1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
|
// Copyright 2019 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/dsp/intra_edge.h"
#include "src/utils/cpu.h"
#if LIBGAV1_ENABLE_NEON
#include <arm_neon.h>
#include <algorithm>
#include <cassert>
#include "src/dsp/arm/common_neon.h"
#include "src/dsp/constants.h"
#include "src/dsp/dsp.h"
#include "src/utils/common.h"
namespace libgav1 {
namespace dsp {
namespace {
// Simplified version of intra_edge.cc:kKernels[][]. Only |strength| 1 and 2 are
// required.
constexpr int kKernelsNEON[3][2] = {{4, 8}, {5, 6}};
} // namespace
namespace low_bitdepth {
namespace {
void IntraEdgeFilter_NEON(void* buffer, const int size, const int strength) {
assert(strength == 1 || strength == 2 || strength == 3);
const int kernel_index = strength - 1;
auto* const dst_buffer = static_cast<uint8_t*>(buffer);
// The first element is not written out (but it is input) so the number of
// elements written is |size| - 1.
if (size == 1) return;
const uint8x16_t v_index = vcombine_u8(vcreate_u8(0x0706050403020100),
vcreate_u8(0x0f0e0d0c0b0a0908));
// |strength| 1 and 2 use a 3 tap filter.
if (strength < 3) {
// The last value requires extending the buffer (duplicating
// |dst_buffer[size - 1]). Calculate it here to avoid extra processing in
// neon.
const uint8_t last_val = RightShiftWithRounding(
kKernelsNEON[kernel_index][0] * dst_buffer[size - 2] +
kKernelsNEON[kernel_index][1] * dst_buffer[size - 1] +
kKernelsNEON[kernel_index][0] * dst_buffer[size - 1],
4);
const uint8x8_t krn1 = vdup_n_u8(kKernelsNEON[kernel_index][1]);
// The first value we need gets overwritten by the output from the
// previous iteration.
uint8x16_t src_0 = vld1q_u8(dst_buffer);
int i = 1;
// Process blocks until there are less than 16 values remaining.
for (; i < size - 15; i += 16) {
// Loading these at the end of the block with |src_0| will read past the
// end of |top_row_data[160]|, the source of |buffer|.
const uint8x16_t src_1 = vld1q_u8(dst_buffer + i);
const uint8x16_t src_2 = vld1q_u8(dst_buffer + i + 1);
uint16x8_t sum_lo = vaddl_u8(vget_low_u8(src_0), vget_low_u8(src_2));
sum_lo = vmulq_n_u16(sum_lo, kKernelsNEON[kernel_index][0]);
sum_lo = vmlal_u8(sum_lo, vget_low_u8(src_1), krn1);
uint16x8_t sum_hi = vaddl_u8(vget_high_u8(src_0), vget_high_u8(src_2));
sum_hi = vmulq_n_u16(sum_hi, kKernelsNEON[kernel_index][0]);
sum_hi = vmlal_u8(sum_hi, vget_high_u8(src_1), krn1);
const uint8x16_t result =
vcombine_u8(vrshrn_n_u16(sum_lo, 4), vrshrn_n_u16(sum_hi, 4));
// Load the next row before overwriting. This loads an extra 15 values
// past |size| on the trailing iteration.
src_0 = vld1q_u8(dst_buffer + i + 15);
vst1q_u8(dst_buffer + i, result);
}
// The last output value |last_val| was already calculated so if
// |remainder| == 1 then we don't have to do anything.
const int remainder = (size - 1) & 0xf;
if (remainder > 1) {
const uint8x16_t src_1 = vld1q_u8(dst_buffer + i);
const uint8x16_t src_2 = vld1q_u8(dst_buffer + i + 1);
uint16x8_t sum_lo = vaddl_u8(vget_low_u8(src_0), vget_low_u8(src_2));
sum_lo = vmulq_n_u16(sum_lo, kKernelsNEON[kernel_index][0]);
sum_lo = vmlal_u8(sum_lo, vget_low_u8(src_1), krn1);
uint16x8_t sum_hi = vaddl_u8(vget_high_u8(src_0), vget_high_u8(src_2));
sum_hi = vmulq_n_u16(sum_hi, kKernelsNEON[kernel_index][0]);
sum_hi = vmlal_u8(sum_hi, vget_high_u8(src_1), krn1);
const uint8x16_t result =
vcombine_u8(vrshrn_n_u16(sum_lo, 4), vrshrn_n_u16(sum_hi, 4));
const uint8x16_t v_remainder = vdupq_n_u8(remainder);
// Create over write mask.
const uint8x16_t mask = vcleq_u8(v_remainder, v_index);
const uint8x16_t dst_remainder = vbslq_u8(mask, src_1, result);
vst1q_u8(dst_buffer + i, dst_remainder);
}
dst_buffer[size - 1] = last_val;
return;
}
assert(strength == 3);
// 5 tap filter. The first element requires duplicating |buffer[0]| and the
// last two elements require duplicating |buffer[size - 1]|.
uint8_t special_vals[3];
special_vals[0] = RightShiftWithRounding(
(dst_buffer[0] << 1) + (dst_buffer[0] << 2) + (dst_buffer[1] << 2) +
(dst_buffer[2] << 2) + (dst_buffer[3] << 1),
4);
// Clamp index for very small |size| values.
const int first_index_min = std::max(size - 4, 0);
const int second_index_min = std::max(size - 3, 0);
const int third_index_min = std::max(size - 2, 0);
special_vals[1] = RightShiftWithRounding(
(dst_buffer[first_index_min] << 1) + (dst_buffer[second_index_min] << 2) +
(dst_buffer[third_index_min] << 2) + (dst_buffer[size - 1] << 2) +
(dst_buffer[size - 1] << 1),
4);
special_vals[2] = RightShiftWithRounding(
(dst_buffer[second_index_min] << 1) + (dst_buffer[third_index_min] << 2) +
// x << 2 + x << 2 == x << 3
(dst_buffer[size - 1] << 3) + (dst_buffer[size - 1] << 1),
4);
// The first two values we need get overwritten by the output from the
// previous iteration.
uint8x16_t src_0 = vld1q_u8(dst_buffer - 1);
uint8x16_t src_1 = vld1q_u8(dst_buffer);
int i = 1;
for (; i < size - 15; i += 16) {
// Loading these at the end of the block with |src_[01]| will read past
// the end of |top_row_data[160]|, the source of |buffer|.
const uint8x16_t src_2 = vld1q_u8(dst_buffer + i);
const uint8x16_t src_3 = vld1q_u8(dst_buffer + i + 1);
const uint8x16_t src_4 = vld1q_u8(dst_buffer + i + 2);
uint16x8_t sum_lo =
vshlq_n_u16(vaddl_u8(vget_low_u8(src_0), vget_low_u8(src_4)), 1);
const uint16x8_t sum_123_lo = vaddw_u8(
vaddl_u8(vget_low_u8(src_1), vget_low_u8(src_2)), vget_low_u8(src_3));
sum_lo = vaddq_u16(sum_lo, vshlq_n_u16(sum_123_lo, 2));
uint16x8_t sum_hi =
vshlq_n_u16(vaddl_u8(vget_high_u8(src_0), vget_high_u8(src_4)), 1);
const uint16x8_t sum_123_hi =
vaddw_u8(vaddl_u8(vget_high_u8(src_1), vget_high_u8(src_2)),
vget_high_u8(src_3));
sum_hi = vaddq_u16(sum_hi, vshlq_n_u16(sum_123_hi, 2));
const uint8x16_t result =
vcombine_u8(vrshrn_n_u16(sum_lo, 4), vrshrn_n_u16(sum_hi, 4));
src_0 = vld1q_u8(dst_buffer + i + 14);
src_1 = vld1q_u8(dst_buffer + i + 15);
vst1q_u8(dst_buffer + i, result);
}
const int remainder = (size - 1) & 0xf;
// Like the 3 tap but if there are two remaining values we have already
// calculated them.
if (remainder > 2) {
const uint8x16_t src_2 = vld1q_u8(dst_buffer + i);
const uint8x16_t src_3 = vld1q_u8(dst_buffer + i + 1);
const uint8x16_t src_4 = vld1q_u8(dst_buffer + i + 2);
uint16x8_t sum_lo =
vshlq_n_u16(vaddl_u8(vget_low_u8(src_0), vget_low_u8(src_4)), 1);
const uint16x8_t sum_123_lo = vaddw_u8(
vaddl_u8(vget_low_u8(src_1), vget_low_u8(src_2)), vget_low_u8(src_3));
sum_lo = vaddq_u16(sum_lo, vshlq_n_u16(sum_123_lo, 2));
uint16x8_t sum_hi =
vshlq_n_u16(vaddl_u8(vget_high_u8(src_0), vget_high_u8(src_4)), 1);
const uint16x8_t sum_123_hi =
vaddw_u8(vaddl_u8(vget_high_u8(src_1), vget_high_u8(src_2)),
vget_high_u8(src_3));
sum_hi = vaddq_u16(sum_hi, vshlq_n_u16(sum_123_hi, 2));
const uint8x16_t result =
vcombine_u8(vrshrn_n_u16(sum_lo, 4), vrshrn_n_u16(sum_hi, 4));
const uint8x16_t v_remainder = vdupq_n_u8(remainder);
// Create over write mask.
const uint8x16_t mask = vcleq_u8(v_remainder, v_index);
const uint8x16_t dst_remainder = vbslq_u8(mask, src_2, result);
vst1q_u8(dst_buffer + i, dst_remainder);
}
dst_buffer[1] = special_vals[0];
// Avoid overwriting |dst_buffer[0]|.
if (size > 2) dst_buffer[size - 2] = special_vals[1];
dst_buffer[size - 1] = special_vals[2];
}
// (-|src0| + |src1| * 9 + |src2| * 9 - |src3|) >> 4
uint8x8_t Upsample(const uint8x8_t src0, const uint8x8_t src1,
const uint8x8_t src2, const uint8x8_t src3) {
const uint16x8_t middle = vmulq_n_u16(vaddl_u8(src1, src2), 9);
const uint16x8_t ends = vaddl_u8(src0, src3);
const int16x8_t sum =
vsubq_s16(vreinterpretq_s16_u16(middle), vreinterpretq_s16_u16(ends));
return vqrshrun_n_s16(sum, 4);
}
void IntraEdgeUpsampler_NEON(void* buffer, const int size) {
assert(size % 4 == 0 && size <= 16);
auto* const pixel_buffer = static_cast<uint8_t*>(buffer);
// This is OK because we don't read this value for |size| 4 or 8 but if we
// write |pixel_buffer[size]| and then vld() it, that seems to introduce
// some latency.
pixel_buffer[-2] = pixel_buffer[-1];
if (size == 4) {
// This uses one load and two vtbl() which is better than 4x Load{Lo,Hi}4().
const uint8x8_t src = vld1_u8(pixel_buffer - 1);
// The outside values are negated so put those in the same vector.
const uint8x8_t src03 = vtbl1_u8(src, vcreate_u8(0x0404030202010000));
// Reverse |src1| and |src2| so we can use |src2| for the interleave at the
// end.
const uint8x8_t src21 = vtbl1_u8(src, vcreate_u8(0x0302010004030201));
const uint16x8_t middle = vmull_u8(src21, vdup_n_u8(9));
const int16x8_t half_sum = vsubq_s16(
vreinterpretq_s16_u16(middle), vreinterpretq_s16_u16(vmovl_u8(src03)));
const int16x4_t sum =
vadd_s16(vget_low_s16(half_sum), vget_high_s16(half_sum));
const uint8x8_t result = vqrshrun_n_s16(vcombine_s16(sum, sum), 4);
vst1_u8(pixel_buffer - 1, InterleaveLow8(result, src21));
return;
}
if (size == 8) {
// Likewise, one load + multiple vtbls seems preferred to multiple loads.
const uint8x16_t src = vld1q_u8(pixel_buffer - 1);
const uint8x8_t src0 = VQTbl1U8(src, vcreate_u8(0x0605040302010000));
const uint8x8_t src1 = vget_low_u8(src);
const uint8x8_t src2 = VQTbl1U8(src, vcreate_u8(0x0807060504030201));
const uint8x8_t src3 = VQTbl1U8(src, vcreate_u8(0x0808070605040302));
const uint8x8x2_t output = {Upsample(src0, src1, src2, src3), src2};
vst2_u8(pixel_buffer - 1, output);
return;
}
assert(size == 12 || size == 16);
// Extend the input borders to avoid branching later.
pixel_buffer[size] = pixel_buffer[size - 1];
const uint8x16_t src0 = vld1q_u8(pixel_buffer - 2);
const uint8x16_t src1 = vld1q_u8(pixel_buffer - 1);
const uint8x16_t src2 = vld1q_u8(pixel_buffer);
const uint8x16_t src3 = vld1q_u8(pixel_buffer + 1);
const uint8x8_t result_lo = Upsample(vget_low_u8(src0), vget_low_u8(src1),
vget_low_u8(src2), vget_low_u8(src3));
const uint8x8x2_t output_lo = {result_lo, vget_low_u8(src2)};
vst2_u8(pixel_buffer - 1, output_lo);
const uint8x8_t result_hi = Upsample(vget_high_u8(src0), vget_high_u8(src1),
vget_high_u8(src2), vget_high_u8(src3));
if (size == 12) {
vst1_u8(pixel_buffer + 15, InterleaveLow8(result_hi, vget_high_u8(src2)));
} else /* size == 16 */ {
const uint8x8x2_t output_hi = {result_hi, vget_high_u8(src2)};
vst2_u8(pixel_buffer + 15, output_hi);
}
}
void Init8bpp() {
Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8);
assert(dsp != nullptr);
dsp->intra_edge_filter = IntraEdgeFilter_NEON;
dsp->intra_edge_upsampler = IntraEdgeUpsampler_NEON;
}
} // namespace
} // namespace low_bitdepth
//------------------------------------------------------------------------------
#if LIBGAV1_MAX_BITDEPTH >= 10
namespace high_bitdepth {
namespace {
const uint16_t kRemainderMask[8][8] = {
{0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
{0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
{0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
{0xffff, 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000},
{0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000},
{0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 0x0000, 0x0000},
{0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 0x0000},
{0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000},
};
void IntraEdgeFilter_NEON(void* buffer, const int size, const int strength) {
assert(strength == 1 || strength == 2 || strength == 3);
const int kernel_index = strength - 1;
auto* const dst_buffer = static_cast<uint16_t*>(buffer);
// The first element is not written out (but it is input) so the number of
// elements written is |size| - 1.
if (size == 1) return;
// |strength| 1 and 2 use a 3 tap filter.
if (strength < 3) {
// The last value requires extending the buffer (duplicating
// |dst_buffer[size - 1]). Calculate it here to avoid extra processing in
// neon.
const uint16_t last_val = RightShiftWithRounding(
kKernelsNEON[kernel_index][0] * dst_buffer[size - 2] +
kKernelsNEON[kernel_index][1] * dst_buffer[size - 1] +
kKernelsNEON[kernel_index][0] * dst_buffer[size - 1],
4);
const uint16_t krn0 = kKernelsNEON[kernel_index][0];
const uint16_t krn1 = kKernelsNEON[kernel_index][1];
// The first value we need gets overwritten by the output from the
// previous iteration.
uint16x8_t src_0 = vld1q_u16(dst_buffer);
int i = 1;
// Process blocks until there are less than 16 values remaining.
for (; i < size - 7; i += 8) {
// Loading these at the end of the block with |src_0| will read past the
// end of |top_row_data[160]|, the source of |buffer|.
const uint16x8_t src_1 = vld1q_u16(dst_buffer + i);
const uint16x8_t src_2 = vld1q_u16(dst_buffer + i + 1);
const uint16x8_t sum_02 = vmulq_n_u16(vaddq_u16(src_0, src_2), krn0);
const uint16x8_t sum = vmlaq_n_u16(sum_02, src_1, krn1);
const uint16x8_t result = vrshrq_n_u16(sum, 4);
// Load the next row before overwriting. This loads an extra 7 values
// past |size| on the trailing iteration.
src_0 = vld1q_u16(dst_buffer + i + 7);
vst1q_u16(dst_buffer + i, result);
}
// The last output value |last_val| was already calculated so if
// |remainder| == 1 then we don't have to do anything.
const int remainder = (size - 1) & 0x7;
if (remainder > 1) {
const uint16x8_t src_1 = vld1q_u16(dst_buffer + i);
const uint16x8_t src_2 = vld1q_u16(dst_buffer + i + 1);
const uint16x8_t sum_02 = vmulq_n_u16(vaddq_u16(src_0, src_2), krn0);
const uint16x8_t sum = vmlaq_n_u16(sum_02, src_1, krn1);
const uint16x8_t result = vrshrq_n_u16(sum, 4);
const uint16x8_t mask = vld1q_u16(kRemainderMask[remainder]);
const uint16x8_t dst_remainder = vbslq_u16(mask, result, src_1);
vst1q_u16(dst_buffer + i, dst_remainder);
}
dst_buffer[size - 1] = last_val;
return;
}
assert(strength == 3);
// 5 tap filter. The first element requires duplicating |buffer[0]| and the
// last two elements require duplicating |buffer[size - 1]|.
uint16_t special_vals[3];
special_vals[0] = RightShiftWithRounding(
(dst_buffer[0] << 1) + (dst_buffer[0] << 2) + (dst_buffer[1] << 2) +
(dst_buffer[2] << 2) + (dst_buffer[3] << 1),
4);
// Clamp index for very small |size| values.
const int first_index_min = std::max(size - 4, 0);
const int second_index_min = std::max(size - 3, 0);
const int third_index_min = std::max(size - 2, 0);
special_vals[1] = RightShiftWithRounding(
(dst_buffer[first_index_min] << 1) + (dst_buffer[second_index_min] << 2) +
(dst_buffer[third_index_min] << 2) + (dst_buffer[size - 1] << 2) +
(dst_buffer[size - 1] << 1),
4);
special_vals[2] = RightShiftWithRounding(
(dst_buffer[second_index_min] << 1) + (dst_buffer[third_index_min] << 2) +
// x << 2 + x << 2 == x << 3
(dst_buffer[size - 1] << 3) + (dst_buffer[size - 1] << 1),
4);
// The first two values we need get overwritten by the output from the
// previous iteration.
uint16x8_t src_0 = vld1q_u16(dst_buffer - 1);
uint16x8_t src_1 = vld1q_u16(dst_buffer);
int i = 1;
for (; i < size - 7; i += 8) {
// Loading these at the end of the block with |src_[01]| will read past
// the end of |top_row_data[160]|, the source of |buffer|.
const uint16x8_t src_2 = vld1q_u16(dst_buffer + i);
const uint16x8_t src_3 = vld1q_u16(dst_buffer + i + 1);
const uint16x8_t src_4 = vld1q_u16(dst_buffer + i + 2);
const uint16x8_t sum_04 = vshlq_n_u16(vaddq_u16(src_0, src_4), 1);
const uint16x8_t sum_123 = vaddq_u16(vaddq_u16(src_1, src_2), src_3);
const uint16x8_t sum = vaddq_u16(sum_04, vshlq_n_u16(sum_123, 2));
const uint16x8_t result = vrshrq_n_u16(sum, 4);
// Load the next before overwriting.
src_0 = vld1q_u16(dst_buffer + i + 6);
src_1 = vld1q_u16(dst_buffer + i + 7);
vst1q_u16(dst_buffer + i, result);
}
const int remainder = (size - 1) & 0x7;
// Like the 3 tap but if there are two remaining values we have already
// calculated them.
if (remainder > 2) {
const uint16x8_t src_2 = vld1q_u16(dst_buffer + i);
const uint16x8_t src_3 = vld1q_u16(dst_buffer + i + 1);
const uint16x8_t src_4 = vld1q_u16(dst_buffer + i + 2);
const uint16x8_t sum_04 = vshlq_n_u16(vaddq_u16(src_0, src_4), 1);
const uint16x8_t sum_123 = vaddq_u16(vaddq_u16(src_1, src_2), src_3);
const uint16x8_t sum = vaddq_u16(sum_04, vshlq_n_u16(sum_123, 2));
const uint16x8_t result = vrshrq_n_u16(sum, 4);
const uint16x8_t mask = vld1q_u16(kRemainderMask[remainder]);
const uint16x8_t dst_remainder = vbslq_u16(mask, result, src_2);
vst1q_u16(dst_buffer + i, dst_remainder);
}
dst_buffer[1] = special_vals[0];
// Avoid overwriting |dst_buffer[0]|.
if (size > 2) dst_buffer[size - 2] = special_vals[1];
dst_buffer[size - 1] = special_vals[2];
}
void IntraEdgeUpsampler_NEON(void* buffer, const int size) {
assert(size % 4 == 0 && size <= 16);
auto* const pixel_buffer = static_cast<uint16_t*>(buffer);
// Extend first/last samples
pixel_buffer[-2] = pixel_buffer[-1];
pixel_buffer[size] = pixel_buffer[size - 1];
const int16x8_t src_lo = vreinterpretq_s16_u16(vld1q_u16(pixel_buffer - 2));
const int16x8_t src_hi =
vreinterpretq_s16_u16(vld1q_u16(pixel_buffer - 2 + 8));
const int16x8_t src9_hi = vaddq_s16(src_hi, vshlq_n_s16(src_hi, 3));
const int16x8_t src9_lo = vaddq_s16(src_lo, vshlq_n_s16(src_lo, 3));
int16x8_t sum_lo = vsubq_s16(vextq_s16(src9_lo, src9_hi, 1), src_lo);
sum_lo = vaddq_s16(sum_lo, vextq_s16(src9_lo, src9_hi, 2));
sum_lo = vsubq_s16(sum_lo, vextq_s16(src_lo, src_hi, 3));
sum_lo = vrshrq_n_s16(sum_lo, 4);
uint16x8x2_t result_lo;
result_lo.val[0] =
vminq_u16(vreinterpretq_u16_s16(vmaxq_s16(sum_lo, vdupq_n_s16(0))),
vdupq_n_u16((1 << kBitdepth10) - 1));
result_lo.val[1] = vreinterpretq_u16_s16(vextq_s16(src_lo, src_hi, 2));
if (size > 8) {
const int16x8_t src_hi_extra =
vreinterpretq_s16_u16(vld1q_u16(pixel_buffer + 16 - 2));
const int16x8_t src9_hi_extra =
vaddq_s16(src_hi_extra, vshlq_n_s16(src_hi_extra, 3));
int16x8_t sum_hi = vsubq_s16(vextq_s16(src9_hi, src9_hi_extra, 1), src_hi);
sum_hi = vaddq_s16(sum_hi, vextq_s16(src9_hi, src9_hi_extra, 2));
sum_hi = vsubq_s16(sum_hi, vextq_s16(src_hi, src_hi_extra, 3));
sum_hi = vrshrq_n_s16(sum_hi, 4);
uint16x8x2_t result_hi;
result_hi.val[0] =
vminq_u16(vreinterpretq_u16_s16(vmaxq_s16(sum_hi, vdupq_n_s16(0))),
vdupq_n_u16((1 << kBitdepth10) - 1));
result_hi.val[1] =
vreinterpretq_u16_s16(vextq_s16(src_hi, src_hi_extra, 2));
vst2q_u16(pixel_buffer - 1, result_lo);
vst2q_u16(pixel_buffer + 15, result_hi);
} else {
vst2q_u16(pixel_buffer - 1, result_lo);
}
}
void Init10bpp() {
Dsp* dsp = dsp_internal::GetWritableDspTable(kBitdepth10);
assert(dsp != nullptr);
dsp->intra_edge_filter = IntraEdgeFilter_NEON;
dsp->intra_edge_upsampler = IntraEdgeUpsampler_NEON;
}
} // namespace
} // namespace high_bitdepth
#endif // LIBGAV1_MAX_BITDEPTH >= 10
void IntraEdgeInit_NEON() {
low_bitdepth::Init8bpp();
#if LIBGAV1_MAX_BITDEPTH >= 10
high_bitdepth::Init10bpp();
#endif
}
} // namespace dsp
} // namespace libgav1
#else // !LIBGAV1_ENABLE_NEON
namespace libgav1 {
namespace dsp {
void IntraEdgeInit_NEON() {}
} // namespace dsp
} // namespace libgav1
#endif // LIBGAV1_ENABLE_NEON
|