.val[0] = vcombine_u16(vreinterpret_u16_u32(vget_low_u32(a0)),
vreinterpret_u16_u32(vget_low_u32(a1)));
b0.val[1] = vcombine_u16(vreinterpret_u16_u32(vget_high_u32(a0)),
vreinterpret_u16_u32(vget_high_u32(a1)));
return b0;
}
// Input:
// 00 01 02 03
// 10 11 12 13
// 20 21 22 23
// 30 31 32 33
// Output:
// 00 10 20 30
// 01 11 21 31
// 02 12 22 32
// 03 13 23 33
inline void Transpose4x4(uint16x4_t a[4]) {
// b:
// 00 10 02 12
// 01 11 03 13
const uint16x4x2_t b = vtrn_u16(a[0], a[1]);
// c:
// 20 30 22 32
// 21 31 23 33
const uint16x4x2_t c = vtrn_u16(a[2], a[3]);
// d:
// 00 10 20 30
// 02 12 22 32
const uint32x2x2_t d =
vtrn_u32(vreinterpret_u32_u16(b.val[0]), vreinterpret_u32_u16(c.val[0]));
// e:
// 01 11 21 31
// 03 13 23 33
const uint32x2x2_t e =
vtrn_u32(vreinterpret_u32_u16(b.val[1]), vreinterpret_u32_u16(c.val[1]));
a[0] = vreinterpret_u16_u32(d.val[0]);
a[1] = vreinterpret_u16_u32(e.val[0]);
a[2] = vreinterpret_u16_u32(d.val[1]);
a[3] = vreinterpret_u16_u32(e.val[1]);
}
// Input:
// a: 00 01 02 03 10 11 12 13
// b: 20 21 22 23 30 31 32 33
// Output:
// Note that columns [1] and [2] are transposed.
// a: 00 10 20 30 02 12 22 32
// b: 01 11 21 31 03 13 23 33
inline void Transpose4x4(uint8x8_t* a, uint8x8_t* b) {
const uint16x4x2_t c =
vtrn_u16(vreinterpret_u16_u8(*a), vreinterpret_u16_u8(*b));
const uint32x2x2_t d =
vtrn_u32(vreinterpret_u32_u16(c.val[0]), vreinterpret_u32_u16(c.val[1]));
const uint8x8x2_t e =
vtrn_u8(vreinterpret_u8_u32(d.val[0]), vreinterpret_u8_u32(d.val[1]));
*a = e.val[0];
*b = e.val[1];
}
// 4x8 Input:
// a[0]: 00 01 02 03 04 05 06 07
// a[1]: 10 11 12 13 14 15 16 17
// a[2]: 20 21 22 23 24 25 26 27
// a[3]: 30 31 32 33 34 35 36 37
// 8x4 Output:
// a[0]: 00 10 20 30 04 14 24 34
// a[1]: 01 11 21 31 05 15 25 35
// a[2]: 02 12 22 32 06 16 26 36
// a[3]: 03 13 23 33 07 17 27 37
inline void Transpose4x8(uint16x8_t a[4]) {
// b0.val[0]: 00 10 02 12 04 14 06 16
// b0.val[1]: 01 11 03 13 05 15 07 17
// b1.val[0]: 20 30 22 32 24 34 26 36
// b1.val[1]: 21 31 23 33 25 35 27 37
const uint16x8x2_t b0 = vtrnq_u16(a[0], a[1]);
const uint16x8x2_t b1 = vtrnq_u16(a[2], a[3]);
// c0.val[0]: 00 10 20 30 04 14 24 34
// c0.val[1]: 02 12 22 32 06 16 26 36
// c1.val[0]: 01 11 21 31 05 15 25 35
// c1.val[1]: 03 13 23 33 07 17 27 37
const uint32x4x2_t c0 = vtrnq_u32(vreinterpretq_u32_u16(b0.val[0]),
vreinterpretq_u32_u16(b1.val[0]));
const uint32x4x2_t c1 = vtrnq_u32(vreinterpretq_u32_u16(b0.val[1]),
vreinterpretq_u32_u16(b1.val[1]));
a[0] = vreinterpretq_u16_u32(c0.val[0]);
a[1] = vreinterpretq_u16_u32(c1.val[0]);
a[2] = vreinterpretq_u16_u32(c0.val[1]);
a[3] = vreinterpretq_u16_u32(c1.val[1]);
}
// Special transpose for loop filter.
// 4x8 Input:
// p_q: p3 p2 p1 p0 q0 q1 q2 q3
// a[0]: 00 01 02 03 04 05 06 07
// a[1]: 10 11 12 13 14 15 16 17
// a[2]: 20 21 22 23 24 25 26 27
// a[3]: 30 31 32 33 34 35 36 37
// 8x4 Output:
// a[0]: 03 13 23 33 04 14 24 34 p0q0
// a[1]: 02 12 22 32 05 15 25 35 p1q1
// a[2]: 01 11 21 31 06 16 26 36 p2q2
// a[3]: 00 10 20 30 07 17 27 37 p3q3
// Direct reapplication of the function will reset the high halves, but
// reverse the low halves:
// p_q: p0 p1 p2 p3 q0 q1 q2 q3
// a[0]: 33 32 31 30 04 05 06 07
// a[1]: 23 22 21 20 14 15 16 17
// a[2]: 13 12 11 10 24 25 26 27
// a[3]: 03 02 01 00 34 35 36 37
// Simply reordering the inputs (3, 2, 1, 0) will reset the low halves, but
// reverse the high halves.
// The standard Transpose4x8 will produce the same reversals, but with the
// order of the low halves also restored relative to the high halves. This is
// preferable because it puts all values from the same source row back together,
// but some post-processing is inevitable.
inline void LoopFilterTranspose4x8(uint16x8_t a[4]) {
// b0.val[0]: 00 10 02 12 04 14 06 16
// b0.val[1]: 01 11 03 13 05 15 07 17
// b1.val[0]: 20 30 22 32 24 34 26 36
// b1.val[1]: 21 31 23 33 25 35 27 37
const uint16x8x2_t b0 = vtrnq_u16(a[0], a[1]);
const uint16x8x2_t b1 = vtrnq_u16(a[2], a[3]);
// Reverse odd vectors to bring the appropriate items to the front of zips.
// b0.val[0]: 00 10 02 12 04 14 06 16
// r0 : 03 13 01 11 07 17 05 15
// b1.val[0]: 20 30 22 32 24 34 26 36
// r1 : 23 33 21 31 27 37 25 35
const uint32x4_t r0 = vrev64q_u32(vreinterpretq_u32_u16(b0.val[1]));
const uint32x4_t r1 = vrev64q_u32(vreinterpretq_u32_u16(b1.val[1]));
// Zip to complete the halves.
// c0.val[0]: 00 10 20 30 02 12 22 32 p3p1
// c0.val[1]: 04 14 24 34 06 16 26 36 q0q2
// c1.val[0]: 03 13 23 33 01 11 21 31 p0p2
// c1.val[1]: 07 17 27 37 05 15 25 35 q3q1
const uint32x4x2_t c0 = vzipq_u32(vreinterpretq_u32_u16(b0.val[0]),
vreinterpretq_u32_u16(b1.val[0]));
const uint32x4x2_t c1 = vzipq_u32(r0, r1);
// d0.val[0]: 00 10 20 30 07 17 27 37 p3q3
// d0.val[1]: 02 12 22 32 05 15 25 35 p1q1
// d1.val[0]: 03 13 23 33 04 14 24 34 p0q0
// d1.val[1]: 01 11 21 31 06 16 26 36 p2q2
const uint16x8x2_t d0 = VtrnqU64(c0.val[0], c1.val[1]);
// The third row of c comes first here to swap p2 with q0.
const uint16x8x2_t d1 = VtrnqU64(c1.val[0], c0.val[1]);
// 8x4 Output:
// a[0]: 03 13 23 33 04 14 24 34 p0q0
// a[1]: 02 12 22 32 05 15 25 35 p1q1
// a[2]: 01 11 21 31 06 16 26 36 p2q2
// a[3]: 00 10 20 30 07 17 27 37 p3q3
a[0] = d1.val[0]; // p0q0
a[1] = d0.val[1]; // p1q1
a[2] = d1.val[1]; // p2q2
a[3] = d0.val[0]; // p3q3
}
// Reversible if the x4 values are packed next to each other.
// x4 input / x8 output:
// a0: 00 01 02 03 40 41 42 43 44
// a1: 10 11 12 13 50 51 52 53 54
// a2: 20 21 22 23 60 61 62 63 64
// a3: 30 31 32 33 70 71 72 73 74
// x8 input / x4 output:
// a0: 00 10 20 30 40 50 60 70
// a1: 01 11 21 31 41 51 61 71
// a2: 02 12 22 32 42 52 62 72
// a3: 03 13 23 33 43 53 63 73
inline void Transpose8x4(uint8x8_t* a0, uint8x8_t* a1, uint8x8_t* a2,
uint8x8_t* a3) {
const uint8x8x2_t b0 = vtrn_u8(*a0, *a1);
const uint8x8x2_t b1 = vtrn_u8(*a2, *a3);
const uint16x4x2_t c0 =
vtrn_u16(vreinterpret_u16_u8(b0.val[0]), vreinterpret_u16_u8(b1.val[0]));
const uint16x4x2_t c1 =
vtrn_u16(vreinterpret_u16_u8(b0.val[1]), vreinterpret_u16_u8(b1.val[1]));
*a0 = vreinterpret_u8_u16(c0.val[0]);
*a1 = vreinterpret_u8_u16(c1.val[0]);
*a2 = vreinterpret_u8_u16(c0.val[1]);
*a3 = vreinterpret_u8_u16(c1.val[1]);
}
// Input:
// a[0]: 00 01 02 03 04 05 06 07
// a[1]: 10 11 12 13 14 15 16 17
// a[2]: 20 21 22 23 24 25 26 27
// a[3]: 30 31 32 33 34 35 36 37
// a[4]: 40 41 42 43 44 45 46 47
// a[5]: 50 51 52 53 54 55 56 57
// a[6]: 60 61 62 63 64 65 66 67
// a[7]: 70 71 72 73 74 75 76 77
// Output:
// a[0]: 00 10 20 30 40 50 60 70
// a[1]: 01 11 21 31 41 51 61 71
// a[2]: 02 12 22 32 42 52 62 72
// a[3]: 03 13 23 33 43 53 63 73
// a[4]: 04 14 24 34 44 54 64 74
// a[5]: 05 15 25 35 45 55 65 75
// a[6]: 06 16 26 36 46 56 66 76
// a[7]: 07 17 27 37 47 57 67 77
inline void Transpose8x8(int8x8_t a[8]) {
// Swap 8 bit elements. Goes from:
// a[0]: 00 01 02 03 04 05 06 07
// a[1]: 10 11 12 13 14 15 16 17
// a[2]: 20 21 22 23 24 25 26 27
// a[3]: 30 31 32 33 34 35 36 37
// a[4]: 40 41 42 43 44 45 46 47
// a[5]: 50 51 52 53 54 55 56 57
// a[6]: 60 61 62 63 64 65 66 67
// a[7]: 70 71 72 73 74 75 76 77
// to:
// b0.val[0]: 00 10 02 12 04 14 06 16 40 50 42 52 44 54 46 56
// b0.val[1]: 01 11 03 13 05 15 07 17 41 51 43 53 45 55 47 57
// b1.val[0]: 20 30 22 32 24 34 26 36 60 70 62 72 64 74 66 76
// b1.val[1]: 21 31 23 33 25 35 27 37 61 71 63 73 65 75 67 77
const int8x16x2_t b0 =
vtrnq_s8(vcombine_s8(a[0], a[4]), vcombine_s8(a[1], a[5]));
const int8x16x2_t b1 =
vtrnq_s8(vcombine_s8(a[2], a[6]), vcombine_s8(a[3], a[7]));
// Swap 16 bit elements resulting in:
// c0.val[0]: 00 10 20 30 04 14 24 34 40 50 60 70 44 54 64 74
// c0.val[1]: 02 12 22 32 06 16 26 36 42 52 62 72 46 56 66 76
// c1.val[0]: 01 11 21 31 05 15 25 35 41 51 61 71 45 55 65 75
// c1.val[1]: 03 13 23 33 07 17 27 37 43 53 63 73 47 57 67 77
const int16x8x2_t c0 = vtrnq_s16(vreinterpretq_s16_s8(b0.val[0]),
vreinterpretq_s16_s8(b1.val[0]));
const int16x8x2_t c1 = vtrnq_s16(vreinterpretq_s16_s8(b0.val[1]),
vreinterpretq_s16_s8(b1.val[1]));
// Unzip 32 bit elements resulting in:
// d0.val[0]: 00 10 20 30 40 50 60 70 01 11 21 31 41 51 61 71
// d0.val[1]: 04 14 24 34 44 54 64 74 05 15 25 35 45 55 65 75
// d1.val[0]: 02 12 22 32 42 52 62 72 03 13 23 33 43 53 63 73
// d1.val[1]: 06 16 26 36 46 56 66 76 07 17 27 37 47 57 67 77
const int32x4x2_t d0 = vuzpq_s32(vreinterpretq_s32_s16(c0.val[0]),
vreinterpretq_s32_s16(c1.val[0]));
const int32x4x2_t d1 = vuzpq_s32(vreinterpretq_s32_s16(c0.val[1]),
vreinterpretq_s32_s16(c1.val[1]));
a[0] = vreinterpret_s8_s32(vget_low_s32(d0.val[0]));
a[1] = vreinterpret_s8_s32(vget_high_s32(d0.val[0]));
a[2] = vreinterpret_s8_s32(vget_low_s32(d1.val[0]));
a[3] = vreinterpret_s8_s32(vget_high_s32(d1.val[0]));
a[4] = vreinterpret_s8_s32(vget_low_s32(d0.val[1]));
a[5] = vreinterpret_s8_s32(vget_high_s32(d0.val[1]));
a[6] = vreinterpret_s8_s32(vget_low_s32(d1.val[1]));
a[7] = vreinterpret_s8_s32(vget_high_s32(d1.val[1]));
}
// Unsigned.
inline void Transpose8x8(uint8x8_t a[8]) {
const uint8x16x2_t b0 =
vtrnq_u8(vcombine_u8(a[0], a[4]), vcombine_u8(a[1], a[5]));
const uint8x16x2_t b1 =
vtrnq_u8(vcombine_u8(a[2], a[6]), vcombine_u8(a[3], a[7]));
const uint16x8x2_t c0 = vtrnq_u16(vreinterpretq_u16_u8(b0.val[0]),
vreinterpretq_u16_u8(b1.val[0]));
const uint16x8x2_t c1 = vtrnq_u16(vreinterpretq_u16_u8(b0.val[1]),
vreinterpretq_u16_u8(b1.val[1]));
const uint32x4x2_t d0 = vuzpq_u32(vreinterpretq_u32_u16(c0.val[0]),
vreinterpretq_u32_u16(c1.val[0]));
const uint32x4x2_t d1 = vuzpq_u32(vreinterpretq_u32_u16(c0.val[1]),
vreinterpretq_u32_u16(c1.val[1]));
a[0] = vreinterpret_u8_u32(vget_low_u32(d0.val[0]));
a[1] = vreinterpret_u8_u32(vget_high_u32(d0.val[0]));
a[2] = vreinterpret_u8_u32(vget_low_u32(d1.val[0]));
a[3] = vreinterpret_u8_u32(vget_high_u32(d1.val[0]));
a[4] = vreinterpret_u8_u32(vget_low_u32(d0.val[1]));
a[5] = vreinterpret_u8_u32(vget_high_u32(d0.val[1]));
a[6] = vreinterpret_u8_u32(vget_low_u32(d1.val[1]));
a[7] = vreinterpret_u8_u32(vget_high_u32(d1.val[1]));
}
inline void Transpose8x8(uint8x8_t in[8], uint8x16_t out[4]) {
const uint8x16x2_t a0 =
vtrnq_u8(vcombine_u8(in[0], in[4]), vcombine_u8(in[1], in[5]));
const uint8x16x2_t a1 =
vtrnq_u8(vcombine_u8(in[2], in[6]), vcombine_u8(in[3], in[7]));
const uint16x8x2_t b0 = vtrnq_u16(vreinterpretq_u16_u8(a0.val[0]),
vreinterpretq_u16_u8(a1.val[0]));
const uint16x8x2_t b1 = vtrnq_u16(vreinterpretq_u16_u8(a0.val[1]),
vreinterpretq_u16_u8(a1.val[1]));
const uint32x4x2_t c0 = vuzpq_u32(vreinterpretq_u32_u16(b0.val[0]),
vreinterpretq_u32_u16(b1.val[0]));
const uint32x4x2_t c1 = vuzpq_u32(vreinterpretq_u32_u16(b0.val[1]),
vreinterpretq_u32_u16(b1.val[1]));
out[0] = vreinterpretq_u8_u32(c0.val[0]);
out[1] = vreinterpretq_u8_u32(c1.val[0]);
out[2] = vreinterpretq_u8_u32(c0.val[1]);
out[3] = vreinterpretq_u8_u32(c1.val[1]);
}
// Input:
// a[0]: 00 01 02 03 04 05 06 07
// a[1]: 10 11 12 13 14 15 16 17
// a[2]: 20 21 22 23 24 25 26 27
// a[3]: 30 31 32 33 34 35 36 37
// a[4]: 40 41 42 43 44 45 46 47
// a[5]: 50 51 52 53 54 55 56 57
// a[6]: 60 61 62 63 64 65 66 67
// a[7]: 70 71 72 73 74 75 76 77
// Output:
// a[0]: 00 10 20 30 40 50 60 70
// a[1]: 01 11 21 31 41 51 61 71
// a[2]: 02 12 22 32 42 52 62 72
// a[3]: 03 13 23 33 43 53 63 73
// a[4]: 04 14 24 34 44 54 64 74
// a[5]: 05 15 25 35 45 55 65 75
// a[6]: 06 16 26 36 46 56 66 76
// a[7]: 07 17 27 37 47 57 67 77
inline void Transpose8x8(int16x8_t a[8]) {
const int16x8x2_t b0 = vtrnq_s16(a[0], a[1]);
const int16x8x2_t b1 = vtrnq_s16(a[2], a[3]);
const int16x8x2_t b2 = vtrnq_s16(a[4], a[5]);
const int16x8x2_t b3 = vtrnq_s16(a[6], a[7]);
const int32x4x2_t c0 = vtrnq_s32(vreinterpretq_s32_s16(b0.val[0]),
vreinterpretq_s32_s16(b1.val[0]));
const int32x4x2_t c1 = vtrnq_s32(vreinterpretq_s32_s16(b0.val[1]),
vreinterpretq_s32_s16(b1.val[1]));
const int32x4x2_t c2 = vtrnq_s32(vreinterpretq_s32_s16(b2.val[0]),
vreinterpretq_s32_s16(b3.val[0]));
const int32x4x2_t c3 = vtrnq_s32(vreinterpretq_s32_s16(b2.val[1]),
vreinterpretq_s32_s16(b3.val[1]));
const int16x8x2_t d0 = VtrnqS64(c0.val[0], c2.val[0]);
const int16x8x2_t d1 = VtrnqS64(c1.val[0], c3.val[0]);
const int16x8x2_t d2 = VtrnqS64(c0.val[1], c2.val[1]);
const int16x8x2_t d3 = VtrnqS64(c1.val[1], c3.val[1]);
a[0] = d0.val[0];
a[1] = d1.val[0];
a[2] = d2.val[0];
a[3] = d3.val[0];
a[4] = d0.val[1];
a[5] = d1.val[1];
a[6] = d2.val[1];
a[7] = d3.val[1];
}
// Unsigned.
inline void Transpose8x8(uint16x8_t a[8]) {
const uint16x8x2_t b0 = vtrnq_u16(a[0], a[1]);
const uint16x8x2_t b1 = vtrnq_u16(a[2], a[3]);
const uint16x8x2_t b2 = vtrnq_u16(a[4], a[5]);
const uint16x8x2_t b3 = vtrnq_u16(a[6], a[7]);
const uint32x4x2_t c0 = vtrnq_u32(vreinterpretq_u32_u16(b0.val[0]),
vreinterpretq_u32_u16(b1.val[0]));
const uint32x4x2_t c1 = vtrnq_u32(vreinterpretq_u32_u16(b0.val[1]),
vreinterpretq_u32_u16(b1.val[1]));
const uint32x4x2_t c2 = vtrnq_u32(vreinterpretq_u32_u16(b2.val[0]),
vreinterpretq_u32_u16(b3.val[0]));
const uint32x4x2_t c3 = vtrnq_u32(vreinterpretq_u32_u16(b2.val[1]),
vreinterpretq_u32_u16(b3.val[1]));
const uint16x8x2_t d0 = VtrnqU64(c0.val[0], c2.val[0]);
const uint16x8x2_t d1 = VtrnqU64(c1.val[0], c3.val[0]);
const uint16x8x2_t d2 = VtrnqU64(c0.val[1], c2.val[1]);
const uint16x8x2_t d3 = VtrnqU64(c1.val[1], c3.val[1]);
a[0] = d0.val[0];
a[1] = d1.val[0];
a[2] = d2.val[0];
a[3] = d3.val[0];
a[4] = d0.val[1];
a[5] = d1.val[1];
a[6] = d2.val[1];
a[7] = d3.val[1];
}
// Input:
// a[0]: 00 01 02 03 04 05 06 07 80 81 82 83 84 85 86 87
// a[1]: 10 11 12 13 14 15 16 17 90 91 92 93 94 95 96 97
// a[2]: 20 21 22 23 24 25 26 27 a0 a1 a2 a3 a4 a5 a6 a7
// a[3]: 30 31 32 33 34 35 36 37 b0 b1 b2 b3 b4 b5 b6 b7
// a[4]: 40 41 42 43 44 45 46 47 c0 c1 c2 c3 c4 c5 c6 c7
// a[5]: 50 51 52 53 54 55 56 57 d0 d1 d2 d3 d4 d5 d6 d7
// a[6]: 60 61 62 63 64 65 66 67 e0 e1 e2 e3 e4 e5 e6 e7
// a[7]: 70 71 72 73 74 75 76 77 f0 f1 f2 f3 f4 f5 f6 f7
// Output:
// a[0]: 00 10 20 30 40 50 60 70 80 90 a0 b0 c0 d0 e0 f0
// a[1]: 01 11 21 31 41 51 61 71 81 91 a1 b1 c1 d1 e1 f1
// a[2]: 02 12 22 32 42 52 62 72 82 92 a2 b2 c2 d2 e2 f2
// a[3]: 03 13 23 33 43 53 63 73 83 93 a3 b3 c3 d3 e3 f3
// a[4]: 04 14 24 34 44 54 64 74 84 94 a4 b4 c4 d4 e4 f4
// a[5]: 05 15 25 35 45 55 65 75 85 95 a5 b5 c5 d5 e5 f5
// a[6]: 06 16 26 36 46 56 66 76 86 96 a6 b6 c6 d6 e6 f6
// a[7]: 07 17 27 37 47 57 67 77 87 97 a7 b7 c7 d7 e7 f7
inline void Transpose8x16(uint8x16_t a[8]) {
// b0.val[0]: 00 10 02 12 04 14 06 16 80 90 82 92 84 94 86 96
// b0.val[1]: 01 11 03 13 05 15 07 17 81 91 83 93 85 95 87 97
// b1.val[0]: 20 30 22 32 24 34 26 36 a0 b0 a2 b2 a4 b4 a6 b6
// b1.val[1]: 21 31 23 33 25 35 27 37 a1 b1 a3 b3 a5 b5 a7 b7
// b2.val[0]: 40 50 42 52 44 54 46 56 c0 d0 c2 d2 c4 d4 c6 d6
// b2.val[1]: 41 51 43 53 45 55 47 57 c1 d1 c3 d3 c5 d5 c7 d7
// b3.val[0]: 60 70 62 72 64 74 66 76 e0 f0 e2 f2 e4 f4 e6 f6
// b3.val[1]: 61 71 63 73 65 75 67 77 e1 f1 e3 f3 e5 f5 e7 f7
const uint8x16x2_t b0 = vtrnq_u8(a[0], a[1]);
const uint8x16x2_t b1 = vtrnq_u8(a[2], a[3]);
const uint8x16x2_t b2 = vtrnq_u8(a[4], a[5]);
const uint8x16x2_t b3 = vtrnq_u8(a[6], a[7]);
// c0.val[0]: 00 10 20 30 04 14 24 34 80 90 a0 b0 84 94 a4 b4
// c0.val[1]: 02 12 22 32 06 16 26 36 82 92 a2 b2 86 96 a6 b6
// c1.val[0]: 01 11 21 31 05 15 25 35 81 91 a1 b1 85 95 a5 b5
// c1.val[1]: 03 13 23 33 07 17 27 37 83 93 a3 b3 87 97 a7 b7
// c2.val[0]: 40 50 60 70 44 54 64 74 c0 d0 e0 f0 c4 d4 e4 f4
// c2.val[1]: 42 52 62 72 46 56 66 76 c2 d2 e2 f2 c6 d6 e6 f6
// c3.val[0]: 41 51 61 71 45 55 65 75 c1 d1 e1 f1 c5 d5 e5 f5
// c3.val[1]: 43 53 63 73 47 57 67 77 c3 d3 e3 f3 c7 d7 e7 f7
const uint16x8x2_t c0 = vtrnq_u16(vreinterpretq_u16_u8(b0.val[0]),
vreinterpretq_u16_u8(b1.val[0]));
const uint16x8x2_t c1 = vtrnq_u16(vreinterpretq_u16_u8(b0.val[1]),
vreinterpretq_u16_u8(b1.val[1]));
const uint16x8x2_t c2 = vtrnq_u16(vreinterpretq_u16_u8(b2.val[0]),
vreinterpretq_u16_u8(b3.val[0]));
const uint16x8x2_t c3 = vtrnq_u16(vreinterpretq_u16_u8(b2.val[1]),
vreinterpretq_u16_u8(b3.val[1]));
// d0.val[0]: 00 10 20 30 40 50 60 70 80 90 a0 b0 c0 d0 e0 f0
// d0.val[1]: 04 14 24 34 44 54 64 74 84 94 a4 b4 c4 d4 e4 f4
// d1.val[0]: 01 11 21 31 41 51 61 71 81 91 a1 b1 c1 d1 e1 f1
// d1.val[1]: 05 15 25 35 45 55 65 75 85 95 a5 b5 c5 d5 e5 f5
// d2.val[0]: 02 12 22 32 42 52 62 72 82 92 a2 b2 c2 d2 e2 f2
// d2.val[1]: 06 16 26 36 46 56 66 76 86 96 a6 b6 c6 d6 e6 f6
// d3.val[0]: 03 13 23 33 43 53 63 73 83 93 a3 b3 c3 d3 e3 f3
// d3.val[1]: 07 17 27 37 47 57 67 77 87 97 a7 b7 c7 d7 e7 f7
const uint32x4x2_t d0 = vtrnq_u32(vreinterpretq_u32_u16(c0.val[0]),
vreinterpretq_u32_u16(c2.val[0]));
const uint32x4x2_t d1 = vtrnq_u32(vreinterpretq_u32_u16(c1.val[0]),
vreinterpretq_u32_u16(c3.val[0]));
const uint32x4x2_t d2 = vtrnq_u32(vreinterpretq_u32_u16(c0.val[1]),
vreinterpretq_u32_u16(c2.val[1]));
const uint32x4x2_t d3 = vtrnq_u32(vreinterpretq_u32_u16(c1.val[1]),
vreinterpretq_u32_u16(c3.val[1]));
a[0] = vreinterpretq_u8_u32(d0.val[0]);
a[1] = vreinterpretq_u8_u32(d1.val[0]);
a[2] = vreinterpretq_u8_u32(d2.val[0]);
a[3] = vreinterpretq_u8_u32(d3.val[0]);
a[4] = vreinterpretq_u8_u32(d0.val[1]);
a[5] = vreinterpretq_u8_u32(d1.val[1]);
a[6] = vreinterpretq_u8_u32(d2.val[1]);
a[7] = vreinterpretq_u8_u32(d3.val[1]);
}
inline int16x8_t ZeroExtend(const uint8x8_t in) {
return vreinterpretq_s16_u16(vmovl_u8(in));
}
} // namespace dsp
} // namespace libgav1
#endif // LIBGAV1_ENABLE_NEON
#endif // LIBGAV1_SRC_DSP_ARM_COMMON_NEON_H_
|