aboutsummaryrefslogtreecommitdiff
path: root/src/dsp/arm/obmc_neon.cc
blob: 1111a90e385a4ff4b104ba9a1fab3f8009450b4d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
// Copyright 2019 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "src/dsp/obmc.h"
#include "src/utils/cpu.h"

#if LIBGAV1_ENABLE_NEON

#include <arm_neon.h>

#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>

#include "src/dsp/arm/common_neon.h"
#include "src/dsp/constants.h"
#include "src/dsp/dsp.h"
#include "src/utils/common.h"

namespace libgav1 {
namespace dsp {
namespace {

#include "src/dsp/obmc.inc"

inline void WriteObmcLine4(uint8_t* const pred, const uint8_t* const obmc_pred,
                           const uint8x8_t pred_mask,
                           const uint8x8_t obmc_pred_mask) {
  const uint8x8_t pred_val = Load4(pred);
  const uint8x8_t obmc_pred_val = Load4(obmc_pred);
  const uint16x8_t weighted_pred = vmull_u8(pred_mask, pred_val);
  const uint8x8_t result =
      vrshrn_n_u16(vmlal_u8(weighted_pred, obmc_pred_mask, obmc_pred_val), 6);
  StoreLo4(pred, result);
}

template <bool from_left>
inline void OverlapBlend2xH_NEON(uint8_t* const prediction,
                                 const ptrdiff_t prediction_stride,
                                 const int height,
                                 const uint8_t* const obmc_prediction,
                                 const ptrdiff_t obmc_prediction_stride) {
  uint8_t* pred = prediction;
  const uint8x8_t mask_inverter = vdup_n_u8(64);
  const uint8_t* obmc_pred = obmc_prediction;
  uint8x8_t pred_mask;
  uint8x8_t obmc_pred_mask;
  int compute_height;
  const int mask_offset = height - 2;
  if (from_left) {
    pred_mask = Load2(kObmcMask);
    obmc_pred_mask = vsub_u8(mask_inverter, pred_mask);
    compute_height = height;
  } else {
    // Weights for the last line are all 64, which is a no-op.
    compute_height = height - 1;
  }
  uint8x8_t pred_val = vdup_n_u8(0);
  uint8x8_t obmc_pred_val = vdup_n_u8(0);
  int y = 0;
  do {
    if (!from_left) {
      pred_mask = vdup_n_u8(kObmcMask[mask_offset + y]);
      obmc_pred_mask = vsub_u8(mask_inverter, pred_mask);
    }
    pred_val = Load2<0>(pred, pred_val);
    const uint16x8_t weighted_pred = vmull_u8(pred_mask, pred_val);
    obmc_pred_val = Load2<0>(obmc_pred, obmc_pred_val);
    const uint8x8_t result =
        vrshrn_n_u16(vmlal_u8(weighted_pred, obmc_pred_mask, obmc_pred_val), 6);
    Store2<0>(pred, result);

    pred += prediction_stride;
    obmc_pred += obmc_prediction_stride;
  } while (++y != compute_height);
}

inline void OverlapBlendFromLeft4xH_NEON(
    uint8_t* const prediction, const ptrdiff_t prediction_stride,
    const int height, const uint8_t* const obmc_prediction,
    const ptrdiff_t obmc_prediction_stride) {
  uint8_t* pred = prediction;
  const uint8_t* obmc_pred = obmc_prediction;

  const uint8x8_t mask_inverter = vdup_n_u8(64);
  const uint8x8_t pred_mask = Load4(kObmcMask + 2);
  // 64 - mask
  const uint8x8_t obmc_pred_mask = vsub_u8(mask_inverter, pred_mask);
  int y = 0;
  do {
    WriteObmcLine4(pred, obmc_pred, pred_mask, obmc_pred_mask);
    pred += prediction_stride;
    obmc_pred += obmc_prediction_stride;

    WriteObmcLine4(pred, obmc_pred, pred_mask, obmc_pred_mask);
    pred += prediction_stride;
    obmc_pred += obmc_prediction_stride;

    y += 2;
  } while (y != height);
}

inline void OverlapBlendFromLeft8xH_NEON(
    uint8_t* const prediction, const ptrdiff_t prediction_stride,
    const int height, const uint8_t* const obmc_prediction,
    const ptrdiff_t obmc_prediction_stride) {
  uint8_t* pred = prediction;
  const uint8_t* obmc_pred = obmc_prediction;
  const uint8x8_t mask_inverter = vdup_n_u8(64);
  const uint8x8_t pred_mask = vld1_u8(kObmcMask + 6);
  // 64 - mask
  const uint8x8_t obmc_pred_mask = vsub_u8(mask_inverter, pred_mask);
  int y = 0;
  do {
    const uint8x8_t pred_val = vld1_u8(pred);
    const uint16x8_t weighted_pred = vmull_u8(pred_mask, pred_val);
    const uint8x8_t obmc_pred_val = vld1_u8(obmc_pred);
    const uint8x8_t result =
        vrshrn_n_u16(vmlal_u8(weighted_pred, obmc_pred_mask, obmc_pred_val), 6);

    vst1_u8(pred, result);
    pred += prediction_stride;
    obmc_pred += obmc_prediction_stride;
  } while (++y != height);
}

void OverlapBlendFromLeft_NEON(void* const prediction,
                               const ptrdiff_t prediction_stride,
                               const int width, const int height,
                               const void* const obmc_prediction,
                               const ptrdiff_t obmc_prediction_stride) {
  auto* pred = static_cast<uint8_t*>(prediction);
  const auto* obmc_pred = static_cast<const uint8_t*>(obmc_prediction);

  if (width == 2) {
    OverlapBlend2xH_NEON<true>(pred, prediction_stride, height, obmc_pred,
                               obmc_prediction_stride);
    return;
  }
  if (width == 4) {
    OverlapBlendFromLeft4xH_NEON(pred, prediction_stride, height, obmc_pred,
                                 obmc_prediction_stride);
    return;
  }
  if (width == 8) {
    OverlapBlendFromLeft8xH_NEON(pred, prediction_stride, height, obmc_pred,
                                 obmc_prediction_stride);
    return;
  }
  const uint8x16_t mask_inverter = vdupq_n_u8(64);
  const uint8_t* mask = kObmcMask + width - 2;
  int x = 0;
  do {
    pred = static_cast<uint8_t*>(prediction) + x;
    obmc_pred = static_cast<const uint8_t*>(obmc_prediction) + x;
    const uint8x16_t pred_mask = vld1q_u8(mask + x);
    // 64 - mask
    const uint8x16_t obmc_pred_mask = vsubq_u8(mask_inverter, pred_mask);
    int y = 0;
    do {
      const uint8x16_t pred_val = vld1q_u8(pred);
      const uint8x16_t obmc_pred_val = vld1q_u8(obmc_pred);
      const uint16x8_t weighted_pred_lo =
          vmull_u8(vget_low_u8(pred_mask), vget_low_u8(pred_val));
      const uint8x8_t result_lo =
          vrshrn_n_u16(vmlal_u8(weighted_pred_lo, vget_low_u8(obmc_pred_mask),
                                vget_low_u8(obmc_pred_val)),
                       6);
      const uint16x8_t weighted_pred_hi =
          vmull_u8(vget_high_u8(pred_mask), vget_high_u8(pred_val));
      const uint8x8_t result_hi =
          vrshrn_n_u16(vmlal_u8(weighted_pred_hi, vget_high_u8(obmc_pred_mask),
                                vget_high_u8(obmc_pred_val)),
                       6);
      vst1q_u8(pred, vcombine_u8(result_lo, result_hi));

      pred += prediction_stride;
      obmc_pred += obmc_prediction_stride;
    } while (++y < height);
    x += 16;
  } while (x < width);
}

inline void OverlapBlendFromTop4x4_NEON(uint8_t* const prediction,
                                        const ptrdiff_t prediction_stride,
                                        const uint8_t* const obmc_prediction,
                                        const ptrdiff_t obmc_prediction_stride,
                                        const int height) {
  uint8_t* pred = prediction;
  const uint8_t* obmc_pred = obmc_prediction;
  uint8x8_t pred_mask = vdup_n_u8(kObmcMask[height - 2]);
  const uint8x8_t mask_inverter = vdup_n_u8(64);
  uint8x8_t obmc_pred_mask = vsub_u8(mask_inverter, pred_mask);
  WriteObmcLine4(pred, obmc_pred, pred_mask, obmc_pred_mask);
  pred += prediction_stride;
  obmc_pred += obmc_prediction_stride;

  if (height == 2) {
    return;
  }

  pred_mask = vdup_n_u8(kObmcMask[3]);
  obmc_pred_mask = vsub_u8(mask_inverter, pred_mask);
  WriteObmcLine4(pred, obmc_pred, pred_mask, obmc_pred_mask);
  pred += prediction_stride;
  obmc_pred += obmc_prediction_stride;

  pred_mask = vdup_n_u8(kObmcMask[4]);
  obmc_pred_mask = vsub_u8(mask_inverter, pred_mask);
  WriteObmcLine4(pred, obmc_pred, pred_mask, obmc_pred_mask);
}

inline void OverlapBlendFromTop4xH_NEON(
    uint8_t* const prediction, const ptrdiff_t prediction_stride,
    const int height, const uint8_t* const obmc_prediction,
    const ptrdiff_t obmc_prediction_stride) {
  if (height < 8) {
    OverlapBlendFromTop4x4_NEON(prediction, prediction_stride, obmc_prediction,
                                obmc_prediction_stride, height);
    return;
  }
  uint8_t* pred = prediction;
  const uint8_t* obmc_pred = obmc_prediction;
  const uint8_t* mask = kObmcMask + height - 2;
  const uint8x8_t mask_inverter = vdup_n_u8(64);
  int y = 0;
  // Compute 6 lines for height 8, or 12 lines for height 16. The remaining
  // lines are unchanged as the corresponding mask value is 64.
  do {
    uint8x8_t pred_mask = vdup_n_u8(mask[y]);
    uint8x8_t obmc_pred_mask = vsub_u8(mask_inverter, pred_mask);
    WriteObmcLine4(pred, obmc_pred, pred_mask, obmc_pred_mask);
    pred += prediction_stride;
    obmc_pred += obmc_prediction_stride;

    pred_mask = vdup_n_u8(mask[y + 1]);
    obmc_pred_mask = vsub_u8(mask_inverter, pred_mask);
    WriteObmcLine4(pred, obmc_pred, pred_mask, obmc_pred_mask);
    pred += prediction_stride;
    obmc_pred += obmc_prediction_stride;

    pred_mask = vdup_n_u8(mask[y + 2]);
    obmc_pred_mask = vsub_u8(mask_inverter, pred_mask);
    WriteObmcLine4(pred, obmc_pred, pred_mask, obmc_pred_mask);
    pred += prediction_stride;
    obmc_pred += obmc_prediction_stride;

    pred_mask = vdup_n_u8(mask[y + 3]);
    obmc_pred_mask = vsub_u8(mask_inverter, pred_mask);
    WriteObmcLine4(pred, obmc_pred, pred_mask, obmc_pred_mask);
    pred += prediction_stride;
    obmc_pred += obmc_prediction_stride;

    pred_mask = vdup_n_u8(mask[y + 4]);
    obmc_pred_mask = vsub_u8(mask_inverter, pred_mask);
    WriteObmcLine4(pred, obmc_pred, pred_mask, obmc_pred_mask);
    pred += prediction_stride;
    obmc_pred += obmc_prediction_stride;

    pred_mask = vdup_n_u8(mask[y + 5]);
    obmc_pred_mask = vsub_u8(mask_inverter, pred_mask);
    WriteObmcLine4(pred, obmc_pred, pred_mask, obmc_pred_mask);
    pred += prediction_stride;
    obmc_pred += obmc_prediction_stride;

    // Increment for the right mask index.
    y += 6;
  } while (y < height - 4);
}

inline void OverlapBlendFromTop8xH_NEON(
    uint8_t* const prediction, const ptrdiff_t prediction_stride,
    const int height, const uint8_t* const obmc_prediction,
    const ptrdiff_t obmc_prediction_stride) {
  uint8_t* pred = prediction;
  const uint8_t* obmc_pred = obmc_prediction;
  const uint8x8_t mask_inverter = vdup_n_u8(64);
  const uint8_t* mask = kObmcMask + height - 2;
  const int compute_height = height - (height >> 2);
  int y = 0;
  do {
    const uint8x8_t pred_mask = vdup_n_u8(mask[y]);
    // 64 - mask
    const uint8x8_t obmc_pred_mask = vsub_u8(mask_inverter, pred_mask);
    const uint8x8_t pred_val = vld1_u8(pred);
    const uint16x8_t weighted_pred = vmull_u8(pred_mask, pred_val);
    const uint8x8_t obmc_pred_val = vld1_u8(obmc_pred);
    const uint8x8_t result =
        vrshrn_n_u16(vmlal_u8(weighted_pred, obmc_pred_mask, obmc_pred_val), 6);

    vst1_u8(pred, result);
    pred += prediction_stride;
    obmc_pred += obmc_prediction_stride;
  } while (++y != compute_height);
}

void OverlapBlendFromTop_NEON(void* const prediction,
                              const ptrdiff_t prediction_stride,
                              const int width, const int height,
                              const void* const obmc_prediction,
                              const ptrdiff_t obmc_prediction_stride) {
  auto* pred = static_cast<uint8_t*>(prediction);
  const auto* obmc_pred = static_cast<const uint8_t*>(obmc_prediction);

  if (width == 2) {
    OverlapBlend2xH_NEON<false>(pred, prediction_stride, height, obmc_pred,
                                obmc_prediction_stride);
    return;
  }
  if (width == 4) {
    OverlapBlendFromTop4xH_NEON(pred, prediction_stride, height, obmc_pred,
                                obmc_prediction_stride);
    return;
  }

  if (width == 8) {
    OverlapBlendFromTop8xH_NEON(pred, prediction_stride, height, obmc_pred,
                                obmc_prediction_stride);
    return;
  }

  const uint8_t* mask = kObmcMask + height - 2;
  const uint8x8_t mask_inverter = vdup_n_u8(64);
  // Stop when mask value becomes 64. This is inferred for 4xH.
  const int compute_height = height - (height >> 2);
  int y = 0;
  do {
    const uint8x8_t pred_mask = vdup_n_u8(mask[y]);
    // 64 - mask
    const uint8x8_t obmc_pred_mask = vsub_u8(mask_inverter, pred_mask);
    int x = 0;
    do {
      const uint8x16_t pred_val = vld1q_u8(pred + x);
      const uint8x16_t obmc_pred_val = vld1q_u8(obmc_pred + x);
      const uint16x8_t weighted_pred_lo =
          vmull_u8(pred_mask, vget_low_u8(pred_val));
      const uint8x8_t result_lo =
          vrshrn_n_u16(vmlal_u8(weighted_pred_lo, obmc_pred_mask,
                                vget_low_u8(obmc_pred_val)),
                       6);
      const uint16x8_t weighted_pred_hi =
          vmull_u8(pred_mask, vget_high_u8(pred_val));
      const uint8x8_t result_hi =
          vrshrn_n_u16(vmlal_u8(weighted_pred_hi, obmc_pred_mask,
                                vget_high_u8(obmc_pred_val)),
                       6);
      vst1q_u8(pred + x, vcombine_u8(result_lo, result_hi));

      x += 16;
    } while (x < width);
    pred += prediction_stride;
    obmc_pred += obmc_prediction_stride;
  } while (++y < compute_height);
}

void Init8bpp() {
  Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8);
  assert(dsp != nullptr);
  dsp->obmc_blend[kObmcDirectionVertical] = OverlapBlendFromTop_NEON;
  dsp->obmc_blend[kObmcDirectionHorizontal] = OverlapBlendFromLeft_NEON;
}

}  // namespace

void ObmcInit_NEON() { Init8bpp(); }

}  // namespace dsp
}  // namespace libgav1

#else   // !LIBGAV1_ENABLE_NEON

namespace libgav1 {
namespace dsp {

void ObmcInit_NEON() {}

}  // namespace dsp
}  // namespace libgav1
#endif  // LIBGAV1_ENABLE_NEON