1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
|
// Copyright 2019 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/dsp/distance_weighted_blend.h"
#include "src/utils/cpu.h"
#if LIBGAV1_ENABLE_NEON
#include <arm_neon.h>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include "src/dsp/arm/common_neon.h"
#include "src/dsp/constants.h"
#include "src/dsp/dsp.h"
#include "src/utils/common.h"
namespace libgav1 {
namespace dsp {
constexpr int kInterPostRoundBit = 4;
namespace low_bitdepth {
namespace {
inline int16x8_t ComputeWeightedAverage8(const int16x8_t pred0,
const int16x8_t pred1,
const int16x4_t weights[2]) {
// TODO(https://issuetracker.google.com/issues/150325685): Investigate range.
const int32x4_t wpred0_lo = vmull_s16(weights[0], vget_low_s16(pred0));
const int32x4_t wpred0_hi = vmull_s16(weights[0], vget_high_s16(pred0));
const int32x4_t blended_lo =
vmlal_s16(wpred0_lo, weights[1], vget_low_s16(pred1));
const int32x4_t blended_hi =
vmlal_s16(wpred0_hi, weights[1], vget_high_s16(pred1));
return vcombine_s16(vqrshrn_n_s32(blended_lo, kInterPostRoundBit + 4),
vqrshrn_n_s32(blended_hi, kInterPostRoundBit + 4));
}
template <int width, int height>
inline void DistanceWeightedBlendSmall_NEON(
const int16_t* LIBGAV1_RESTRICT prediction_0,
const int16_t* LIBGAV1_RESTRICT prediction_1, const int16x4_t weights[2],
void* LIBGAV1_RESTRICT const dest, const ptrdiff_t dest_stride) {
auto* dst = static_cast<uint8_t*>(dest);
constexpr int step = 16 / width;
for (int y = 0; y < height; y += step) {
const int16x8_t src_00 = vld1q_s16(prediction_0);
const int16x8_t src_10 = vld1q_s16(prediction_1);
prediction_0 += 8;
prediction_1 += 8;
const int16x8_t res0 = ComputeWeightedAverage8(src_00, src_10, weights);
const int16x8_t src_01 = vld1q_s16(prediction_0);
const int16x8_t src_11 = vld1q_s16(prediction_1);
prediction_0 += 8;
prediction_1 += 8;
const int16x8_t res1 = ComputeWeightedAverage8(src_01, src_11, weights);
const uint8x8_t result0 = vqmovun_s16(res0);
const uint8x8_t result1 = vqmovun_s16(res1);
if (width == 4) {
StoreLo4(dst, result0);
dst += dest_stride;
StoreHi4(dst, result0);
dst += dest_stride;
StoreLo4(dst, result1);
dst += dest_stride;
StoreHi4(dst, result1);
dst += dest_stride;
} else {
assert(width == 8);
vst1_u8(dst, result0);
dst += dest_stride;
vst1_u8(dst, result1);
dst += dest_stride;
}
}
}
inline void DistanceWeightedBlendLarge_NEON(
const int16_t* LIBGAV1_RESTRICT prediction_0,
const int16_t* LIBGAV1_RESTRICT prediction_1, const int16x4_t weights[2],
const int width, const int height, void* LIBGAV1_RESTRICT const dest,
const ptrdiff_t dest_stride) {
auto* dst = static_cast<uint8_t*>(dest);
int y = height;
do {
int x = 0;
do {
const int16x8_t src0_lo = vld1q_s16(prediction_0 + x);
const int16x8_t src1_lo = vld1q_s16(prediction_1 + x);
const int16x8_t res_lo =
ComputeWeightedAverage8(src0_lo, src1_lo, weights);
const int16x8_t src0_hi = vld1q_s16(prediction_0 + x + 8);
const int16x8_t src1_hi = vld1q_s16(prediction_1 + x + 8);
const int16x8_t res_hi =
ComputeWeightedAverage8(src0_hi, src1_hi, weights);
const uint8x16_t result =
vcombine_u8(vqmovun_s16(res_lo), vqmovun_s16(res_hi));
vst1q_u8(dst + x, result);
x += 16;
} while (x < width);
dst += dest_stride;
prediction_0 += width;
prediction_1 += width;
} while (--y != 0);
}
inline void DistanceWeightedBlend_NEON(
const void* LIBGAV1_RESTRICT prediction_0,
const void* LIBGAV1_RESTRICT prediction_1, const uint8_t weight_0,
const uint8_t weight_1, const int width, const int height,
void* LIBGAV1_RESTRICT const dest, const ptrdiff_t dest_stride) {
const auto* pred_0 = static_cast<const int16_t*>(prediction_0);
const auto* pred_1 = static_cast<const int16_t*>(prediction_1);
int16x4_t weights[2] = {vdup_n_s16(weight_0), vdup_n_s16(weight_1)};
// TODO(johannkoenig): Investigate the branching. May be fine to call with a
// variable height.
if (width == 4) {
if (height == 4) {
DistanceWeightedBlendSmall_NEON<4, 4>(pred_0, pred_1, weights, dest,
dest_stride);
} else if (height == 8) {
DistanceWeightedBlendSmall_NEON<4, 8>(pred_0, pred_1, weights, dest,
dest_stride);
} else {
assert(height == 16);
DistanceWeightedBlendSmall_NEON<4, 16>(pred_0, pred_1, weights, dest,
dest_stride);
}
return;
}
if (width == 8) {
switch (height) {
case 4:
DistanceWeightedBlendSmall_NEON<8, 4>(pred_0, pred_1, weights, dest,
dest_stride);
return;
case 8:
DistanceWeightedBlendSmall_NEON<8, 8>(pred_0, pred_1, weights, dest,
dest_stride);
return;
case 16:
DistanceWeightedBlendSmall_NEON<8, 16>(pred_0, pred_1, weights, dest,
dest_stride);
return;
default:
assert(height == 32);
DistanceWeightedBlendSmall_NEON<8, 32>(pred_0, pred_1, weights, dest,
dest_stride);
return;
}
}
DistanceWeightedBlendLarge_NEON(pred_0, pred_1, weights, width, height, dest,
dest_stride);
}
void Init8bpp() {
Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8);
assert(dsp != nullptr);
dsp->distance_weighted_blend = DistanceWeightedBlend_NEON;
}
} // namespace
} // namespace low_bitdepth
//------------------------------------------------------------------------------
#if LIBGAV1_MAX_BITDEPTH >= 10
namespace high_bitdepth {
namespace {
inline uint16x4x2_t ComputeWeightedAverage8(const uint16x4x2_t pred0,
const uint16x4x2_t pred1,
const uint16x4_t weights[2]) {
const uint32x4_t wpred0_lo = vmull_u16(weights[0], pred0.val[0]);
const uint32x4_t wpred0_hi = vmull_u16(weights[0], pred0.val[1]);
const uint32x4_t blended_lo = vmlal_u16(wpred0_lo, weights[1], pred1.val[0]);
const uint32x4_t blended_hi = vmlal_u16(wpred0_hi, weights[1], pred1.val[1]);
const int32x4_t offset = vdupq_n_s32(kCompoundOffset * 16);
const int32x4_t res_lo = vsubq_s32(vreinterpretq_s32_u32(blended_lo), offset);
const int32x4_t res_hi = vsubq_s32(vreinterpretq_s32_u32(blended_hi), offset);
const uint16x4_t bd_max = vdup_n_u16((1 << kBitdepth10) - 1);
// Clip the result at (1 << bd) - 1.
uint16x4x2_t result;
result.val[0] =
vmin_u16(vqrshrun_n_s32(res_lo, kInterPostRoundBit + 4), bd_max);
result.val[1] =
vmin_u16(vqrshrun_n_s32(res_hi, kInterPostRoundBit + 4), bd_max);
return result;
}
inline uint16x4x4_t ComputeWeightedAverage8(const uint16x4x4_t pred0,
const uint16x4x4_t pred1,
const uint16x4_t weights[2]) {
const int32x4_t offset = vdupq_n_s32(kCompoundOffset * 16);
const uint32x4_t wpred0 = vmull_u16(weights[0], pred0.val[0]);
const uint32x4_t wpred1 = vmull_u16(weights[0], pred0.val[1]);
const uint32x4_t blended0 = vmlal_u16(wpred0, weights[1], pred1.val[0]);
const uint32x4_t blended1 = vmlal_u16(wpred1, weights[1], pred1.val[1]);
const int32x4_t res0 = vsubq_s32(vreinterpretq_s32_u32(blended0), offset);
const int32x4_t res1 = vsubq_s32(vreinterpretq_s32_u32(blended1), offset);
const uint32x4_t wpred2 = vmull_u16(weights[0], pred0.val[2]);
const uint32x4_t wpred3 = vmull_u16(weights[0], pred0.val[3]);
const uint32x4_t blended2 = vmlal_u16(wpred2, weights[1], pred1.val[2]);
const uint32x4_t blended3 = vmlal_u16(wpred3, weights[1], pred1.val[3]);
const int32x4_t res2 = vsubq_s32(vreinterpretq_s32_u32(blended2), offset);
const int32x4_t res3 = vsubq_s32(vreinterpretq_s32_u32(blended3), offset);
const uint16x4_t bd_max = vdup_n_u16((1 << kBitdepth10) - 1);
// Clip the result at (1 << bd) - 1.
uint16x4x4_t result;
result.val[0] =
vmin_u16(vqrshrun_n_s32(res0, kInterPostRoundBit + 4), bd_max);
result.val[1] =
vmin_u16(vqrshrun_n_s32(res1, kInterPostRoundBit + 4), bd_max);
result.val[2] =
vmin_u16(vqrshrun_n_s32(res2, kInterPostRoundBit + 4), bd_max);
result.val[3] =
vmin_u16(vqrshrun_n_s32(res3, kInterPostRoundBit + 4), bd_max);
return result;
}
// We could use vld1_u16_x2, but for compatibility reasons, use this function
// instead. The compiler optimizes to the correct instruction.
inline uint16x4x2_t LoadU16x4_x2(uint16_t const* ptr) {
uint16x4x2_t x;
// gcc/clang (64 bit) optimizes the following to ldp.
x.val[0] = vld1_u16(ptr);
x.val[1] = vld1_u16(ptr + 4);
return x;
}
// We could use vld1_u16_x4, but for compatibility reasons, use this function
// instead. The compiler optimizes to a pair of vld1_u16_x2, which showed better
// performance in the speed tests.
inline uint16x4x4_t LoadU16x4_x4(uint16_t const* ptr) {
uint16x4x4_t x;
x.val[0] = vld1_u16(ptr);
x.val[1] = vld1_u16(ptr + 4);
x.val[2] = vld1_u16(ptr + 8);
x.val[3] = vld1_u16(ptr + 12);
return x;
}
void DistanceWeightedBlend_NEON(const void* LIBGAV1_RESTRICT prediction_0,
const void* LIBGAV1_RESTRICT prediction_1,
const uint8_t weight_0, const uint8_t weight_1,
const int width, const int height,
void* LIBGAV1_RESTRICT const dest,
const ptrdiff_t dest_stride) {
const auto* pred_0 = static_cast<const uint16_t*>(prediction_0);
const auto* pred_1 = static_cast<const uint16_t*>(prediction_1);
auto* dst = static_cast<uint16_t*>(dest);
const ptrdiff_t dst_stride = dest_stride / sizeof(dst[0]);
const uint16x4_t weights[2] = {vdup_n_u16(weight_0), vdup_n_u16(weight_1)};
if (width == 4) {
int y = height;
do {
const uint16x4x2_t src0 = LoadU16x4_x2(pred_0);
const uint16x4x2_t src1 = LoadU16x4_x2(pred_1);
const uint16x4x2_t res = ComputeWeightedAverage8(src0, src1, weights);
vst1_u16(dst, res.val[0]);
vst1_u16(dst + dst_stride, res.val[1]);
dst += dst_stride << 1;
pred_0 += 8;
pred_1 += 8;
y -= 2;
} while (y != 0);
} else if (width == 8) {
int y = height;
do {
const uint16x4x4_t src0 = LoadU16x4_x4(pred_0);
const uint16x4x4_t src1 = LoadU16x4_x4(pred_1);
const uint16x4x4_t res = ComputeWeightedAverage8(src0, src1, weights);
vst1_u16(dst, res.val[0]);
vst1_u16(dst + 4, res.val[1]);
vst1_u16(dst + dst_stride, res.val[2]);
vst1_u16(dst + dst_stride + 4, res.val[3]);
dst += dst_stride << 1;
pred_0 += 16;
pred_1 += 16;
y -= 2;
} while (y != 0);
} else {
int y = height;
do {
int x = 0;
do {
const uint16x4x4_t src0 = LoadU16x4_x4(pred_0 + x);
const uint16x4x4_t src1 = LoadU16x4_x4(pred_1 + x);
const uint16x4x4_t res = ComputeWeightedAverage8(src0, src1, weights);
vst1_u16(dst + x, res.val[0]);
vst1_u16(dst + x + 4, res.val[1]);
vst1_u16(dst + x + 8, res.val[2]);
vst1_u16(dst + x + 12, res.val[3]);
x += 16;
} while (x < width);
dst += dst_stride;
pred_0 += width;
pred_1 += width;
} while (--y != 0);
}
}
void Init10bpp() {
Dsp* dsp = dsp_internal::GetWritableDspTable(kBitdepth10);
assert(dsp != nullptr);
dsp->distance_weighted_blend = DistanceWeightedBlend_NEON;
}
} // namespace
} // namespace high_bitdepth
#endif // LIBGAV1_MAX_BITDEPTH >= 10
void DistanceWeightedBlendInit_NEON() {
low_bitdepth::Init8bpp();
#if LIBGAV1_MAX_BITDEPTH >= 10
high_bitdepth::Init10bpp();
#endif
}
} // namespace dsp
} // namespace libgav1
#else // !LIBGAV1_ENABLE_NEON
namespace libgav1 {
namespace dsp {
void DistanceWeightedBlendInit_NEON() {}
} // namespace dsp
} // namespace libgav1
#endif // LIBGAV1_ENABLE_NEON
|