1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
|
// Copyright 2019 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/dsp/mask_blend.h"
#include "src/utils/cpu.h"
#if LIBGAV1_ENABLE_NEON
#include <arm_neon.h>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include "src/dsp/arm/common_neon.h"
#include "src/dsp/constants.h"
#include "src/dsp/dsp.h"
#include "src/utils/common.h"
namespace libgav1 {
namespace dsp {
namespace low_bitdepth {
namespace {
// TODO(b/150461164): Consider combining with GetInterIntraMask4x2().
// Compound predictors use int16_t values and need to multiply long because the
// Convolve range * 64 is 20 bits. Unfortunately there is no multiply int16_t by
// int8_t and accumulate into int32_t instruction.
template <int subsampling_x, int subsampling_y>
inline int16x8_t GetMask4x2(const uint8_t* mask, ptrdiff_t mask_stride) {
if (subsampling_x == 1) {
const int16x4_t mask_val0 = vreinterpret_s16_u16(vpaddl_u8(vld1_u8(mask)));
const int16x4_t mask_val1 = vreinterpret_s16_u16(
vpaddl_u8(vld1_u8(mask + (mask_stride << subsampling_y))));
int16x8_t final_val;
if (subsampling_y == 1) {
const int16x4_t next_mask_val0 =
vreinterpret_s16_u16(vpaddl_u8(vld1_u8(mask + mask_stride)));
const int16x4_t next_mask_val1 =
vreinterpret_s16_u16(vpaddl_u8(vld1_u8(mask + mask_stride * 3)));
final_val = vaddq_s16(vcombine_s16(mask_val0, mask_val1),
vcombine_s16(next_mask_val0, next_mask_val1));
} else {
final_val = vreinterpretq_s16_u16(
vpaddlq_u8(vreinterpretq_u8_s16(vcombine_s16(mask_val0, mask_val1))));
}
return vrshrq_n_s16(final_val, subsampling_y + 1);
}
assert(subsampling_y == 0 && subsampling_x == 0);
const uint8x8_t mask_val0 = Load4(mask);
const uint8x8_t mask_val = Load4<1>(mask + mask_stride, mask_val0);
return vreinterpretq_s16_u16(vmovl_u8(mask_val));
}
template <int subsampling_x, int subsampling_y>
inline int16x8_t GetMask8(const uint8_t* mask, ptrdiff_t mask_stride) {
if (subsampling_x == 1) {
int16x8_t mask_val = vreinterpretq_s16_u16(vpaddlq_u8(vld1q_u8(mask)));
if (subsampling_y == 1) {
const int16x8_t next_mask_val =
vreinterpretq_s16_u16(vpaddlq_u8(vld1q_u8(mask + mask_stride)));
mask_val = vaddq_s16(mask_val, next_mask_val);
}
return vrshrq_n_s16(mask_val, 1 + subsampling_y);
}
assert(subsampling_y == 0 && subsampling_x == 0);
const uint8x8_t mask_val = vld1_u8(mask);
return vreinterpretq_s16_u16(vmovl_u8(mask_val));
}
inline void WriteMaskBlendLine4x2(const int16_t* LIBGAV1_RESTRICT const pred_0,
const int16_t* LIBGAV1_RESTRICT const pred_1,
const int16x8_t pred_mask_0,
const int16x8_t pred_mask_1,
uint8_t* LIBGAV1_RESTRICT dst,
const ptrdiff_t dst_stride) {
const int16x8_t pred_val_0 = vld1q_s16(pred_0);
const int16x8_t pred_val_1 = vld1q_s16(pred_1);
// int res = (mask_value * prediction_0[x] +
// (64 - mask_value) * prediction_1[x]) >> 6;
const int32x4_t weighted_pred_0_lo =
vmull_s16(vget_low_s16(pred_mask_0), vget_low_s16(pred_val_0));
const int32x4_t weighted_pred_0_hi =
vmull_s16(vget_high_s16(pred_mask_0), vget_high_s16(pred_val_0));
const int32x4_t weighted_combo_lo = vmlal_s16(
weighted_pred_0_lo, vget_low_s16(pred_mask_1), vget_low_s16(pred_val_1));
const int32x4_t weighted_combo_hi =
vmlal_s16(weighted_pred_0_hi, vget_high_s16(pred_mask_1),
vget_high_s16(pred_val_1));
// dst[x] = static_cast<Pixel>(
// Clip3(RightShiftWithRounding(res, inter_post_round_bits), 0,
// (1 << kBitdepth8) - 1));
const uint8x8_t result =
vqrshrun_n_s16(vcombine_s16(vshrn_n_s32(weighted_combo_lo, 6),
vshrn_n_s32(weighted_combo_hi, 6)),
4);
StoreLo4(dst, result);
StoreHi4(dst + dst_stride, result);
}
template <int subsampling_x, int subsampling_y>
inline void MaskBlending4x4_NEON(const int16_t* LIBGAV1_RESTRICT pred_0,
const int16_t* LIBGAV1_RESTRICT pred_1,
const uint8_t* LIBGAV1_RESTRICT mask,
const ptrdiff_t mask_stride,
uint8_t* LIBGAV1_RESTRICT dst,
const ptrdiff_t dst_stride) {
const int16x8_t mask_inverter = vdupq_n_s16(64);
int16x8_t pred_mask_0 =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
int16x8_t pred_mask_1 = vsubq_s16(mask_inverter, pred_mask_0);
WriteMaskBlendLine4x2(pred_0, pred_1, pred_mask_0, pred_mask_1, dst,
dst_stride);
// TODO(b/150461164): Arm tends to do better with load(val); val += stride
// It may be possible to turn this into a loop with a templated height.
pred_0 += 4 << 1;
pred_1 += 4 << 1;
mask += mask_stride << (1 + subsampling_y);
dst += dst_stride << 1;
pred_mask_0 = GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
pred_mask_1 = vsubq_s16(mask_inverter, pred_mask_0);
WriteMaskBlendLine4x2(pred_0, pred_1, pred_mask_0, pred_mask_1, dst,
dst_stride);
}
template <int subsampling_x, int subsampling_y>
inline void MaskBlending4xH_NEON(const int16_t* LIBGAV1_RESTRICT pred_0,
const int16_t* LIBGAV1_RESTRICT pred_1,
const uint8_t* LIBGAV1_RESTRICT const mask_ptr,
const ptrdiff_t mask_stride, const int height,
uint8_t* LIBGAV1_RESTRICT dst,
const ptrdiff_t dst_stride) {
const uint8_t* mask = mask_ptr;
if (height == 4) {
MaskBlending4x4_NEON<subsampling_x, subsampling_y>(
pred_0, pred_1, mask, mask_stride, dst, dst_stride);
return;
}
const int16x8_t mask_inverter = vdupq_n_s16(64);
int y = 0;
do {
int16x8_t pred_mask_0 =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
int16x8_t pred_mask_1 = vsubq_s16(mask_inverter, pred_mask_0);
WriteMaskBlendLine4x2(pred_0, pred_1, pred_mask_0, pred_mask_1, dst,
dst_stride);
pred_0 += 4 << 1;
pred_1 += 4 << 1;
mask += mask_stride << (1 + subsampling_y);
dst += dst_stride << 1;
pred_mask_0 = GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
pred_mask_1 = vsubq_s16(mask_inverter, pred_mask_0);
WriteMaskBlendLine4x2(pred_0, pred_1, pred_mask_0, pred_mask_1, dst,
dst_stride);
pred_0 += 4 << 1;
pred_1 += 4 << 1;
mask += mask_stride << (1 + subsampling_y);
dst += dst_stride << 1;
pred_mask_0 = GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
pred_mask_1 = vsubq_s16(mask_inverter, pred_mask_0);
WriteMaskBlendLine4x2(pred_0, pred_1, pred_mask_0, pred_mask_1, dst,
dst_stride);
pred_0 += 4 << 1;
pred_1 += 4 << 1;
mask += mask_stride << (1 + subsampling_y);
dst += dst_stride << 1;
pred_mask_0 = GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
pred_mask_1 = vsubq_s16(mask_inverter, pred_mask_0);
WriteMaskBlendLine4x2(pred_0, pred_1, pred_mask_0, pred_mask_1, dst,
dst_stride);
pred_0 += 4 << 1;
pred_1 += 4 << 1;
mask += mask_stride << (1 + subsampling_y);
dst += dst_stride << 1;
y += 8;
} while (y < height);
}
template <int subsampling_x, int subsampling_y>
inline void MaskBlend_NEON(const void* LIBGAV1_RESTRICT prediction_0,
const void* LIBGAV1_RESTRICT prediction_1,
const ptrdiff_t /*prediction_stride_1*/,
const uint8_t* LIBGAV1_RESTRICT const mask_ptr,
const ptrdiff_t mask_stride, const int width,
const int height, void* LIBGAV1_RESTRICT dest,
const ptrdiff_t dst_stride) {
auto* dst = static_cast<uint8_t*>(dest);
const auto* pred_0 = static_cast<const int16_t*>(prediction_0);
const auto* pred_1 = static_cast<const int16_t*>(prediction_1);
if (width == 4) {
MaskBlending4xH_NEON<subsampling_x, subsampling_y>(
pred_0, pred_1, mask_ptr, mask_stride, height, dst, dst_stride);
return;
}
const uint8_t* mask = mask_ptr;
const int16x8_t mask_inverter = vdupq_n_s16(64);
int y = 0;
do {
int x = 0;
do {
const int16x8_t pred_mask_0 = GetMask8<subsampling_x, subsampling_y>(
mask + (x << subsampling_x), mask_stride);
// 64 - mask
const int16x8_t pred_mask_1 = vsubq_s16(mask_inverter, pred_mask_0);
const int16x8_t pred_val_0 = vld1q_s16(pred_0 + x);
const int16x8_t pred_val_1 = vld1q_s16(pred_1 + x);
uint8x8_t result;
// int res = (mask_value * prediction_0[x] +
// (64 - mask_value) * prediction_1[x]) >> 6;
const int32x4_t weighted_pred_0_lo =
vmull_s16(vget_low_s16(pred_mask_0), vget_low_s16(pred_val_0));
const int32x4_t weighted_pred_0_hi =
vmull_s16(vget_high_s16(pred_mask_0), vget_high_s16(pred_val_0));
const int32x4_t weighted_combo_lo =
vmlal_s16(weighted_pred_0_lo, vget_low_s16(pred_mask_1),
vget_low_s16(pred_val_1));
const int32x4_t weighted_combo_hi =
vmlal_s16(weighted_pred_0_hi, vget_high_s16(pred_mask_1),
vget_high_s16(pred_val_1));
// dst[x] = static_cast<Pixel>(
// Clip3(RightShiftWithRounding(res, inter_post_round_bits), 0,
// (1 << kBitdepth8) - 1));
result = vqrshrun_n_s16(vcombine_s16(vshrn_n_s32(weighted_combo_lo, 6),
vshrn_n_s32(weighted_combo_hi, 6)),
4);
vst1_u8(dst + x, result);
x += 8;
} while (x < width);
dst += dst_stride;
pred_0 += width;
pred_1 += width;
mask += mask_stride << subsampling_y;
} while (++y < height);
}
// TODO(b/150461164): This is much faster for inter_intra (input is Pixel
// values) but regresses compound versions (input is int16_t). Try to
// consolidate these.
template <int subsampling_x, int subsampling_y>
inline uint8x8_t GetInterIntraMask4x2(const uint8_t* mask,
ptrdiff_t mask_stride) {
if (subsampling_x == 1) {
const uint8x8_t mask_val =
vpadd_u8(vld1_u8(mask), vld1_u8(mask + (mask_stride << subsampling_y)));
if (subsampling_y == 1) {
const uint8x8_t next_mask_val = vpadd_u8(vld1_u8(mask + mask_stride),
vld1_u8(mask + mask_stride * 3));
// Use a saturating add to work around the case where all |mask| values
// are 64. Together with the rounding shift this ensures the correct
// result.
const uint8x8_t sum = vqadd_u8(mask_val, next_mask_val);
return vrshr_n_u8(sum, /*subsampling_x=*/1 + subsampling_y);
}
return vrshr_n_u8(mask_val, /*subsampling_x=*/1);
}
assert(subsampling_y == 0 && subsampling_x == 0);
const uint8x8_t mask_val0 = Load4(mask);
// TODO(b/150461164): Investigate the source of |mask| and see if the stride
// can be removed.
// TODO(b/150461164): The unit tests start at 8x8. Does this get run?
return Load4<1>(mask + mask_stride, mask_val0);
}
template <int subsampling_x, int subsampling_y>
inline uint8x8_t GetInterIntraMask8(const uint8_t* mask,
ptrdiff_t mask_stride) {
if (subsampling_x == 1) {
const uint8x16_t mask_val = vld1q_u8(mask);
const uint8x8_t mask_paired =
vpadd_u8(vget_low_u8(mask_val), vget_high_u8(mask_val));
if (subsampling_y == 1) {
const uint8x16_t next_mask_val = vld1q_u8(mask + mask_stride);
const uint8x8_t next_mask_paired =
vpadd_u8(vget_low_u8(next_mask_val), vget_high_u8(next_mask_val));
// Use a saturating add to work around the case where all |mask| values
// are 64. Together with the rounding shift this ensures the correct
// result.
const uint8x8_t sum = vqadd_u8(mask_paired, next_mask_paired);
return vrshr_n_u8(sum, /*subsampling_x=*/1 + subsampling_y);
}
return vrshr_n_u8(mask_paired, /*subsampling_x=*/1);
}
assert(subsampling_y == 0 && subsampling_x == 0);
return vld1_u8(mask);
}
inline void InterIntraWriteMaskBlendLine8bpp4x2(
const uint8_t* LIBGAV1_RESTRICT const pred_0,
uint8_t* LIBGAV1_RESTRICT const pred_1, const ptrdiff_t pred_stride_1,
const uint8x8_t pred_mask_0, const uint8x8_t pred_mask_1) {
const uint8x8_t pred_val_0 = vld1_u8(pred_0);
uint8x8_t pred_val_1 = Load4(pred_1);
pred_val_1 = Load4<1>(pred_1 + pred_stride_1, pred_val_1);
const uint16x8_t weighted_pred_0 = vmull_u8(pred_mask_0, pred_val_0);
const uint16x8_t weighted_combo =
vmlal_u8(weighted_pred_0, pred_mask_1, pred_val_1);
const uint8x8_t result = vrshrn_n_u16(weighted_combo, 6);
StoreLo4(pred_1, result);
StoreHi4(pred_1 + pred_stride_1, result);
}
template <int subsampling_x, int subsampling_y>
inline void InterIntraMaskBlending8bpp4x4_NEON(
const uint8_t* LIBGAV1_RESTRICT pred_0, uint8_t* LIBGAV1_RESTRICT pred_1,
const ptrdiff_t pred_stride_1, const uint8_t* LIBGAV1_RESTRICT mask,
const ptrdiff_t mask_stride) {
const uint8x8_t mask_inverter = vdup_n_u8(64);
uint8x8_t pred_mask_1 =
GetInterIntraMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
uint8x8_t pred_mask_0 = vsub_u8(mask_inverter, pred_mask_1);
InterIntraWriteMaskBlendLine8bpp4x2(pred_0, pred_1, pred_stride_1,
pred_mask_0, pred_mask_1);
pred_0 += 4 << 1;
pred_1 += pred_stride_1 << 1;
mask += mask_stride << (1 + subsampling_y);
pred_mask_1 =
GetInterIntraMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
pred_mask_0 = vsub_u8(mask_inverter, pred_mask_1);
InterIntraWriteMaskBlendLine8bpp4x2(pred_0, pred_1, pred_stride_1,
pred_mask_0, pred_mask_1);
}
template <int subsampling_x, int subsampling_y>
inline void InterIntraMaskBlending8bpp4xH_NEON(
const uint8_t* LIBGAV1_RESTRICT pred_0, uint8_t* LIBGAV1_RESTRICT pred_1,
const ptrdiff_t pred_stride_1, const uint8_t* LIBGAV1_RESTRICT mask,
const ptrdiff_t mask_stride, const int height) {
if (height == 4) {
InterIntraMaskBlending8bpp4x4_NEON<subsampling_x, subsampling_y>(
pred_0, pred_1, pred_stride_1, mask, mask_stride);
return;
}
int y = 0;
do {
InterIntraMaskBlending8bpp4x4_NEON<subsampling_x, subsampling_y>(
pred_0, pred_1, pred_stride_1, mask, mask_stride);
pred_0 += 4 << 2;
pred_1 += pred_stride_1 << 2;
mask += mask_stride << (2 + subsampling_y);
InterIntraMaskBlending8bpp4x4_NEON<subsampling_x, subsampling_y>(
pred_0, pred_1, pred_stride_1, mask, mask_stride);
pred_0 += 4 << 2;
pred_1 += pred_stride_1 << 2;
mask += mask_stride << (2 + subsampling_y);
y += 8;
} while (y < height);
}
template <int subsampling_x, int subsampling_y>
inline void InterIntraMaskBlend8bpp_NEON(
const uint8_t* LIBGAV1_RESTRICT prediction_0,
uint8_t* LIBGAV1_RESTRICT prediction_1, const ptrdiff_t prediction_stride_1,
const uint8_t* LIBGAV1_RESTRICT const mask_ptr, const ptrdiff_t mask_stride,
const int width, const int height) {
if (width == 4) {
InterIntraMaskBlending8bpp4xH_NEON<subsampling_x, subsampling_y>(
prediction_0, prediction_1, prediction_stride_1, mask_ptr, mask_stride,
height);
return;
}
const uint8_t* mask = mask_ptr;
const uint8x8_t mask_inverter = vdup_n_u8(64);
int y = 0;
do {
int x = 0;
do {
// TODO(b/150461164): Consider a 16 wide specialization (at least for the
// unsampled version) to take advantage of vld1q_u8().
const uint8x8_t pred_mask_1 =
GetInterIntraMask8<subsampling_x, subsampling_y>(
mask + (x << subsampling_x), mask_stride);
// 64 - mask
const uint8x8_t pred_mask_0 = vsub_u8(mask_inverter, pred_mask_1);
const uint8x8_t pred_val_0 = vld1_u8(prediction_0);
prediction_0 += 8;
const uint8x8_t pred_val_1 = vld1_u8(prediction_1 + x);
const uint16x8_t weighted_pred_0 = vmull_u8(pred_mask_0, pred_val_0);
// weighted_pred0 + weighted_pred1
const uint16x8_t weighted_combo =
vmlal_u8(weighted_pred_0, pred_mask_1, pred_val_1);
const uint8x8_t result = vrshrn_n_u16(weighted_combo, 6);
vst1_u8(prediction_1 + x, result);
x += 8;
} while (x < width);
prediction_1 += prediction_stride_1;
mask += mask_stride << subsampling_y;
} while (++y < height);
}
void Init8bpp() {
Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8);
assert(dsp != nullptr);
dsp->mask_blend[0][0] = MaskBlend_NEON<0, 0>;
dsp->mask_blend[1][0] = MaskBlend_NEON<1, 0>;
dsp->mask_blend[2][0] = MaskBlend_NEON<1, 1>;
// The is_inter_intra index of mask_blend[][] is replaced by
// inter_intra_mask_blend_8bpp[] in 8-bit.
dsp->inter_intra_mask_blend_8bpp[0] = InterIntraMaskBlend8bpp_NEON<0, 0>;
dsp->inter_intra_mask_blend_8bpp[1] = InterIntraMaskBlend8bpp_NEON<1, 0>;
dsp->inter_intra_mask_blend_8bpp[2] = InterIntraMaskBlend8bpp_NEON<1, 1>;
}
} // namespace
} // namespace low_bitdepth
#if LIBGAV1_MAX_BITDEPTH >= 10
namespace high_bitdepth {
namespace {
template <int subsampling_x, int subsampling_y>
inline uint16x8_t GetMask4x2(const uint8_t* mask, ptrdiff_t mask_stride) {
if (subsampling_x == 1) {
const uint8x8_t mask_val0 = vld1_u8(mask);
const uint8x8_t mask_val1 = vld1_u8(mask + (mask_stride << subsampling_y));
uint16x8_t final_val = vpaddlq_u8(vcombine_u8(mask_val0, mask_val1));
if (subsampling_y == 1) {
const uint8x8_t next_mask_val0 = vld1_u8(mask + mask_stride);
const uint8x8_t next_mask_val1 = vld1_u8(mask + mask_stride * 3);
final_val = vaddq_u16(
final_val, vpaddlq_u8(vcombine_u8(next_mask_val0, next_mask_val1)));
}
return vrshrq_n_u16(final_val, subsampling_y + 1);
}
assert(subsampling_y == 0 && subsampling_x == 0);
const uint8x8_t mask_val0 = Load4(mask);
const uint8x8_t mask_val = Load4<1>(mask + mask_stride, mask_val0);
return vmovl_u8(mask_val);
}
template <int subsampling_x, int subsampling_y>
inline uint16x8_t GetMask8(const uint8_t* mask, ptrdiff_t mask_stride) {
if (subsampling_x == 1) {
uint16x8_t mask_val = vpaddlq_u8(vld1q_u8(mask));
if (subsampling_y == 1) {
const uint16x8_t next_mask_val = vpaddlq_u8(vld1q_u8(mask + mask_stride));
mask_val = vaddq_u16(mask_val, next_mask_val);
}
return vrshrq_n_u16(mask_val, 1 + subsampling_y);
}
assert(subsampling_y == 0 && subsampling_x == 0);
const uint8x8_t mask_val = vld1_u8(mask);
return vmovl_u8(mask_val);
}
template <bool is_inter_intra>
uint16x8_t SumWeightedPred(const uint16x8_t pred_mask_0,
const uint16x8_t pred_mask_1,
const uint16x8_t pred_val_0,
const uint16x8_t pred_val_1) {
if (is_inter_intra) {
// dst[x] = static_cast<Pixel>(RightShiftWithRounding(
// mask_value * pred_1[x] + (64 - mask_value) * pred_0[x], 6));
uint16x8_t sum = vmulq_u16(pred_mask_1, pred_val_0);
sum = vmlaq_u16(sum, pred_mask_0, pred_val_1);
return vrshrq_n_u16(sum, 6);
} else {
// int res = (mask_value * prediction_0[x] +
// (64 - mask_value) * prediction_1[x]) >> 6;
const uint32x4_t weighted_pred_0_lo =
vmull_u16(vget_low_u16(pred_mask_0), vget_low_u16(pred_val_0));
const uint32x4_t weighted_pred_0_hi = VMullHighU16(pred_mask_0, pred_val_0);
uint32x4x2_t sum;
sum.val[0] = vmlal_u16(weighted_pred_0_lo, vget_low_u16(pred_mask_1),
vget_low_u16(pred_val_1));
sum.val[1] = VMlalHighU16(weighted_pred_0_hi, pred_mask_1, pred_val_1);
return vcombine_u16(vshrn_n_u32(sum.val[0], 6), vshrn_n_u32(sum.val[1], 6));
}
}
template <bool is_inter_intra, int width, int bitdepth = 10>
inline void StoreShiftedResult(uint8_t* dst, const uint16x8_t result,
const ptrdiff_t dst_stride = 0) {
if (is_inter_intra) {
if (width == 4) {
// Store 2 lines of width 4.
assert(dst_stride != 0);
vst1_u16(reinterpret_cast<uint16_t*>(dst), vget_low_u16(result));
vst1_u16(reinterpret_cast<uint16_t*>(dst + dst_stride),
vget_high_u16(result));
} else {
// Store 1 line of width 8.
vst1q_u16(reinterpret_cast<uint16_t*>(dst), result);
}
} else {
// res -= (bitdepth == 8) ? 0 : kCompoundOffset;
// dst[x] = static_cast<Pixel>(
// Clip3(RightShiftWithRounding(res, inter_post_round_bits), 0,
// (1 << kBitdepth8) - 1));
constexpr int inter_post_round_bits = (bitdepth == 12) ? 2 : 4;
const uint16x8_t compound_result =
vminq_u16(vrshrq_n_u16(vqsubq_u16(result, vdupq_n_u16(kCompoundOffset)),
inter_post_round_bits),
vdupq_n_u16((1 << bitdepth) - 1));
if (width == 4) {
// Store 2 lines of width 4.
assert(dst_stride != 0);
vst1_u16(reinterpret_cast<uint16_t*>(dst), vget_low_u16(compound_result));
vst1_u16(reinterpret_cast<uint16_t*>(dst + dst_stride),
vget_high_u16(compound_result));
} else {
// Store 1 line of width 8.
vst1q_u16(reinterpret_cast<uint16_t*>(dst), compound_result);
}
}
}
template <int subsampling_x, int subsampling_y, bool is_inter_intra>
inline void MaskBlend4x2_NEON(const uint16_t* LIBGAV1_RESTRICT pred_0,
const uint16_t* LIBGAV1_RESTRICT pred_1,
const ptrdiff_t pred_stride_1,
const uint8_t* LIBGAV1_RESTRICT mask,
const uint16x8_t mask_inverter,
const ptrdiff_t mask_stride,
uint8_t* LIBGAV1_RESTRICT dst,
const ptrdiff_t dst_stride) {
// This works because stride == width == 4.
const uint16x8_t pred_val_0 = vld1q_u16(pred_0);
const uint16x8_t pred_val_1 =
is_inter_intra
? vcombine_u16(vld1_u16(pred_1), vld1_u16(pred_1 + pred_stride_1))
: vld1q_u16(pred_1);
const uint16x8_t pred_mask_0 =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
const uint16x8_t pred_mask_1 = vsubq_u16(mask_inverter, pred_mask_0);
const uint16x8_t weighted_pred_sum = SumWeightedPred<is_inter_intra>(
pred_mask_0, pred_mask_1, pred_val_0, pred_val_1);
StoreShiftedResult<is_inter_intra, 4>(dst, weighted_pred_sum, dst_stride);
}
template <int subsampling_x, int subsampling_y, bool is_inter_intra>
inline void MaskBlending4x4_NEON(const uint16_t* LIBGAV1_RESTRICT pred_0,
const uint16_t* LIBGAV1_RESTRICT pred_1,
const ptrdiff_t pred_stride_1,
const uint8_t* LIBGAV1_RESTRICT mask,
const ptrdiff_t mask_stride,
uint8_t* LIBGAV1_RESTRICT dst,
const ptrdiff_t dst_stride) {
// Double stride because the function works on 2 lines at a time.
const ptrdiff_t mask_stride_y = mask_stride << (subsampling_y + 1);
const ptrdiff_t dst_stride_y = dst_stride << 1;
const uint16x8_t mask_inverter = vdupq_n_u16(64);
MaskBlend4x2_NEON<subsampling_x, subsampling_y, is_inter_intra>(
pred_0, pred_1, pred_stride_1, mask, mask_inverter, mask_stride, dst,
dst_stride);
pred_0 += 4 << 1;
pred_1 += pred_stride_1 << 1;
mask += mask_stride_y;
dst += dst_stride_y;
MaskBlend4x2_NEON<subsampling_x, subsampling_y, is_inter_intra>(
pred_0, pred_1, pred_stride_1, mask, mask_inverter, mask_stride, dst,
dst_stride);
}
template <int subsampling_x, int subsampling_y, bool is_inter_intra>
inline void MaskBlending4xH_NEON(const uint16_t* LIBGAV1_RESTRICT pred_0,
const uint16_t* LIBGAV1_RESTRICT pred_1,
const ptrdiff_t pred_stride_1,
const uint8_t* LIBGAV1_RESTRICT const mask_ptr,
const ptrdiff_t mask_stride, const int height,
uint8_t* LIBGAV1_RESTRICT dst,
const ptrdiff_t dst_stride) {
const uint8_t* mask = mask_ptr;
if (height == 4) {
MaskBlending4x4_NEON<subsampling_x, subsampling_y, is_inter_intra>(
pred_0, pred_1, pred_stride_1, mask, mask_stride, dst, dst_stride);
return;
}
// Double stride because the function works on 2 lines at a time.
const ptrdiff_t mask_stride_y = mask_stride << (subsampling_y + 1);
const ptrdiff_t dst_stride_y = dst_stride << 1;
const uint16x8_t mask_inverter = vdupq_n_u16(64);
int y = 0;
do {
MaskBlend4x2_NEON<subsampling_x, subsampling_y, is_inter_intra>(
pred_0, pred_1, pred_stride_1, mask, mask_inverter, mask_stride, dst,
dst_stride);
pred_0 += 4 << 1;
pred_1 += pred_stride_1 << 1;
mask += mask_stride_y;
dst += dst_stride_y;
MaskBlend4x2_NEON<subsampling_x, subsampling_y, is_inter_intra>(
pred_0, pred_1, pred_stride_1, mask, mask_inverter, mask_stride, dst,
dst_stride);
pred_0 += 4 << 1;
pred_1 += pred_stride_1 << 1;
mask += mask_stride_y;
dst += dst_stride_y;
MaskBlend4x2_NEON<subsampling_x, subsampling_y, is_inter_intra>(
pred_0, pred_1, pred_stride_1, mask, mask_inverter, mask_stride, dst,
dst_stride);
pred_0 += 4 << 1;
pred_1 += pred_stride_1 << 1;
mask += mask_stride_y;
dst += dst_stride_y;
MaskBlend4x2_NEON<subsampling_x, subsampling_y, is_inter_intra>(
pred_0, pred_1, pred_stride_1, mask, mask_inverter, mask_stride, dst,
dst_stride);
pred_0 += 4 << 1;
pred_1 += pred_stride_1 << 1;
mask += mask_stride_y;
dst += dst_stride_y;
y += 8;
} while (y < height);
}
template <int subsampling_x, int subsampling_y, bool is_inter_intra>
void MaskBlend8_NEON(const uint16_t* LIBGAV1_RESTRICT pred_0,
const uint16_t* LIBGAV1_RESTRICT pred_1,
const uint8_t* LIBGAV1_RESTRICT mask,
const uint16x8_t mask_inverter,
const ptrdiff_t mask_stride,
uint8_t* LIBGAV1_RESTRICT dst) {
const uint16x8_t pred_val_0 = vld1q_u16(pred_0);
const uint16x8_t pred_val_1 = vld1q_u16(pred_1);
const uint16x8_t pred_mask_0 =
GetMask8<subsampling_x, subsampling_y>(mask, mask_stride);
const uint16x8_t pred_mask_1 = vsubq_u16(mask_inverter, pred_mask_0);
const uint16x8_t weighted_pred_sum = SumWeightedPred<is_inter_intra>(
pred_mask_0, pred_mask_1, pred_val_0, pred_val_1);
StoreShiftedResult<is_inter_intra, 8>(dst, weighted_pred_sum);
}
template <int subsampling_x, int subsampling_y, bool is_inter_intra>
inline void MaskBlend_NEON(const void* LIBGAV1_RESTRICT prediction_0,
const void* LIBGAV1_RESTRICT prediction_1,
const ptrdiff_t prediction_stride_1,
const uint8_t* LIBGAV1_RESTRICT const mask_ptr,
const ptrdiff_t mask_stride, const int width,
const int height, void* LIBGAV1_RESTRICT dest,
const ptrdiff_t dst_stride) {
if (!is_inter_intra) {
assert(prediction_stride_1 == width);
}
auto* dst = static_cast<uint8_t*>(dest);
const auto* pred_0 = static_cast<const uint16_t*>(prediction_0);
const auto* pred_1 = static_cast<const uint16_t*>(prediction_1);
if (width == 4) {
MaskBlending4xH_NEON<subsampling_x, subsampling_y, is_inter_intra>(
pred_0, pred_1, prediction_stride_1, mask_ptr, mask_stride, height, dst,
dst_stride);
return;
}
const ptrdiff_t mask_stride_y = mask_stride << subsampling_y;
const uint8_t* mask = mask_ptr;
const uint16x8_t mask_inverter = vdupq_n_u16(64);
int y = 0;
do {
int x = 0;
do {
MaskBlend8_NEON<subsampling_x, subsampling_y, is_inter_intra>(
pred_0 + x, pred_1 + x, mask + (x << subsampling_x), mask_inverter,
mask_stride,
reinterpret_cast<uint8_t*>(reinterpret_cast<uint16_t*>(dst) + x));
x += 8;
} while (x < width);
dst += dst_stride;
pred_0 += width;
pred_1 += prediction_stride_1;
mask += mask_stride_y;
} while (++y < height);
}
void Init10bpp() {
Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth10);
assert(dsp != nullptr);
dsp->mask_blend[0][0] = MaskBlend_NEON<0, 0, false>;
dsp->mask_blend[1][0] = MaskBlend_NEON<1, 0, false>;
dsp->mask_blend[2][0] = MaskBlend_NEON<1, 1, false>;
dsp->mask_blend[0][1] = MaskBlend_NEON<0, 0, true>;
dsp->mask_blend[1][1] = MaskBlend_NEON<1, 0, true>;
dsp->mask_blend[2][1] = MaskBlend_NEON<1, 1, true>;
}
} // namespace
} // namespace high_bitdepth
#endif // LIBGAV1_MAX_BITDEPTH >= 10
void MaskBlendInit_NEON() {
low_bitdepth::Init8bpp();
#if LIBGAV1_MAX_BITDEPTH >= 10
high_bitdepth::Init10bpp();
#endif
}
} // namespace dsp
} // namespace libgav1
#else // !LIBGAV1_ENABLE_NEON
namespace libgav1 {
namespace dsp {
void MaskBlendInit_NEON() {}
} // namespace dsp
} // namespace libgav1
#endif // LIBGAV1_ENABLE_NEON
|