aboutsummaryrefslogtreecommitdiff
path: root/src/dsp/film_grain.cc
blob: 41d1dd052a2d707cf3f7db72e114ceb3e7d2ac7a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
// Copyright 2019 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "src/dsp/film_grain.h"

#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <new>

#include "src/dsp/common.h"
#include "src/dsp/constants.h"
#include "src/dsp/dsp.h"
#include "src/dsp/film_grain_common.h"
#include "src/utils/array_2d.h"
#include "src/utils/common.h"
#include "src/utils/compiler_attributes.h"
#include "src/utils/logging.h"

namespace libgav1 {
namespace dsp {
namespace film_grain {
namespace {

// Making this a template function prevents it from adding to code size when it
// is not placed in the DSP table. Most functions in the dsp directory change
// behavior by bitdepth, but because this one doesn't, it receives a dummy
// parameter with one enforced value, ensuring only one copy is made.
template <int singleton>
void InitializeScalingLookupTable_C(
    int num_points, const uint8_t point_value[], const uint8_t point_scaling[],
    uint8_t scaling_lut[kScalingLookupTableSize]) {
  static_assert(singleton == 0,
                "Improper instantiation of InitializeScalingLookupTable_C. "
                "There should be only one copy of this function.");
  if (num_points == 0) {
    memset(scaling_lut, 0, sizeof(scaling_lut[0]) * kScalingLookupTableSize);
    return;
  }
  static_assert(sizeof(scaling_lut[0]) == 1, "");
  memset(scaling_lut, point_scaling[0], point_value[0]);
  for (int i = 0; i < num_points - 1; ++i) {
    const int delta_y = point_scaling[i + 1] - point_scaling[i];
    const int delta_x = point_value[i + 1] - point_value[i];
    const int delta = delta_y * ((65536 + (delta_x >> 1)) / delta_x);
    for (int x = 0; x < delta_x; ++x) {
      const int v = point_scaling[i] + ((x * delta + 32768) >> 16);
      assert(v >= 0 && v <= UINT8_MAX);
      scaling_lut[point_value[i] + x] = v;
    }
  }
  const uint8_t last_point_value = point_value[num_points - 1];
  memset(&scaling_lut[last_point_value], point_scaling[num_points - 1],
         kScalingLookupTableSize - last_point_value);
}

// Section 7.18.3.5.
// Performs a piecewise linear interpolation into the scaling table.
template <int bitdepth>
int ScaleLut(const uint8_t scaling_lut[kScalingLookupTableSize], int index) {
  const int shift = bitdepth - 8;
  const int quotient = index >> shift;
  const int remainder = index - (quotient << shift);
  if (bitdepth == 8) {
    assert(quotient < kScalingLookupTableSize);
    return scaling_lut[quotient];
  }
  assert(quotient + 1 < kScalingLookupTableSize);
  const int start = scaling_lut[quotient];
  const int end = scaling_lut[quotient + 1];
  return start + RightShiftWithRounding((end - start) * remainder, shift);
}

// Applies an auto-regressive filter to the white noise in luma_grain.
template <int bitdepth, typename GrainType>
void ApplyAutoRegressiveFilterToLumaGrain_C(const FilmGrainParams& params,
                                            void* luma_grain_buffer) {
  auto* luma_grain = static_cast<GrainType*>(luma_grain_buffer);
  const int grain_min = GetGrainMin<bitdepth>();
  const int grain_max = GetGrainMax<bitdepth>();
  const int auto_regression_coeff_lag = params.auto_regression_coeff_lag;
  assert(auto_regression_coeff_lag > 0 && auto_regression_coeff_lag <= 3);
  // A pictorial representation of the auto-regressive filter for various values
  // of auto_regression_coeff_lag. The letter 'O' represents the current sample.
  // (The filter always operates on the current sample with filter
  // coefficient 1.) The letters 'X' represent the neighboring samples that the
  // filter operates on.
  //
  // auto_regression_coeff_lag == 3:
  //   X X X X X X X
  //   X X X X X X X
  //   X X X X X X X
  //   X X X O
  // auto_regression_coeff_lag == 2:
  //     X X X X X
  //     X X X X X
  //     X X O
  // auto_regression_coeff_lag == 1:
  //       X X X
  //       X O
  // auto_regression_coeff_lag == 0:
  //         O
  //
  // Note that if auto_regression_coeff_lag is 0, the filter is the identity
  // filter and therefore can be skipped. This implementation assumes it is not
  // called in that case.
  const int shift = params.auto_regression_shift;
  for (int y = kAutoRegressionBorder; y < kLumaHeight; ++y) {
    for (int x = kAutoRegressionBorder; x < kLumaWidth - kAutoRegressionBorder;
         ++x) {
      int sum = 0;
      int pos = 0;
      int delta_row = -auto_regression_coeff_lag;
      // The last iteration (delta_row == 0) is shorter and is handled
      // separately.
      do {
        int delta_column = -auto_regression_coeff_lag;
        do {
          const int coeff = params.auto_regression_coeff_y[pos];
          sum += luma_grain[(y + delta_row) * kLumaWidth + (x + delta_column)] *
                 coeff;
          ++pos;
        } while (++delta_column <= auto_regression_coeff_lag);
      } while (++delta_row < 0);
      // Last iteration: delta_row == 0.
      {
        int delta_column = -auto_regression_coeff_lag;
        do {
          const int coeff = params.auto_regression_coeff_y[pos];
          sum += luma_grain[y * kLumaWidth + (x + delta_column)] * coeff;
          ++pos;
        } while (++delta_column < 0);
      }
      luma_grain[y * kLumaWidth + x] = Clip3(
          luma_grain[y * kLumaWidth + x] + RightShiftWithRounding(sum, shift),
          grain_min, grain_max);
    }
  }
}

template <int bitdepth, typename GrainType, int auto_regression_coeff_lag,
          bool use_luma>
void ApplyAutoRegressiveFilterToChromaGrains_C(const FilmGrainParams& params,
                                               const void* luma_grain_buffer,
                                               int subsampling_x,
                                               int subsampling_y,
                                               void* u_grain_buffer,
                                               void* v_grain_buffer) {
  static_assert(
      auto_regression_coeff_lag >= 0 && auto_regression_coeff_lag <= 3,
      "Unsupported autoregression lag for chroma.");
  const auto* luma_grain = static_cast<const GrainType*>(luma_grain_buffer);
  const int grain_min = GetGrainMin<bitdepth>();
  const int grain_max = GetGrainMax<bitdepth>();
  auto* u_grain = static_cast<GrainType*>(u_grain_buffer);
  auto* v_grain = static_cast<GrainType*>(v_grain_buffer);
  const int shift = params.auto_regression_shift;
  const int chroma_height =
      (subsampling_y == 0) ? kMaxChromaHeight : kMinChromaHeight;
  const int chroma_width =
      (subsampling_x == 0) ? kMaxChromaWidth : kMinChromaWidth;
  for (int y = kAutoRegressionBorder; y < chroma_height; ++y) {
    const int luma_y =
        ((y - kAutoRegressionBorder) << subsampling_y) + kAutoRegressionBorder;
    for (int x = kAutoRegressionBorder;
         x < chroma_width - kAutoRegressionBorder; ++x) {
      int sum_u = 0;
      int sum_v = 0;
      int pos = 0;
      int delta_row = -auto_regression_coeff_lag;
      do {
        int delta_column = -auto_regression_coeff_lag;
        do {
          if (delta_row == 0 && delta_column == 0) {
            break;
          }
          const int coeff_u = params.auto_regression_coeff_u[pos];
          const int coeff_v = params.auto_regression_coeff_v[pos];
          sum_u +=
              u_grain[(y + delta_row) * chroma_width + (x + delta_column)] *
              coeff_u;
          sum_v +=
              v_grain[(y + delta_row) * chroma_width + (x + delta_column)] *
              coeff_v;
          ++pos;
        } while (++delta_column <= auto_regression_coeff_lag);
      } while (++delta_row <= 0);
      if (use_luma) {
        int luma = 0;
        const int luma_x = ((x - kAutoRegressionBorder) << subsampling_x) +
                           kAutoRegressionBorder;
        int i = 0;
        do {
          int j = 0;
          do {
            luma += luma_grain[(luma_y + i) * kLumaWidth + (luma_x + j)];
          } while (++j <= subsampling_x);
        } while (++i <= subsampling_y);
        luma = SubsampledValue(luma, subsampling_x + subsampling_y);
        const int coeff_u = params.auto_regression_coeff_u[pos];
        const int coeff_v = params.auto_regression_coeff_v[pos];
        sum_u += luma * coeff_u;
        sum_v += luma * coeff_v;
      }
      u_grain[y * chroma_width + x] = Clip3(
          u_grain[y * chroma_width + x] + RightShiftWithRounding(sum_u, shift),
          grain_min, grain_max);
      v_grain[y * chroma_width + x] = Clip3(
          v_grain[y * chroma_width + x] + RightShiftWithRounding(sum_v, shift),
          grain_min, grain_max);
    }
  }
}

// This implementation is for the condition overlap_flag == false.
template <int bitdepth, typename GrainType>
void ConstructNoiseStripes_C(const void* grain_buffer, int grain_seed,
                             int width, int height, int subsampling_x,
                             int subsampling_y, void* noise_stripes_buffer) {
  auto* noise_stripes =
      static_cast<Array2DView<GrainType>*>(noise_stripes_buffer);
  const auto* grain = static_cast<const GrainType*>(grain_buffer);
  const int half_width = DivideBy2(width + 1);
  const int half_height = DivideBy2(height + 1);
  assert(half_width > 0);
  assert(half_height > 0);
  static_assert(kLumaWidth == kMaxChromaWidth,
                "kLumaWidth width should be equal to kMaxChromaWidth");
  const int grain_width =
      (subsampling_x == 0) ? kMaxChromaWidth : kMinChromaWidth;
  const int plane_width = (width + subsampling_x) >> subsampling_x;
  constexpr int kNoiseStripeHeight = 34;
  int luma_num = 0;
  int y = 0;
  do {
    GrainType* const noise_stripe = (*noise_stripes)[luma_num];
    uint16_t seed = grain_seed;
    seed ^= ((luma_num * 37 + 178) & 255) << 8;
    seed ^= ((luma_num * 173 + 105) & 255);
    int x = 0;
    do {
      const int rand = GetFilmGrainRandomNumber(8, &seed);
      const int offset_x = rand >> 4;
      const int offset_y = rand & 15;
      const int plane_offset_x =
          (subsampling_x != 0) ? 6 + offset_x : 9 + offset_x * 2;
      const int plane_offset_y =
          (subsampling_y != 0) ? 6 + offset_y : 9 + offset_y * 2;
      int i = 0;
      do {
        // Section 7.18.3.5 says:
        //   noiseStripe[ lumaNum ][ 0 ] is 34 samples high and w samples
        //   wide (a few additional samples across are actually written to
        //   the array, but these are never read) ...
        //
        // Note: The warning in the parentheses also applies to
        // noiseStripe[ lumaNum ][ 1 ] and noiseStripe[ lumaNum ][ 2 ].
        //
        // Writes beyond the width of each row could happen below. To
        // prevent those writes, we clip the number of pixels to copy against
        // the remaining width.
        // TODO(petersonab): Allocate aligned stripes with extra width to cover
        // the size of the final stripe block, then remove this call to min.
        const int copy_size =
            std::min(kNoiseStripeHeight >> subsampling_x,
                     plane_width - (x << (1 - subsampling_x)));
        memcpy(&noise_stripe[i * plane_width + (x << (1 - subsampling_x))],
               &grain[(plane_offset_y + i) * grain_width + plane_offset_x],
               copy_size * sizeof(noise_stripe[0]));
      } while (++i < (kNoiseStripeHeight >> subsampling_y));
      x += 16;
    } while (x < half_width);

    ++luma_num;
    y += 16;
  } while (y < half_height);
}

// This implementation is for the condition overlap_flag == true.
template <int bitdepth, typename GrainType>
void ConstructNoiseStripesWithOverlap_C(const void* grain_buffer,
                                        int grain_seed, int width, int height,
                                        int subsampling_x, int subsampling_y,
                                        void* noise_stripes_buffer) {
  auto* noise_stripes =
      static_cast<Array2DView<GrainType>*>(noise_stripes_buffer);
  const auto* grain = static_cast<const GrainType*>(grain_buffer);
  const int half_width = DivideBy2(width + 1);
  const int half_height = DivideBy2(height + 1);
  assert(half_width > 0);
  assert(half_height > 0);
  static_assert(kLumaWidth == kMaxChromaWidth,
                "kLumaWidth width should be equal to kMaxChromaWidth");
  const int grain_width =
      (subsampling_x == 0) ? kMaxChromaWidth : kMinChromaWidth;
  const int plane_width = (width + subsampling_x) >> subsampling_x;
  constexpr int kNoiseStripeHeight = 34;
  int luma_num = 0;
  int y = 0;
  do {
    GrainType* const noise_stripe = (*noise_stripes)[luma_num];
    uint16_t seed = grain_seed;
    seed ^= ((luma_num * 37 + 178) & 255) << 8;
    seed ^= ((luma_num * 173 + 105) & 255);
    // Begin special iteration for x == 0.
    const int rand = GetFilmGrainRandomNumber(8, &seed);
    const int offset_x = rand >> 4;
    const int offset_y = rand & 15;
    const int plane_offset_x =
        (subsampling_x != 0) ? 6 + offset_x : 9 + offset_x * 2;
    const int plane_offset_y =
        (subsampling_y != 0) ? 6 + offset_y : 9 + offset_y * 2;
    // The overlap computation only occurs when x > 0, so it is omitted here.
    int i = 0;
    do {
      // TODO(petersonab): Allocate aligned stripes with extra width to cover
      // the size of the final stripe block, then remove this call to min.
      const int copy_size =
          std::min(kNoiseStripeHeight >> subsampling_x, plane_width);
      memcpy(&noise_stripe[i * plane_width],
             &grain[(plane_offset_y + i) * grain_width + plane_offset_x],
             copy_size * sizeof(noise_stripe[0]));
    } while (++i < (kNoiseStripeHeight >> subsampling_y));
    // End special iteration for x == 0.
    for (int x = 16; x < half_width; x += 16) {
      const int rand = GetFilmGrainRandomNumber(8, &seed);
      const int offset_x = rand >> 4;
      const int offset_y = rand & 15;
      const int plane_offset_x =
          (subsampling_x != 0) ? 6 + offset_x : 9 + offset_x * 2;
      const int plane_offset_y =
          (subsampling_y != 0) ? 6 + offset_y : 9 + offset_y * 2;
      int i = 0;
      do {
        int j = 0;
        int grain_sample =
            grain[(plane_offset_y + i) * grain_width + plane_offset_x];
        // The first pixel(s) of each segment of the noise_stripe are subject to
        // the "overlap" computation.
        if (subsampling_x == 0) {
          // Corresponds to the line in the spec:
          // if (j < 2 && x > 0)
          // j = 0
          int old = noise_stripe[i * plane_width + x * 2];
          grain_sample = old * 27 + grain_sample * 17;
          grain_sample =
              Clip3(RightShiftWithRounding(grain_sample, 5),
                    GetGrainMin<bitdepth>(), GetGrainMax<bitdepth>());
          noise_stripe[i * plane_width + x * 2] = grain_sample;

          // This check prevents overwriting for the iteration j = 1. The
          // continue applies to the i-loop.
          if (x * 2 + 1 >= plane_width) continue;
          // j = 1
          grain_sample =
              grain[(plane_offset_y + i) * grain_width + plane_offset_x + 1];
          old = noise_stripe[i * plane_width + x * 2 + 1];
          grain_sample = old * 17 + grain_sample * 27;
          grain_sample =
              Clip3(RightShiftWithRounding(grain_sample, 5),
                    GetGrainMin<bitdepth>(), GetGrainMax<bitdepth>());
          noise_stripe[i * plane_width + x * 2 + 1] = grain_sample;
          j = 2;
        } else {
          // Corresponds to the line in the spec:
          // if (j == 0 && x > 0)
          const int old = noise_stripe[i * plane_width + x];
          grain_sample = old * 23 + grain_sample * 22;
          grain_sample =
              Clip3(RightShiftWithRounding(grain_sample, 5),
                    GetGrainMin<bitdepth>(), GetGrainMax<bitdepth>());
          noise_stripe[i * plane_width + x] = grain_sample;
          j = 1;
        }
        // The following covers the rest of the loop over j as described in the
        // spec.
        //
        // Section 7.18.3.5 says:
        //   noiseStripe[ lumaNum ][ 0 ] is 34 samples high and w samples
        //   wide (a few additional samples across are actually written to
        //   the array, but these are never read) ...
        //
        // Note: The warning in the parentheses also applies to
        // noiseStripe[ lumaNum ][ 1 ] and noiseStripe[ lumaNum ][ 2 ].
        //
        // Writes beyond the width of each row could happen below. To
        // prevent those writes, we clip the number of pixels to copy against
        // the remaining width.
        // TODO(petersonab): Allocate aligned stripes with extra width to cover
        // the size of the final stripe block, then remove this call to min.
        const int copy_size =
            std::min(kNoiseStripeHeight >> subsampling_x,
                     plane_width - (x << (1 - subsampling_x))) -
            j;
        memcpy(&noise_stripe[i * plane_width + (x << (1 - subsampling_x)) + j],
               &grain[(plane_offset_y + i) * grain_width + plane_offset_x + j],
               copy_size * sizeof(noise_stripe[0]));
      } while (++i < (kNoiseStripeHeight >> subsampling_y));
    }

    ++luma_num;
    y += 16;
  } while (y < half_height);
}

template <int bitdepth, typename GrainType>
inline void WriteOverlapLine_C(const GrainType* noise_stripe_row,
                               const GrainType* noise_stripe_row_prev,
                               int plane_width, int grain_coeff, int old_coeff,
                               GrainType* noise_image_row) {
  int x = 0;
  do {
    int grain = noise_stripe_row[x];
    const int old = noise_stripe_row_prev[x];
    grain = old * old_coeff + grain * grain_coeff;
    grain = Clip3(RightShiftWithRounding(grain, 5), GetGrainMin<bitdepth>(),
                  GetGrainMax<bitdepth>());
    noise_image_row[x] = grain;
  } while (++x < plane_width);
}

template <int bitdepth, typename GrainType>
void ConstructNoiseImageOverlap_C(const void* noise_stripes_buffer, int width,
                                  int height, int subsampling_x,
                                  int subsampling_y, void* noise_image_buffer) {
  const auto* noise_stripes =
      static_cast<const Array2DView<GrainType>*>(noise_stripes_buffer);
  auto* noise_image = static_cast<Array2D<GrainType>*>(noise_image_buffer);
  const int plane_width = (width + subsampling_x) >> subsampling_x;
  const int plane_height = (height + subsampling_y) >> subsampling_y;
  const int stripe_height = 32 >> subsampling_y;
  const int stripe_mask = stripe_height - 1;
  int y = stripe_height;
  int luma_num = 1;
  if (subsampling_y == 0) {
    // Begin complete stripes section. This is when we are guaranteed to have
    // two overlap rows in each stripe.
    for (; y < (plane_height & ~stripe_mask); ++luma_num, y += stripe_height) {
      const GrainType* noise_stripe = (*noise_stripes)[luma_num];
      const GrainType* noise_stripe_prev = (*noise_stripes)[luma_num - 1];
      // First overlap row.
      WriteOverlapLine_C<bitdepth>(noise_stripe,
                                   &noise_stripe_prev[32 * plane_width],
                                   plane_width, 17, 27, (*noise_image)[y]);
      // Second overlap row.
      WriteOverlapLine_C<bitdepth>(&noise_stripe[plane_width],
                                   &noise_stripe_prev[(32 + 1) * plane_width],
                                   plane_width, 27, 17, (*noise_image)[y + 1]);
    }
    // End complete stripes section.

    const int remaining_height = plane_height - y;
    // Either one partial stripe remains (remaining_height  > 0),
    // OR image is less than one stripe high (remaining_height < 0),
    // OR all stripes are completed (remaining_height == 0).
    if (remaining_height <= 0) {
      return;
    }
    const GrainType* noise_stripe = (*noise_stripes)[luma_num];
    const GrainType* noise_stripe_prev = (*noise_stripes)[luma_num - 1];
    WriteOverlapLine_C<bitdepth>(noise_stripe,
                                 &noise_stripe_prev[32 * plane_width],
                                 plane_width, 17, 27, (*noise_image)[y]);

    // Check if second overlap row is in the image.
    if (remaining_height > 1) {
      WriteOverlapLine_C<bitdepth>(&noise_stripe[plane_width],
                                   &noise_stripe_prev[(32 + 1) * plane_width],
                                   plane_width, 27, 17, (*noise_image)[y + 1]);
    }
  } else {  // |subsampling_y| == 1
    // No special checks needed for partial stripes, because if one exists, the
    // first and only overlap row is guaranteed to exist.
    for (; y < plane_height; ++luma_num, y += stripe_height) {
      const GrainType* noise_stripe = (*noise_stripes)[luma_num];
      const GrainType* noise_stripe_prev = (*noise_stripes)[luma_num - 1];
      WriteOverlapLine_C<bitdepth>(noise_stripe,
                                   &noise_stripe_prev[16 * plane_width],
                                   plane_width, 22, 23, (*noise_image)[y]);
    }
  }
}

template <int bitdepth, typename GrainType, typename Pixel>
void BlendNoiseWithImageLuma_C(
    const void* noise_image_ptr, int min_value, int max_luma, int scaling_shift,
    int width, int height, int start_height,
    const uint8_t scaling_lut_y[kScalingLookupTableSize],
    const void* source_plane_y, ptrdiff_t source_stride_y, void* dest_plane_y,
    ptrdiff_t dest_stride_y) {
  const auto* noise_image =
      static_cast<const Array2D<GrainType>*>(noise_image_ptr);
  const auto* in_y = static_cast<const Pixel*>(source_plane_y);
  source_stride_y /= sizeof(Pixel);
  auto* out_y = static_cast<Pixel*>(dest_plane_y);
  dest_stride_y /= sizeof(Pixel);

  int y = 0;
  do {
    int x = 0;
    do {
      const int orig = in_y[y * source_stride_y + x];
      int noise = noise_image[kPlaneY][y + start_height][x];
      noise = RightShiftWithRounding(
          ScaleLut<bitdepth>(scaling_lut_y, orig) * noise, scaling_shift);
      out_y[y * dest_stride_y + x] = Clip3(orig + noise, min_value, max_luma);
    } while (++x < width);
  } while (++y < height);
}

// This function is for the case params_.chroma_scaling_from_luma == false.
template <int bitdepth, typename GrainType, typename Pixel>
void BlendNoiseWithImageChroma_C(
    Plane plane, const FilmGrainParams& params, const void* noise_image_ptr,
    int min_value, int max_chroma, int width, int height, int start_height,
    int subsampling_x, int subsampling_y,
    const uint8_t scaling_lut_uv[kScalingLookupTableSize],
    const void* source_plane_y, ptrdiff_t source_stride_y,
    const void* source_plane_uv, ptrdiff_t source_stride_uv,
    void* dest_plane_uv, ptrdiff_t dest_stride_uv) {
  const auto* noise_image =
      static_cast<const Array2D<GrainType>*>(noise_image_ptr);

  const int chroma_width = (width + subsampling_x) >> subsampling_x;
  const int chroma_height = (height + subsampling_y) >> subsampling_y;

  const auto* in_y = static_cast<const Pixel*>(source_plane_y);
  source_stride_y /= sizeof(Pixel);
  const auto* in_uv = static_cast<const Pixel*>(source_plane_uv);
  source_stride_uv /= sizeof(Pixel);
  auto* out_uv = static_cast<Pixel*>(dest_plane_uv);
  dest_stride_uv /= sizeof(Pixel);

  const int offset = (plane == kPlaneU) ? params.u_offset : params.v_offset;
  const int luma_multiplier =
      (plane == kPlaneU) ? params.u_luma_multiplier : params.v_luma_multiplier;
  const int multiplier =
      (plane == kPlaneU) ? params.u_multiplier : params.v_multiplier;

  const int scaling_shift = params.chroma_scaling;
  start_height >>= subsampling_y;
  int y = 0;
  do {
    int x = 0;
    do {
      const int luma_x = x << subsampling_x;
      const int luma_y = y << subsampling_y;
      const int luma_next_x = std::min(luma_x + 1, width - 1);
      int average_luma;
      if (subsampling_x != 0) {
        average_luma = RightShiftWithRounding(
            in_y[luma_y * source_stride_y + luma_x] +
                in_y[luma_y * source_stride_y + luma_next_x],
            1);
      } else {
        average_luma = in_y[luma_y * source_stride_y + luma_x];
      }
      const int orig = in_uv[y * source_stride_uv + x];
      const int combined = average_luma * luma_multiplier + orig * multiplier;
      const int merged =
          Clip3((combined >> 6) + LeftShift(offset, bitdepth - 8), 0,
                (1 << bitdepth) - 1);
      int noise = noise_image[plane][y + start_height][x];
      noise = RightShiftWithRounding(
          ScaleLut<bitdepth>(scaling_lut_uv, merged) * noise, scaling_shift);
      out_uv[y * dest_stride_uv + x] =
          Clip3(orig + noise, min_value, max_chroma);
    } while (++x < chroma_width);
  } while (++y < chroma_height);
}

// This function is for the case params_.chroma_scaling_from_luma == true.
// This further implies that scaling_lut_u == scaling_lut_v == scaling_lut_y.
template <int bitdepth, typename GrainType, typename Pixel>
void BlendNoiseWithImageChromaWithCfl_C(
    Plane plane, const FilmGrainParams& params, const void* noise_image_ptr,
    int min_value, int max_chroma, int width, int height, int start_height,
    int subsampling_x, int subsampling_y,
    const uint8_t scaling_lut[kScalingLookupTableSize],
    const void* source_plane_y, ptrdiff_t source_stride_y,
    const void* source_plane_uv, ptrdiff_t source_stride_uv,
    void* dest_plane_uv, ptrdiff_t dest_stride_uv) {
  const auto* noise_image =
      static_cast<const Array2D<GrainType>*>(noise_image_ptr);
  const auto* in_y = static_cast<const Pixel*>(source_plane_y);
  source_stride_y /= sizeof(Pixel);
  const auto* in_uv = static_cast<const Pixel*>(source_plane_uv);
  source_stride_uv /= sizeof(Pixel);
  auto* out_uv = static_cast<Pixel*>(dest_plane_uv);
  dest_stride_uv /= sizeof(Pixel);

  const int chroma_width = (width + subsampling_x) >> subsampling_x;
  const int chroma_height = (height + subsampling_y) >> subsampling_y;
  const int scaling_shift = params.chroma_scaling;
  start_height >>= subsampling_y;
  int y = 0;
  do {
    int x = 0;
    do {
      const int luma_x = x << subsampling_x;
      const int luma_y = y << subsampling_y;
      const int luma_next_x = std::min(luma_x + 1, width - 1);
      int average_luma;
      if (subsampling_x != 0) {
        average_luma = RightShiftWithRounding(
            in_y[luma_y * source_stride_y + luma_x] +
                in_y[luma_y * source_stride_y + luma_next_x],
            1);
      } else {
        average_luma = in_y[luma_y * source_stride_y + luma_x];
      }
      const int orig_uv = in_uv[y * source_stride_uv + x];
      int noise_uv = noise_image[plane][y + start_height][x];
      noise_uv = RightShiftWithRounding(
          ScaleLut<bitdepth>(scaling_lut, average_luma) * noise_uv,
          scaling_shift);
      out_uv[y * dest_stride_uv + x] =
          Clip3(orig_uv + noise_uv, min_value, max_chroma);
    } while (++x < chroma_width);
  } while (++y < chroma_height);
}

void Init8bpp() {
  Dsp* const dsp = dsp_internal::GetWritableDspTable(8);
  assert(dsp != nullptr);
#if LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
  // LumaAutoRegressionFunc
  dsp->film_grain.luma_auto_regression[0] =
      ApplyAutoRegressiveFilterToLumaGrain_C<8, int8_t>;
  dsp->film_grain.luma_auto_regression[1] =
      ApplyAutoRegressiveFilterToLumaGrain_C<8, int8_t>;
  dsp->film_grain.luma_auto_regression[2] =
      ApplyAutoRegressiveFilterToLumaGrain_C<8, int8_t>;

  // ChromaAutoRegressionFunc
  // Chroma autoregression should never be called when lag is 0 and use_luma is
  // false.
  dsp->film_grain.chroma_auto_regression[0][0] = nullptr;
  dsp->film_grain.chroma_auto_regression[0][1] =
      ApplyAutoRegressiveFilterToChromaGrains_C<8, int8_t, 1, false>;
  dsp->film_grain.chroma_auto_regression[0][2] =
      ApplyAutoRegressiveFilterToChromaGrains_C<8, int8_t, 2, false>;
  dsp->film_grain.chroma_auto_regression[0][3] =
      ApplyAutoRegressiveFilterToChromaGrains_C<8, int8_t, 3, false>;
  dsp->film_grain.chroma_auto_regression[1][0] =
      ApplyAutoRegressiveFilterToChromaGrains_C<8, int8_t, 0, true>;
  dsp->film_grain.chroma_auto_regression[1][1] =
      ApplyAutoRegressiveFilterToChromaGrains_C<8, int8_t, 1, true>;
  dsp->film_grain.chroma_auto_regression[1][2] =
      ApplyAutoRegressiveFilterToChromaGrains_C<8, int8_t, 2, true>;
  dsp->film_grain.chroma_auto_regression[1][3] =
      ApplyAutoRegressiveFilterToChromaGrains_C<8, int8_t, 3, true>;

  // ConstructNoiseStripesFunc
  dsp->film_grain.construct_noise_stripes[0] =
      ConstructNoiseStripes_C<8, int8_t>;
  dsp->film_grain.construct_noise_stripes[1] =
      ConstructNoiseStripesWithOverlap_C<8, int8_t>;

  // ConstructNoiseImageOverlapFunc
  dsp->film_grain.construct_noise_image_overlap =
      ConstructNoiseImageOverlap_C<8, int8_t>;

  // InitializeScalingLutFunc
  dsp->film_grain.initialize_scaling_lut = InitializeScalingLookupTable_C<0>;

  // BlendNoiseWithImageLumaFunc
  dsp->film_grain.blend_noise_luma =
      BlendNoiseWithImageLuma_C<8, int8_t, uint8_t>;

  // BlendNoiseWithImageChromaFunc
  dsp->film_grain.blend_noise_chroma[0] =
      BlendNoiseWithImageChroma_C<8, int8_t, uint8_t>;
  dsp->film_grain.blend_noise_chroma[1] =
      BlendNoiseWithImageChromaWithCfl_C<8, int8_t, uint8_t>;
#else  // !LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
  static_cast<void>(dsp);
#ifndef LIBGAV1_Dsp8bpp_FilmGrainAutoregressionLuma
  dsp->film_grain.luma_auto_regression[0] =
      ApplyAutoRegressiveFilterToLumaGrain_C<8, int8_t>;
  dsp->film_grain.luma_auto_regression[1] =
      ApplyAutoRegressiveFilterToLumaGrain_C<8, int8_t>;
  dsp->film_grain.luma_auto_regression[2] =
      ApplyAutoRegressiveFilterToLumaGrain_C<8, int8_t>;
#endif
#ifndef LIBGAV1_Dsp8bpp_FilmGrainAutoregressionChroma
  // Chroma autoregression should never be called when lag is 0 and use_luma is
  // false.
  dsp->film_grain.chroma_auto_regression[0][0] = nullptr;
  dsp->film_grain.chroma_auto_regression[0][1] =
      ApplyAutoRegressiveFilterToChromaGrains_C<8, int8_t, 1, false>;
  dsp->film_grain.chroma_auto_regression[0][2] =
      ApplyAutoRegressiveFilterToChromaGrains_C<8, int8_t, 2, false>;
  dsp->film_grain.chroma_auto_regression[0][3] =
      ApplyAutoRegressiveFilterToChromaGrains_C<8, int8_t, 3, false>;
  dsp->film_grain.chroma_auto_regression[1][0] =
      ApplyAutoRegressiveFilterToChromaGrains_C<8, int8_t, 0, true>;
  dsp->film_grain.chroma_auto_regression[1][1] =
      ApplyAutoRegressiveFilterToChromaGrains_C<8, int8_t, 1, true>;
  dsp->film_grain.chroma_auto_regression[1][2] =
      ApplyAutoRegressiveFilterToChromaGrains_C<8, int8_t, 2, true>;
  dsp->film_grain.chroma_auto_regression[1][3] =
      ApplyAutoRegressiveFilterToChromaGrains_C<8, int8_t, 3, true>;
#endif
#ifndef LIBGAV1_Dsp8bpp_FilmGrainConstructNoiseStripes
  dsp->film_grain.construct_noise_stripes[0] =
      ConstructNoiseStripes_C<8, int8_t>;
  dsp->film_grain.construct_noise_stripes[1] =
      ConstructNoiseStripesWithOverlap_C<8, int8_t>;
#endif
#ifndef LIBGAV1_Dsp8bpp_FilmGrainConstructNoiseImageOverlap
  dsp->film_grain.construct_noise_image_overlap =
      ConstructNoiseImageOverlap_C<8, int8_t>;
#endif
#ifndef LIBGAV1_Dsp8bpp_FilmGrainInitializeScalingLutFunc
  dsp->film_grain.initialize_scaling_lut = InitializeScalingLookupTable_C<0>;
#endif
#ifndef LIBGAV1_Dsp8bpp_FilmGrainBlendNoiseLuma
  dsp->film_grain.blend_noise_luma =
      BlendNoiseWithImageLuma_C<8, int8_t, uint8_t>;
#endif
#ifndef LIBGAV1_Dsp8bpp_FilmGrainBlendNoiseChroma
  dsp->film_grain.blend_noise_chroma[0] =
      BlendNoiseWithImageChroma_C<8, int8_t, uint8_t>;
#endif
#ifndef LIBGAV1_Dsp8bpp_FilmGrainBlendNoiseChromaWithCfl
  dsp->film_grain.blend_noise_chroma[1] =
      BlendNoiseWithImageChromaWithCfl_C<8, int8_t, uint8_t>;
#endif
#endif  // LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
}

#if LIBGAV1_MAX_BITDEPTH >= 10
void Init10bpp() {
  Dsp* const dsp = dsp_internal::GetWritableDspTable(10);
  assert(dsp != nullptr);
#if LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS

  // LumaAutoRegressionFunc
  dsp->film_grain.luma_auto_regression[0] =
      ApplyAutoRegressiveFilterToLumaGrain_C<10, int16_t>;
  dsp->film_grain.luma_auto_regression[1] =
      ApplyAutoRegressiveFilterToLumaGrain_C<10, int16_t>;
  dsp->film_grain.luma_auto_regression[2] =
      ApplyAutoRegressiveFilterToLumaGrain_C<10, int16_t>;

  // ChromaAutoRegressionFunc
  // Chroma autoregression should never be called when lag is 0 and use_luma is
  // false.
  dsp->film_grain.chroma_auto_regression[0][0] = nullptr;
  dsp->film_grain.chroma_auto_regression[0][1] =
      ApplyAutoRegressiveFilterToChromaGrains_C<10, int16_t, 1, false>;
  dsp->film_grain.chroma_auto_regression[0][2] =
      ApplyAutoRegressiveFilterToChromaGrains_C<10, int16_t, 2, false>;
  dsp->film_grain.chroma_auto_regression[0][3] =
      ApplyAutoRegressiveFilterToChromaGrains_C<10, int16_t, 3, false>;
  dsp->film_grain.chroma_auto_regression[1][0] =
      ApplyAutoRegressiveFilterToChromaGrains_C<10, int16_t, 0, true>;
  dsp->film_grain.chroma_auto_regression[1][1] =
      ApplyAutoRegressiveFilterToChromaGrains_C<10, int16_t, 1, true>;
  dsp->film_grain.chroma_auto_regression[1][2] =
      ApplyAutoRegressiveFilterToChromaGrains_C<10, int16_t, 2, true>;
  dsp->film_grain.chroma_auto_regression[1][3] =
      ApplyAutoRegressiveFilterToChromaGrains_C<10, int16_t, 3, true>;

  // ConstructNoiseStripesFunc
  dsp->film_grain.construct_noise_stripes[0] =
      ConstructNoiseStripes_C<10, int16_t>;
  dsp->film_grain.construct_noise_stripes[1] =
      ConstructNoiseStripesWithOverlap_C<10, int16_t>;

  // ConstructNoiseImageOverlapFunc
  dsp->film_grain.construct_noise_image_overlap =
      ConstructNoiseImageOverlap_C<10, int16_t>;

  // InitializeScalingLutFunc
  dsp->film_grain.initialize_scaling_lut = InitializeScalingLookupTable_C<0>;

  // BlendNoiseWithImageLumaFunc
  dsp->film_grain.blend_noise_luma =
      BlendNoiseWithImageLuma_C<10, int16_t, uint16_t>;

  // BlendNoiseWithImageChromaFunc
  dsp->film_grain.blend_noise_chroma[0] =
      BlendNoiseWithImageChroma_C<10, int16_t, uint16_t>;
  dsp->film_grain.blend_noise_chroma[1] =
      BlendNoiseWithImageChromaWithCfl_C<10, int16_t, uint16_t>;
#else  // !LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
  static_cast<void>(dsp);
#ifndef LIBGAV1_Dsp10bpp_FilmGrainAutoregressionLuma
  dsp->film_grain.luma_auto_regression[0] =
      ApplyAutoRegressiveFilterToLumaGrain_C<10, int16_t>;
  dsp->film_grain.luma_auto_regression[1] =
      ApplyAutoRegressiveFilterToLumaGrain_C<10, int16_t>;
  dsp->film_grain.luma_auto_regression[2] =
      ApplyAutoRegressiveFilterToLumaGrain_C<10, int16_t>;
#endif
#ifndef LIBGAV1_Dsp10bpp_FilmGrainAutoregressionChroma
  // Chroma autoregression should never be called when lag is 0 and use_luma is
  // false.
  dsp->film_grain.chroma_auto_regression[0][0] = nullptr;
  dsp->film_grain.chroma_auto_regression[0][1] =
      ApplyAutoRegressiveFilterToChromaGrains_C<10, int16_t, 1, false>;
  dsp->film_grain.chroma_auto_regression[0][2] =
      ApplyAutoRegressiveFilterToChromaGrains_C<10, int16_t, 2, false>;
  dsp->film_grain.chroma_auto_regression[0][3] =
      ApplyAutoRegressiveFilterToChromaGrains_C<10, int16_t, 3, false>;
  dsp->film_grain.chroma_auto_regression[1][0] =
      ApplyAutoRegressiveFilterToChromaGrains_C<10, int16_t, 0, true>;
  dsp->film_grain.chroma_auto_regression[1][1] =
      ApplyAutoRegressiveFilterToChromaGrains_C<10, int16_t, 1, true>;
  dsp->film_grain.chroma_auto_regression[1][2] =
      ApplyAutoRegressiveFilterToChromaGrains_C<10, int16_t, 2, true>;
  dsp->film_grain.chroma_auto_regression[1][3] =
      ApplyAutoRegressiveFilterToChromaGrains_C<10, int16_t, 3, true>;
#endif
#ifndef LIBGAV1_Dsp10bpp_FilmGrainConstructNoiseStripes
  dsp->film_grain.construct_noise_stripes[0] =
      ConstructNoiseStripes_C<10, int16_t>;
  dsp->film_grain.construct_noise_stripes[1] =
      ConstructNoiseStripesWithOverlap_C<10, int16_t>;
#endif
#ifndef LIBGAV1_Dsp10bpp_FilmGrainConstructNoiseImageOverlap
  dsp->film_grain.construct_noise_image_overlap =
      ConstructNoiseImageOverlap_C<10, int16_t>;
#endif
#ifndef LIBGAV1_Dsp10bpp_FilmGrainInitializeScalingLutFunc
  dsp->film_grain.initialize_scaling_lut = InitializeScalingLookupTable_C<0>;
#endif
#ifndef LIBGAV1_Dsp10bpp_FilmGrainBlendNoiseLuma
  dsp->film_grain.blend_noise_luma =
      BlendNoiseWithImageLuma_C<10, int16_t, uint16_t>;
#endif
#ifndef LIBGAV1_Dsp10bpp_FilmGrainBlendNoiseChroma
  dsp->film_grain.blend_noise_chroma[0] =
      BlendNoiseWithImageChroma_C<10, int16_t, uint16_t>;
#endif
#ifndef LIBGAV1_Dsp10bpp_FilmGrainBlendNoiseChromaWithCfl
  dsp->film_grain.blend_noise_chroma[1] =
      BlendNoiseWithImageChromaWithCfl_C<10, int16_t, uint16_t>;
#endif
#endif  // LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
}
#endif  // LIBGAV1_MAX_BITDEPTH >= 10

}  // namespace
}  // namespace film_grain

void FilmGrainInit_C() {
  film_grain::Init8bpp();
#if LIBGAV1_MAX_BITDEPTH >= 10
  film_grain::Init10bpp();
#endif
}

}  // namespace dsp
}  // namespace libgav1