1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
|
// Copyright 2019 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/dsp/warp.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <type_traits>
#include "src/dsp/constants.h"
#include "src/dsp/dsp.h"
#include "src/utils/common.h"
#include "src/utils/constants.h"
#include "src/utils/memory.h"
namespace libgav1 {
namespace dsp {
namespace {
// Number of extra bits of precision in warped filtering.
constexpr int kWarpedDiffPrecisionBits = 10;
// Warp prediction output ranges from WarpTest.ShowRange.
// Bitdepth: 8 Input range: [ 0, 255]
// 8bpp intermediate offset: 16384.
// intermediate range: [ 4399, 61009]
// first pass output range: [ 550, 7626]
// 8bpp intermediate offset removal: 262144.
// intermediate range: [ -620566, 1072406]
// second pass output range: [ 0, 255]
// compound second pass output range: [ -4848, 8378]
//
// Bitdepth: 10 Input range: [ 0, 1023]
// intermediate range: [ -48081, 179025]
// first pass output range: [ -6010, 22378]
// intermediate range: [-2103516, 4198620]
// second pass output range: [ 0, 1023]
// compound second pass output range: [ 8142, 57378]
//
// Bitdepth: 12 Input range: [ 0, 4095]
// intermediate range: [ -192465, 716625]
// first pass output range: [ -6015, 22395]
// intermediate range: [-2105190, 4201830]
// second pass output range: [ 0, 4095]
// compound second pass output range: [ 8129, 57403]
template <bool is_compound, int bitdepth, typename Pixel>
void Warp_C(const void* const source, ptrdiff_t source_stride,
const int source_width, const int source_height,
const int* const warp_params, const int subsampling_x,
const int subsampling_y, const int block_start_x,
const int block_start_y, const int block_width,
const int block_height, const int16_t alpha, const int16_t beta,
const int16_t gamma, const int16_t delta, void* dest,
ptrdiff_t dest_stride) {
assert(block_width >= 8 && block_height >= 8);
if (is_compound) {
assert(dest_stride == block_width);
}
constexpr int kRoundBitsHorizontal = (bitdepth == 12)
? kInterRoundBitsHorizontal12bpp
: kInterRoundBitsHorizontal;
constexpr int kRoundBitsVertical =
is_compound ? kInterRoundBitsCompoundVertical
: (bitdepth == 12) ? kInterRoundBitsVertical12bpp
: kInterRoundBitsVertical;
// Only used for 8bpp. Allows for keeping the first pass intermediates within
// uint16_t. With 10/12bpp the intermediate value will always require int32_t.
constexpr int first_pass_offset = (bitdepth == 8) ? 1 << 14 : 0;
constexpr int offset_removal =
(first_pass_offset >> kRoundBitsHorizontal) * 128;
constexpr int kMaxPixel = (1 << bitdepth) - 1;
union {
// |intermediate_result| is the output of the horizontal filtering and
// rounding. The range is within int16_t.
int16_t intermediate_result[15][8]; // 15 rows, 8 columns.
// In the simple special cases where the samples in each row are all the
// same, store one sample per row in a column vector.
int16_t intermediate_result_column[15];
};
const auto* const src = static_cast<const Pixel*>(source);
source_stride /= sizeof(Pixel);
using DestType =
typename std::conditional<is_compound, uint16_t, Pixel>::type;
auto* dst = static_cast<DestType*>(dest);
if (!is_compound) dest_stride /= sizeof(dst[0]);
assert(block_width >= 8);
assert(block_height >= 8);
// Warp process applies for each 8x8 block (or smaller).
for (int start_y = block_start_y; start_y < block_start_y + block_height;
start_y += 8) {
for (int start_x = block_start_x; start_x < block_start_x + block_width;
start_x += 8) {
const int src_x = (start_x + 4) << subsampling_x;
const int src_y = (start_y + 4) << subsampling_y;
const int dst_x =
src_x * warp_params[2] + src_y * warp_params[3] + warp_params[0];
const int dst_y =
src_x * warp_params[4] + src_y * warp_params[5] + warp_params[1];
const int x4 = dst_x >> subsampling_x;
const int y4 = dst_y >> subsampling_y;
const int ix4 = x4 >> kWarpedModelPrecisionBits;
const int iy4 = y4 >> kWarpedModelPrecisionBits;
// A prediction block may fall outside the frame's boundaries. If a
// prediction block is calculated using only samples outside the frame's
// boundary, the filtering can be simplified. We can divide the plane
// into several regions and handle them differently.
//
// | |
// 1 | 3 | 1
// | |
// -------+-----------+-------
// |***********|
// 2 |*****4*****| 2
// |***********|
// -------+-----------+-------
// | |
// 1 | 3 | 1
// | |
//
// At the center, region 4 represents the frame and is the general case.
//
// In regions 1 and 2, the prediction block is outside the frame's
// boundary horizontally. Therefore the horizontal filtering can be
// simplified. Furthermore, in the region 1 (at the four corners), the
// prediction is outside the frame's boundary both horizontally and
// vertically, so we get a constant prediction block.
//
// In region 3, the prediction block is outside the frame's boundary
// vertically. Unfortunately because we apply the horizontal filters
// first, by the time we apply the vertical filters, they no longer see
// simple inputs. So the only simplification is that all the rows are
// the same, but we still need to apply all the horizontal and vertical
// filters.
// Check for two simple special cases, where the horizontal filter can
// be significantly simplified.
//
// In general, for each row, the horizontal filter is calculated as
// follows:
// for (int x = -4; x < 4; ++x) {
// const int offset = ...;
// int sum = first_pass_offset;
// for (int k = 0; k < 8; ++k) {
// const int column = Clip3(ix4 + x + k - 3, 0, source_width - 1);
// sum += kWarpedFilters[offset][k] * src_row[column];
// }
// ...
// }
// The column index before clipping, ix4 + x + k - 3, varies in the range
// ix4 - 7 <= ix4 + x + k - 3 <= ix4 + 7. If ix4 - 7 >= source_width - 1
// or ix4 + 7 <= 0, then all the column indexes are clipped to the same
// border index (source_width - 1 or 0, respectively). Then for each x,
// the inner for loop of the horizontal filter is reduced to multiplying
// the border pixel by the sum of the filter coefficients.
if (ix4 - 7 >= source_width - 1 || ix4 + 7 <= 0) {
// Regions 1 and 2.
// Points to the left or right border of the first row of |src|.
const Pixel* first_row_border =
(ix4 + 7 <= 0) ? src : src + source_width - 1;
// In general, for y in [-7, 8), the row number iy4 + y is clipped:
// const int row = Clip3(iy4 + y, 0, source_height - 1);
// In two special cases, iy4 + y is clipped to either 0 or
// source_height - 1 for all y. In the rest of the cases, iy4 + y is
// bounded and we can avoid clipping iy4 + y by relying on a reference
// frame's boundary extension on the top and bottom.
if (iy4 - 7 >= source_height - 1 || iy4 + 7 <= 0) {
// Region 1.
// Every sample used to calculate the prediction block has the same
// value. So the whole prediction block has the same value.
const int row = (iy4 + 7 <= 0) ? 0 : source_height - 1;
const Pixel row_border_pixel = first_row_border[row * source_stride];
DestType* dst_row = dst + start_x - block_start_x;
if (is_compound) {
int sum = row_border_pixel
<< ((14 - kRoundBitsHorizontal) - kRoundBitsVertical);
sum += (bitdepth == 8) ? 0 : kCompoundOffset;
Memset(dst_row, sum, 8);
} else {
Memset(dst_row, row_border_pixel, 8);
}
const DestType* const first_dst_row = dst_row;
dst_row += dest_stride;
for (int y = 1; y < 8; ++y) {
memcpy(dst_row, first_dst_row, 8 * sizeof(*dst_row));
dst_row += dest_stride;
}
// End of region 1. Continue the |start_x| for loop.
continue;
}
// Region 2.
// Horizontal filter.
// The input values in this region are generated by extending the border
// which makes them identical in the horizontal direction. This
// computation could be inlined in the vertical pass but most
// implementations will need a transpose of some sort.
// It is not necessary to use the offset values here because the
// horizontal pass is a simple shift and the vertical pass will always
// require using 32 bits.
for (int y = -7; y < 8; ++y) {
// We may over-read up to 13 pixels above the top source row, or up
// to 13 pixels below the bottom source row. This is proved below.
const int row = iy4 + y;
int sum = first_row_border[row * source_stride];
sum <<= kFilterBits - kRoundBitsHorizontal;
intermediate_result_column[y + 7] = sum;
}
// Vertical filter.
DestType* dst_row = dst + start_x - block_start_x;
int sy4 =
(y4 & ((1 << kWarpedModelPrecisionBits) - 1)) - MultiplyBy4(delta);
for (int y = 0; y < 8; ++y) {
int sy = sy4 - MultiplyBy4(gamma);
for (int x = 0; x < 8; ++x) {
const int offset =
RightShiftWithRounding(sy, kWarpedDiffPrecisionBits) +
kWarpedPixelPrecisionShifts;
assert(offset >= 0);
assert(offset < 3 * kWarpedPixelPrecisionShifts + 1);
int sum = 0;
for (int k = 0; k < 8; ++k) {
sum +=
kWarpedFilters[offset][k] * intermediate_result_column[y + k];
}
sum = RightShiftWithRounding(sum, kRoundBitsVertical);
if (is_compound) {
sum += (bitdepth == 8) ? 0 : kCompoundOffset;
dst_row[x] = static_cast<DestType>(sum);
} else {
dst_row[x] = static_cast<DestType>(Clip3(sum, 0, kMaxPixel));
}
sy += gamma;
}
dst_row += dest_stride;
sy4 += delta;
}
// End of region 2. Continue the |start_x| for loop.
continue;
}
// Regions 3 and 4.
// At this point, we know ix4 - 7 < source_width - 1 and ix4 + 7 > 0.
// It follows that -6 <= ix4 <= source_width + 5. This inequality is
// used below.
// In general, for y in [-7, 8), the row number iy4 + y is clipped:
// const int row = Clip3(iy4 + y, 0, source_height - 1);
// In two special cases, iy4 + y is clipped to either 0 or
// source_height - 1 for all y. In the rest of the cases, iy4 + y is
// bounded and we can avoid clipping iy4 + y by relying on a reference
// frame's boundary extension on the top and bottom.
if (iy4 - 7 >= source_height - 1 || iy4 + 7 <= 0) {
// Region 3.
// Horizontal filter.
const int row = (iy4 + 7 <= 0) ? 0 : source_height - 1;
const Pixel* const src_row = src + row * source_stride;
int sx4 = (x4 & ((1 << kWarpedModelPrecisionBits) - 1)) - beta * 7;
for (int y = -7; y < 8; ++y) {
int sx = sx4 - MultiplyBy4(alpha);
for (int x = -4; x < 4; ++x) {
const int offset =
RightShiftWithRounding(sx, kWarpedDiffPrecisionBits) +
kWarpedPixelPrecisionShifts;
// Since alpha and beta have been validated by SetupShear(), one
// can prove that 0 <= offset <= 3 * 2^6.
assert(offset >= 0);
assert(offset < 3 * kWarpedPixelPrecisionShifts + 1);
// For SIMD optimization:
// |first_pass_offset| guarantees the sum fits in uint16_t for 8bpp.
// For 10/12 bit, the range of sum requires 32 bits.
int sum = first_pass_offset;
for (int k = 0; k < 8; ++k) {
// We assume the source frame has left and right borders of at
// least 13 pixels that extend the frame boundary pixels.
//
// Since -4 <= x <= 3 and 0 <= k <= 7, using the inequality on
// ix4 above, we have
// -13 <= ix4 + x + k - 3 <= source_width + 12,
// or
// -13 <= column <= (source_width - 1) + 13.
// Therefore we may over-read up to 13 pixels before the source
// row, or up to 13 pixels after the source row.
const int column = ix4 + x + k - 3;
sum += kWarpedFilters[offset][k] * src_row[column];
}
intermediate_result[y + 7][x + 4] =
RightShiftWithRounding(sum, kRoundBitsHorizontal);
sx += alpha;
}
sx4 += beta;
}
} else {
// Region 4.
// Horizontal filter.
// At this point, we know iy4 - 7 < source_height - 1 and iy4 + 7 > 0.
// It follows that -6 <= iy4 <= source_height + 5. This inequality is
// used below.
int sx4 = (x4 & ((1 << kWarpedModelPrecisionBits) - 1)) - beta * 7;
for (int y = -7; y < 8; ++y) {
// We assume the source frame has top and bottom borders of at least
// 13 pixels that extend the frame boundary pixels.
//
// Since -7 <= y <= 7, using the inequality on iy4 above, we have
// -13 <= iy4 + y <= source_height + 12,
// or
// -13 <= row <= (source_height - 1) + 13.
// Therefore we may over-read up to 13 pixels above the top source
// row, or up to 13 pixels below the bottom source row.
const int row = iy4 + y;
const Pixel* const src_row = src + row * source_stride;
int sx = sx4 - MultiplyBy4(alpha);
for (int x = -4; x < 4; ++x) {
const int offset =
RightShiftWithRounding(sx, kWarpedDiffPrecisionBits) +
kWarpedPixelPrecisionShifts;
// Since alpha and beta have been validated by SetupShear(), one
// can prove that 0 <= offset <= 3 * 2^6.
assert(offset >= 0);
assert(offset < 3 * kWarpedPixelPrecisionShifts + 1);
// For SIMD optimization:
// |first_pass_offset| guarantees the sum fits in uint16_t for 8bpp.
// For 10/12 bit, the range of sum requires 32 bits.
int sum = first_pass_offset;
for (int k = 0; k < 8; ++k) {
// We assume the source frame has left and right borders of at
// least 13 pixels that extend the frame boundary pixels.
//
// Since -4 <= x <= 3 and 0 <= k <= 7, using the inequality on
// ix4 above, we have
// -13 <= ix4 + x + k - 3 <= source_width + 12,
// or
// -13 <= column <= (source_width - 1) + 13.
// Therefore we may over-read up to 13 pixels before the source
// row, or up to 13 pixels after the source row.
const int column = ix4 + x + k - 3;
sum += kWarpedFilters[offset][k] * src_row[column];
}
intermediate_result[y + 7][x + 4] =
RightShiftWithRounding(sum, kRoundBitsHorizontal) -
offset_removal;
sx += alpha;
}
sx4 += beta;
}
}
// Regions 3 and 4.
// Vertical filter.
DestType* dst_row = dst + start_x - block_start_x;
int sy4 =
(y4 & ((1 << kWarpedModelPrecisionBits) - 1)) - MultiplyBy4(delta);
// The spec says we should use the following loop condition:
// y < std::min(4, block_start_y + block_height - start_y - 4);
// We can prove that block_start_y + block_height - start_y >= 8, which
// implies std::min(4, block_start_y + block_height - start_y - 4) = 4.
// So the loop condition is simply y < 4.
//
// Proof:
// start_y < block_start_y + block_height
// => block_start_y + block_height - start_y > 0
// => block_height - (start_y - block_start_y) > 0
//
// Since block_height >= 8 and is a power of 2, it follows that
// block_height is a multiple of 8. start_y - block_start_y is also a
// multiple of 8. Therefore their difference is a multiple of 8. Since
// their difference is > 0, their difference must be >= 8.
//
// We then add an offset of 4 to y so that the loop starts with y = 0
// and continues if y < 8.
for (int y = 0; y < 8; ++y) {
int sy = sy4 - MultiplyBy4(gamma);
// The spec says we should use the following loop condition:
// x < std::min(4, block_start_x + block_width - start_x - 4);
// Similar to the above, we can prove that the loop condition can be
// simplified to x < 4.
//
// We then add an offset of 4 to x so that the loop starts with x = 0
// and continues if x < 8.
for (int x = 0; x < 8; ++x) {
const int offset =
RightShiftWithRounding(sy, kWarpedDiffPrecisionBits) +
kWarpedPixelPrecisionShifts;
// Since gamma and delta have been validated by SetupShear(), one can
// prove that 0 <= offset <= 3 * 2^6.
assert(offset >= 0);
assert(offset < 3 * kWarpedPixelPrecisionShifts + 1);
int sum = 0;
for (int k = 0; k < 8; ++k) {
sum += kWarpedFilters[offset][k] * intermediate_result[y + k][x];
}
sum -= offset_removal;
sum = RightShiftWithRounding(sum, kRoundBitsVertical);
if (is_compound) {
sum += (bitdepth == 8) ? 0 : kCompoundOffset;
dst_row[x] = static_cast<DestType>(sum);
} else {
dst_row[x] = static_cast<DestType>(Clip3(sum, 0, kMaxPixel));
}
sy += gamma;
}
dst_row += dest_stride;
sy4 += delta;
}
}
dst += 8 * dest_stride;
}
}
void Init8bpp() {
Dsp* const dsp = dsp_internal::GetWritableDspTable(8);
assert(dsp != nullptr);
#if LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
dsp->warp = Warp_C</*is_compound=*/false, 8, uint8_t>;
dsp->warp_compound = Warp_C</*is_compound=*/true, 8, uint8_t>;
#else // !LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
static_cast<void>(dsp);
#ifndef LIBGAV1_Dsp8bpp_Warp
dsp->warp = Warp_C</*is_compound=*/false, 8, uint8_t>;
#endif
#ifndef LIBGAV1_Dsp8bpp_WarpCompound
dsp->warp_compound = Warp_C</*is_compound=*/true, 8, uint8_t>;
#endif
#endif // LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
}
#if LIBGAV1_MAX_BITDEPTH >= 10
void Init10bpp() {
Dsp* const dsp = dsp_internal::GetWritableDspTable(10);
assert(dsp != nullptr);
#if LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
dsp->warp = Warp_C</*is_compound=*/false, 10, uint16_t>;
dsp->warp_compound = Warp_C</*is_compound=*/true, 10, uint16_t>;
#else // !LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
static_cast<void>(dsp);
#ifndef LIBGAV1_Dsp10bpp_Warp
dsp->warp = Warp_C</*is_compound=*/false, 10, uint16_t>;
#endif
#ifndef LIBGAV1_Dsp10bpp_WarpCompound
dsp->warp_compound = Warp_C</*is_compound=*/true, 10, uint16_t>;
#endif
#endif // LIBGAV1_ENABLE_ALL_DSP_FUNCTIONS
}
#endif
} // namespace
void WarpInit_C() {
Init8bpp();
#if LIBGAV1_MAX_BITDEPTH >= 10
Init10bpp();
#endif
}
} // namespace dsp
} // namespace libgav1
|