aboutsummaryrefslogtreecommitdiff
path: root/src/dsp/x86/cdef_avx2.cc
blob: 01a2b9f010e8435496ad0704ec65700a7a194a69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
// Copyright 2021 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "src/dsp/cdef.h"
#include "src/utils/cpu.h"

#if LIBGAV1_TARGETING_AVX2
#include <immintrin.h>

#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>

#include "src/dsp/constants.h"
#include "src/dsp/dsp.h"
#include "src/dsp/x86/common_avx2.h"
#include "src/utils/common.h"
#include "src/utils/constants.h"

namespace libgav1 {
namespace dsp {
namespace low_bitdepth {
namespace {

#include "src/dsp/cdef.inc"

// Used when calculating odd |cost[x]| values.
// Holds elements 1 3 5 7 7 7 7 7
alignas(32) constexpr uint32_t kCdefDivisionTableOddPairsPadded[] = {
    420, 210, 140, 105, 420, 210, 140, 105,
    105, 105, 105, 105, 105, 105, 105, 105};

// ----------------------------------------------------------------------------
// Refer to CdefDirection_C().
//
// int32_t partial[8][15] = {};
// for (int i = 0; i < 8; ++i) {
//   for (int j = 0; j < 8; ++j) {
//     const int x = 1;
//     partial[0][i + j] += x;
//     partial[1][i + j / 2] += x;
//     partial[2][i] += x;
//     partial[3][3 + i - j / 2] += x;
//     partial[4][7 + i - j] += x;
//     partial[5][3 - i / 2 + j] += x;
//     partial[6][j] += x;
//     partial[7][i / 2 + j] += x;
//   }
// }
//
// Using the code above, generate the position count for partial[8][15].
//
// partial[0]: 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
// partial[1]: 2 4 6 8 8 8 8 8 6 4 2 0 0 0 0
// partial[2]: 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0
// partial[3]: 2 4 6 8 8 8 8 8 6 4 2 0 0 0 0
// partial[4]: 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
// partial[5]: 2 4 6 8 8 8 8 8 6 4 2 0 0 0 0
// partial[6]: 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0
// partial[7]: 2 4 6 8 8 8 8 8 6 4 2 0 0 0 0
//
// The SIMD code shifts the input horizontally, then adds vertically to get the
// correct partial value for the given position.
// ----------------------------------------------------------------------------

// ----------------------------------------------------------------------------
// partial[0][i + j] += x;
//
// 00 01 02 03 04 05 06 07  00 00 00 00 00 00 00
// 00 10 11 12 13 14 15 16  17 00 00 00 00 00 00
// 00 00 20 21 22 23 24 25  26 27 00 00 00 00 00
// 00 00 00 30 31 32 33 34  35 36 37 00 00 00 00
// 00 00 00 00 40 41 42 43  44 45 46 47 00 00 00
// 00 00 00 00 00 50 51 52  53 54 55 56 57 00 00
// 00 00 00 00 00 00 60 61  62 63 64 65 66 67 00
// 00 00 00 00 00 00 00 70  71 72 73 74 75 76 77
//
// partial[4] is the same except the source is reversed.
LIBGAV1_ALWAYS_INLINE void AddPartial_D0_D4(__m256i* v_src_16,
                                            __m256i* partial_lo,
                                            __m256i* partial_hi) {
  // 00 01 02 03 04 05 06 07
  *partial_lo = v_src_16[0];
  // 00 00 00 00 00 00 00 00
  *partial_hi = _mm256_setzero_si256();

  // 00 10 11 12 13 14 15 16
  *partial_lo =
      _mm256_add_epi16(*partial_lo, _mm256_slli_si256(v_src_16[1], 2));
  // 17 00 00 00 00 00 00 00
  *partial_hi =
      _mm256_add_epi16(*partial_hi, _mm256_srli_si256(v_src_16[1], 14));

  // 00 00 20 21 22 23 24 25
  *partial_lo =
      _mm256_add_epi16(*partial_lo, _mm256_slli_si256(v_src_16[2], 4));
  // 26 27 00 00 00 00 00 00
  *partial_hi =
      _mm256_add_epi16(*partial_hi, _mm256_srli_si256(v_src_16[2], 12));

  // 00 00 00 30 31 32 33 34
  *partial_lo =
      _mm256_add_epi16(*partial_lo, _mm256_slli_si256(v_src_16[3], 6));
  // 35 36 37 00 00 00 00 00
  *partial_hi =
      _mm256_add_epi16(*partial_hi, _mm256_srli_si256(v_src_16[3], 10));

  // 00 00 00 00 40 41 42 43
  *partial_lo =
      _mm256_add_epi16(*partial_lo, _mm256_slli_si256(v_src_16[4], 8));
  // 44 45 46 47 00 00 00 00
  *partial_hi =
      _mm256_add_epi16(*partial_hi, _mm256_srli_si256(v_src_16[4], 8));

  // 00 00 00 00 00 50 51 52
  *partial_lo =
      _mm256_add_epi16(*partial_lo, _mm256_slli_si256(v_src_16[5], 10));
  // 53 54 55 56 57 00 00 00
  *partial_hi =
      _mm256_add_epi16(*partial_hi, _mm256_srli_si256(v_src_16[5], 6));

  // 00 00 00 00 00 00 60 61
  *partial_lo =
      _mm256_add_epi16(*partial_lo, _mm256_slli_si256(v_src_16[6], 12));
  // 62 63 64 65 66 67 00 00
  *partial_hi =
      _mm256_add_epi16(*partial_hi, _mm256_srli_si256(v_src_16[6], 4));

  // 00 00 00 00 00 00 00 70
  *partial_lo =
      _mm256_add_epi16(*partial_lo, _mm256_slli_si256(v_src_16[7], 14));
  // 71 72 73 74 75 76 77 00
  *partial_hi =
      _mm256_add_epi16(*partial_hi, _mm256_srli_si256(v_src_16[7], 2));
}

// ----------------------------------------------------------------------------
// partial[1][i + j / 2] += x;
//
// A0 = src[0] + src[1], A1 = src[2] + src[3], ...
//
// A0 A1 A2 A3 00 00 00 00  00 00 00 00 00 00 00
// 00 B0 B1 B2 B3 00 00 00  00 00 00 00 00 00 00
// 00 00 C0 C1 C2 C3 00 00  00 00 00 00 00 00 00
// 00 00 00 D0 D1 D2 D3 00  00 00 00 00 00 00 00
// 00 00 00 00 E0 E1 E2 E3  00 00 00 00 00 00 00
// 00 00 00 00 00 F0 F1 F2  F3 00 00 00 00 00 00
// 00 00 00 00 00 00 G0 G1  G2 G3 00 00 00 00 00
// 00 00 00 00 00 00 00 H0  H1 H2 H3 00 00 00 00
//
// partial[3] is the same except the source is reversed.
LIBGAV1_ALWAYS_INLINE void AddPartial_D1_D3(__m256i* v_src_16,
                                            __m256i* partial_lo,
                                            __m256i* partial_hi) {
  __m256i v_d1_temp[8];
  const __m256i v_zero = _mm256_setzero_si256();

  for (int i = 0; i < 8; ++i) {
    v_d1_temp[i] = _mm256_hadd_epi16(v_src_16[i], v_zero);
  }

  *partial_lo = *partial_hi = v_zero;
  // A0 A1 A2 A3 00 00 00 00
  *partial_lo = _mm256_add_epi16(*partial_lo, v_d1_temp[0]);

  // 00 B0 B1 B2 B3 00 00 00
  *partial_lo =
      _mm256_add_epi16(*partial_lo, _mm256_slli_si256(v_d1_temp[1], 2));

  // 00 00 C0 C1 C2 C3 00 00
  *partial_lo =
      _mm256_add_epi16(*partial_lo, _mm256_slli_si256(v_d1_temp[2], 4));
  // 00 00 00 D0 D1 D2 D3 00
  *partial_lo =
      _mm256_add_epi16(*partial_lo, _mm256_slli_si256(v_d1_temp[3], 6));
  // 00 00 00 00 E0 E1 E2 E3
  *partial_lo =
      _mm256_add_epi16(*partial_lo, _mm256_slli_si256(v_d1_temp[4], 8));

  // 00 00 00 00 00 F0 F1 F2
  *partial_lo =
      _mm256_add_epi16(*partial_lo, _mm256_slli_si256(v_d1_temp[5], 10));
  // F3 00 00 00 00 00 00 00
  *partial_hi =
      _mm256_add_epi16(*partial_hi, _mm256_srli_si256(v_d1_temp[5], 6));

  // 00 00 00 00 00 00 G0 G1
  *partial_lo =
      _mm256_add_epi16(*partial_lo, _mm256_slli_si256(v_d1_temp[6], 12));
  // G2 G3 00 00 00 00 00 00
  *partial_hi =
      _mm256_add_epi16(*partial_hi, _mm256_srli_si256(v_d1_temp[6], 4));

  // 00 00 00 00 00 00 00 H0
  *partial_lo =
      _mm256_add_epi16(*partial_lo, _mm256_slli_si256(v_d1_temp[7], 14));
  // H1 H2 H3 00 00 00 00 00
  *partial_hi =
      _mm256_add_epi16(*partial_hi, _mm256_srli_si256(v_d1_temp[7], 2));
}

// ----------------------------------------------------------------------------
// partial[7][i / 2 + j] += x;
//
// 00 01 02 03 04 05 06 07  00 00 00 00 00 00 00
// 10 11 12 13 14 15 16 17  00 00 00 00 00 00 00
// 00 20 21 22 23 24 25 26  27 00 00 00 00 00 00
// 00 30 31 32 33 34 35 36  37 00 00 00 00 00 00
// 00 00 40 41 42 43 44 45  46 47 00 00 00 00 00
// 00 00 50 51 52 53 54 55  56 57 00 00 00 00 00
// 00 00 00 60 61 62 63 64  65 66 67 00 00 00 00
// 00 00 00 70 71 72 73 74  75 76 77 00 00 00 00
//
// partial[5] is the same except the source is reversed.
LIBGAV1_ALWAYS_INLINE void AddPartial_D7_D5(__m256i* v_src, __m256i* partial_lo,
                                            __m256i* partial_hi) {
  __m256i v_pair_add[4];
  // Add vertical source pairs.
  v_pair_add[0] = _mm256_add_epi16(v_src[0], v_src[1]);
  v_pair_add[1] = _mm256_add_epi16(v_src[2], v_src[3]);
  v_pair_add[2] = _mm256_add_epi16(v_src[4], v_src[5]);
  v_pair_add[3] = _mm256_add_epi16(v_src[6], v_src[7]);

  // 00 01 02 03 04 05 06 07
  // 10 11 12 13 14 15 16 17
  *partial_lo = v_pair_add[0];
  // 00 00 00 00 00 00 00 00
  // 00 00 00 00 00 00 00 00
  *partial_hi = _mm256_setzero_si256();

  // 00 20 21 22 23 24 25 26
  // 00 30 31 32 33 34 35 36
  *partial_lo =
      _mm256_add_epi16(*partial_lo, _mm256_slli_si256(v_pair_add[1], 2));
  // 27 00 00 00 00 00 00 00
  // 37 00 00 00 00 00 00 00
  *partial_hi =
      _mm256_add_epi16(*partial_hi, _mm256_srli_si256(v_pair_add[1], 14));

  // 00 00 40 41 42 43 44 45
  // 00 00 50 51 52 53 54 55
  *partial_lo =
      _mm256_add_epi16(*partial_lo, _mm256_slli_si256(v_pair_add[2], 4));
  // 46 47 00 00 00 00 00 00
  // 56 57 00 00 00 00 00 00
  *partial_hi =
      _mm256_add_epi16(*partial_hi, _mm256_srli_si256(v_pair_add[2], 12));

  // 00 00 00 60 61 62 63 64
  // 00 00 00 70 71 72 73 74
  *partial_lo =
      _mm256_add_epi16(*partial_lo, _mm256_slli_si256(v_pair_add[3], 6));
  // 65 66 67 00 00 00 00 00
  // 75 76 77 00 00 00 00 00
  *partial_hi =
      _mm256_add_epi16(*partial_hi, _mm256_srli_si256(v_pair_add[3], 10));
}

LIBGAV1_ALWAYS_INLINE void AddPartial(const uint8_t* LIBGAV1_RESTRICT src,
                                      ptrdiff_t stride, __m256i* partial) {
  // 8x8 input
  // 00 01 02 03 04 05 06 07
  // 10 11 12 13 14 15 16 17
  // 20 21 22 23 24 25 26 27
  // 30 31 32 33 34 35 36 37
  // 40 41 42 43 44 45 46 47
  // 50 51 52 53 54 55 56 57
  // 60 61 62 63 64 65 66 67
  // 70 71 72 73 74 75 76 77
  __m256i v_src[8];
  for (auto& i : v_src) {
    i = _mm256_castsi128_si256(LoadLo8(src));
    // Dup lower lane.
    i = _mm256_permute2x128_si256(i, i, 0x0);
    src += stride;
  }

  const __m256i v_zero = _mm256_setzero_si256();
  // partial for direction 2
  // --------------------------------------------------------------------------
  // partial[2][i] += x;
  // 00 10 20 30 40 50 60 70  xx xx xx xx xx xx xx xx
  // 01 11 21 33 41 51 61 71  xx xx xx xx xx xx xx xx
  // 02 12 22 33 42 52 62 72  xx xx xx xx xx xx xx xx
  // 03 13 23 33 43 53 63 73  xx xx xx xx xx xx xx xx
  // 04 14 24 34 44 54 64 74  xx xx xx xx xx xx xx xx
  // 05 15 25 35 45 55 65 75  xx xx xx xx xx xx xx xx
  // 06 16 26 36 46 56 66 76  xx xx xx xx xx xx xx xx
  // 07 17 27 37 47 57 67 77  xx xx xx xx xx xx xx xx
  const __m256i v_src_4_0 = _mm256_unpacklo_epi64(v_src[0], v_src[4]);
  const __m256i v_src_5_1 = _mm256_unpacklo_epi64(v_src[1], v_src[5]);
  const __m256i v_src_6_2 = _mm256_unpacklo_epi64(v_src[2], v_src[6]);
  const __m256i v_src_7_3 = _mm256_unpacklo_epi64(v_src[3], v_src[7]);
  const __m256i v_hsum_4_0 = _mm256_sad_epu8(v_src_4_0, v_zero);
  const __m256i v_hsum_5_1 = _mm256_sad_epu8(v_src_5_1, v_zero);
  const __m256i v_hsum_6_2 = _mm256_sad_epu8(v_src_6_2, v_zero);
  const __m256i v_hsum_7_3 = _mm256_sad_epu8(v_src_7_3, v_zero);
  const __m256i v_hsum_1_0 = _mm256_unpacklo_epi16(v_hsum_4_0, v_hsum_5_1);
  const __m256i v_hsum_3_2 = _mm256_unpacklo_epi16(v_hsum_6_2, v_hsum_7_3);
  const __m256i v_hsum_5_4 = _mm256_unpackhi_epi16(v_hsum_4_0, v_hsum_5_1);
  const __m256i v_hsum_7_6 = _mm256_unpackhi_epi16(v_hsum_6_2, v_hsum_7_3);
  partial[2] =
      _mm256_unpacklo_epi64(_mm256_unpacklo_epi32(v_hsum_1_0, v_hsum_3_2),
                            _mm256_unpacklo_epi32(v_hsum_5_4, v_hsum_7_6));

  const __m256i extend_reverse = SetrM128i(
      _mm_set_epi32(static_cast<int>(0x80078006), static_cast<int>(0x80058004),
                    static_cast<int>(0x80038002), static_cast<int>(0x80018000)),
      _mm_set_epi32(static_cast<int>(0x80008001), static_cast<int>(0x80028003),
                    static_cast<int>(0x80048005),
                    static_cast<int>(0x80068007)));

  for (auto& i : v_src) {
    // Zero extend unsigned 8 to 16. The upper lane is reversed.
    i = _mm256_shuffle_epi8(i, extend_reverse);
  }

  // partial for direction 6
  // --------------------------------------------------------------------------
  // partial[6][j] += x;
  // 00 01 02 03 04 05 06 07  xx xx xx xx xx xx xx xx
  // 10 11 12 13 14 15 16 17  xx xx xx xx xx xx xx xx
  // 20 21 22 23 24 25 26 27  xx xx xx xx xx xx xx xx
  // 30 31 32 33 34 35 36 37  xx xx xx xx xx xx xx xx
  // 40 41 42 43 44 45 46 47  xx xx xx xx xx xx xx xx
  // 50 51 52 53 54 55 56 57  xx xx xx xx xx xx xx xx
  // 60 61 62 63 64 65 66 67  xx xx xx xx xx xx xx xx
  // 70 71 72 73 74 75 76 77  xx xx xx xx xx xx xx xx
  partial[6] = v_src[0];
  for (int i = 1; i < 8; ++i) {
    partial[6] = _mm256_add_epi16(partial[6], v_src[i]);
  }

  AddPartial_D0_D4(v_src, &partial[0], &partial[4]);
  AddPartial_D1_D3(v_src, &partial[1], &partial[3]);
  AddPartial_D7_D5(v_src, &partial[7], &partial[5]);
}

inline __m256i SumVectorPair_S32(__m256i a) {
  a = _mm256_hadd_epi32(a, a);
  a = _mm256_add_epi32(a, _mm256_srli_si256(a, 4));
  return a;
}

// |cost[0]| and |cost[4]| square the input and sum with the corresponding
// element from the other end of the vector:
// |kCdefDivisionTable[]| element:
// cost[0] += (Square(partial[0][i]) + Square(partial[0][14 - i])) *
//             kCdefDivisionTable[i + 1];
// cost[0] += Square(partial[0][7]) * kCdefDivisionTable[8];
inline void Cost0Or4_Pair(uint32_t* cost, const __m256i partial_0,
                          const __m256i partial_4,
                          const __m256i division_table) {
  const __m256i division_table_0 =
      _mm256_permute2x128_si256(division_table, division_table, 0x0);
  const __m256i division_table_1 =
      _mm256_permute2x128_si256(division_table, division_table, 0x11);

  // partial_lo
  const __m256i a = partial_0;
  // partial_hi
  const __m256i b = partial_4;

  // Reverse and clear upper 2 bytes.
  const __m256i reverser = _mm256_broadcastsi128_si256(_mm_set_epi32(
      static_cast<int>(0x80800100), 0x03020504, 0x07060908, 0x0b0a0d0c));

  // 14 13 12 11 10 09 08 ZZ
  const __m256i b_reversed = _mm256_shuffle_epi8(b, reverser);
  // 00 14 01 13 02 12 03 11
  const __m256i ab_lo = _mm256_unpacklo_epi16(a, b_reversed);
  // 04 10 05 09 06 08 07 ZZ
  const __m256i ab_hi = _mm256_unpackhi_epi16(a, b_reversed);

  // Square(partial[0][i]) + Square(partial[0][14 - i])
  const __m256i square_lo = _mm256_madd_epi16(ab_lo, ab_lo);
  const __m256i square_hi = _mm256_madd_epi16(ab_hi, ab_hi);

  const __m256i c = _mm256_mullo_epi32(square_lo, division_table_0);
  const __m256i d = _mm256_mullo_epi32(square_hi, division_table_1);
  const __m256i e = SumVectorPair_S32(_mm256_add_epi32(c, d));
  // Copy upper 32bit sum to lower lane.
  const __m128i sums =
      _mm256_castsi256_si128(_mm256_permute4x64_epi64(e, 0x08));
  cost[0] = _mm_cvtsi128_si32(sums);
  cost[4] = _mm_cvtsi128_si32(_mm_srli_si128(sums, 8));
}

template <int index_a, int index_b>
inline void CostOdd_Pair(uint32_t* cost, const __m256i partial_a,
                         const __m256i partial_b,
                         const __m256i division_table[2]) {
  // partial_lo
  const __m256i a = partial_a;
  // partial_hi
  const __m256i b = partial_b;

  // Reverse and clear upper 10 bytes.
  const __m256i reverser = _mm256_broadcastsi128_si256(
      _mm_set_epi32(static_cast<int>(0x80808080), static_cast<int>(0x80808080),
                    static_cast<int>(0x80800100), 0x03020504));

  // 10 09 08 ZZ ZZ ZZ ZZ ZZ
  const __m256i b_reversed = _mm256_shuffle_epi8(b, reverser);
  // 00 10 01 09 02 08 03 ZZ
  const __m256i ab_lo = _mm256_unpacklo_epi16(a, b_reversed);
  // 04 ZZ 05 ZZ 06 ZZ 07 ZZ
  const __m256i ab_hi = _mm256_unpackhi_epi16(a, b_reversed);

  // Square(partial[0][i]) + Square(partial[0][14 - i])
  const __m256i square_lo = _mm256_madd_epi16(ab_lo, ab_lo);
  const __m256i square_hi = _mm256_madd_epi16(ab_hi, ab_hi);

  const __m256i c = _mm256_mullo_epi32(square_lo, division_table[0]);
  const __m256i d = _mm256_mullo_epi32(square_hi, division_table[1]);
  const __m256i e = SumVectorPair_S32(_mm256_add_epi32(c, d));
  // Copy upper 32bit sum to lower lane.
  const __m128i sums =
      _mm256_castsi256_si128(_mm256_permute4x64_epi64(e, 0x08));
  cost[index_a] = _mm_cvtsi128_si32(sums);
  cost[index_b] = _mm_cvtsi128_si32(_mm_srli_si128(sums, 8));
}

inline void Cost2And6_Pair(uint32_t* cost, const __m256i partial_a,
                           const __m256i partial_b,
                           const __m256i division_table) {
  // The upper lane is a "don't care", so only use the lower lane for
  // calculating cost.
  const __m256i a = _mm256_permute2x128_si256(partial_a, partial_b, 0x20);

  const __m256i square_a = _mm256_madd_epi16(a, a);
  const __m256i b = _mm256_mullo_epi32(square_a, division_table);
  const __m256i c = SumVectorPair_S32(b);
  // Copy upper 32bit sum to lower lane.
  const __m128i sums =
      _mm256_castsi256_si128(_mm256_permute4x64_epi64(c, 0x08));
  cost[2] = _mm_cvtsi128_si32(sums);
  cost[6] = _mm_cvtsi128_si32(_mm_srli_si128(sums, 8));
}

void CdefDirection_AVX2(const void* LIBGAV1_RESTRICT const source,
                        ptrdiff_t stride,
                        uint8_t* LIBGAV1_RESTRICT const direction,
                        int* LIBGAV1_RESTRICT const variance) {
  assert(direction != nullptr);
  assert(variance != nullptr);
  const auto* src = static_cast<const uint8_t*>(source);
  uint32_t cost[8];

  // partial[0] = add partial 0,4 low
  // partial[1] = add partial 1,3 low
  // partial[2] = add partial 2 low
  // partial[3] = add partial 1,3 high
  // partial[4] = add partial 0,4 high
  // partial[5] = add partial 7,5 high
  // partial[6] = add partial 6 low
  // partial[7] = add partial 7,5 low
  __m256i partial[8];

  AddPartial(src, stride, partial);

  const __m256i division_table = LoadUnaligned32(kCdefDivisionTable);
  const __m256i division_table_7 =
      _mm256_broadcastd_epi32(_mm_cvtsi32_si128(kCdefDivisionTable[7]));

  Cost2And6_Pair(cost, partial[2], partial[6], division_table_7);

  Cost0Or4_Pair(cost, partial[0], partial[4], division_table);

  const __m256i division_table_odd[2] = {
      LoadUnaligned32(kCdefDivisionTableOddPairsPadded),
      LoadUnaligned32(kCdefDivisionTableOddPairsPadded + 8)};

  CostOdd_Pair<1, 3>(cost, partial[1], partial[3], division_table_odd);
  CostOdd_Pair<7, 5>(cost, partial[7], partial[5], division_table_odd);

  uint32_t best_cost = 0;
  *direction = 0;
  for (int i = 0; i < 8; ++i) {
    if (cost[i] > best_cost) {
      best_cost = cost[i];
      *direction = i;
    }
  }
  *variance = (best_cost - cost[(*direction + 4) & 7]) >> 10;
}

// -------------------------------------------------------------------------
// CdefFilter

// Load 4 vectors based on the given |direction|.
inline void LoadDirection(const uint16_t* LIBGAV1_RESTRICT const src,
                          const ptrdiff_t stride, __m128i* output,
                          const int direction) {
  // Each |direction| describes a different set of source values. Expand this
  // set by negating each set. For |direction| == 0 this gives a diagonal line
  // from top right to bottom left. The first value is y, the second x. Negative
  // y values move up.
  //    a       b         c       d
  // {-1, 1}, {1, -1}, {-2, 2}, {2, -2}
  //         c
  //       a
  //     0
  //   b
  // d
  const int y_0 = kCdefDirections[direction][0][0];
  const int x_0 = kCdefDirections[direction][0][1];
  const int y_1 = kCdefDirections[direction][1][0];
  const int x_1 = kCdefDirections[direction][1][1];
  output[0] = LoadUnaligned16(src - y_0 * stride - x_0);
  output[1] = LoadUnaligned16(src + y_0 * stride + x_0);
  output[2] = LoadUnaligned16(src - y_1 * stride - x_1);
  output[3] = LoadUnaligned16(src + y_1 * stride + x_1);
}

// Load 4 vectors based on the given |direction|. Use when |block_width| == 4 to
// do 2 rows at a time.
void LoadDirection4(const uint16_t* LIBGAV1_RESTRICT const src,
                    const ptrdiff_t stride, __m128i* output,
                    const int direction) {
  const int y_0 = kCdefDirections[direction][0][0];
  const int x_0 = kCdefDirections[direction][0][1];
  const int y_1 = kCdefDirections[direction][1][0];
  const int x_1 = kCdefDirections[direction][1][1];
  output[0] = LoadHi8(LoadLo8(src - y_0 * stride - x_0),
                      src - y_0 * stride + stride - x_0);
  output[1] = LoadHi8(LoadLo8(src + y_0 * stride + x_0),
                      src + y_0 * stride + stride + x_0);
  output[2] = LoadHi8(LoadLo8(src - y_1 * stride - x_1),
                      src - y_1 * stride + stride - x_1);
  output[3] = LoadHi8(LoadLo8(src + y_1 * stride + x_1),
                      src + y_1 * stride + stride + x_1);
}

inline __m256i Constrain(const __m256i& pixel, const __m256i& reference,
                         const __m128i& damping, const __m256i& threshold) {
  const __m256i diff = _mm256_sub_epi16(pixel, reference);
  const __m256i abs_diff = _mm256_abs_epi16(diff);
  // sign(diff) * Clip3(threshold - (std::abs(diff) >> damping),
  //                    0, std::abs(diff))
  const __m256i shifted_diff = _mm256_srl_epi16(abs_diff, damping);
  // For bitdepth == 8, the threshold range is [0, 15] and the damping range is
  // [3, 6]. If pixel == kCdefLargeValue(0x4000), shifted_diff will always be
  // larger than threshold. Subtract using saturation will return 0 when pixel
  // == kCdefLargeValue.
  static_assert(kCdefLargeValue == 0x4000, "Invalid kCdefLargeValue");
  const __m256i thresh_minus_shifted_diff =
      _mm256_subs_epu16(threshold, shifted_diff);
  const __m256i clamp_abs_diff =
      _mm256_min_epi16(thresh_minus_shifted_diff, abs_diff);
  // Restore the sign.
  return _mm256_sign_epi16(clamp_abs_diff, diff);
}

inline __m256i ApplyConstrainAndTap(const __m256i& pixel, const __m256i& val,
                                    const __m256i& tap, const __m128i& damping,
                                    const __m256i& threshold) {
  const __m256i constrained = Constrain(val, pixel, damping, threshold);
  return _mm256_mullo_epi16(constrained, tap);
}

template <int width, bool enable_primary = true, bool enable_secondary = true>
void CdefFilter_AVX2(const uint16_t* LIBGAV1_RESTRICT src,
                     const ptrdiff_t src_stride, const int height,
                     const int primary_strength, const int secondary_strength,
                     const int damping, const int direction,
                     void* LIBGAV1_RESTRICT dest, const ptrdiff_t dst_stride) {
  static_assert(width == 8 || width == 4, "Invalid CDEF width.");
  static_assert(enable_primary || enable_secondary, "");
  constexpr bool clipping_required = enable_primary && enable_secondary;
  auto* dst = static_cast<uint8_t*>(dest);
  __m128i primary_damping_shift, secondary_damping_shift;

  // FloorLog2() requires input to be > 0.
  // 8-bit damping range: Y: [3, 6], UV: [2, 5].
  if (enable_primary) {
    // primary_strength: [0, 15] -> FloorLog2: [0, 3] so a clamp is necessary
    // for UV filtering.
    primary_damping_shift =
        _mm_cvtsi32_si128(std::max(0, damping - FloorLog2(primary_strength)));
  }
  if (enable_secondary) {
    // secondary_strength: [0, 4] -> FloorLog2: [0, 2] so no clamp to 0 is
    // necessary.
    assert(damping - FloorLog2(secondary_strength) >= 0);
    secondary_damping_shift =
        _mm_cvtsi32_si128(damping - FloorLog2(secondary_strength));
  }
  const __m256i primary_tap_0 = _mm256_broadcastw_epi16(
      _mm_cvtsi32_si128(kCdefPrimaryTaps[primary_strength & 1][0]));
  const __m256i primary_tap_1 = _mm256_broadcastw_epi16(
      _mm_cvtsi32_si128(kCdefPrimaryTaps[primary_strength & 1][1]));
  const __m256i secondary_tap_0 =
      _mm256_broadcastw_epi16(_mm_cvtsi32_si128(kCdefSecondaryTap0));
  const __m256i secondary_tap_1 =
      _mm256_broadcastw_epi16(_mm_cvtsi32_si128(kCdefSecondaryTap1));
  const __m256i cdef_large_value_mask = _mm256_broadcastw_epi16(
      _mm_cvtsi32_si128(static_cast<int16_t>(~kCdefLargeValue)));
  const __m256i primary_threshold =
      _mm256_broadcastw_epi16(_mm_cvtsi32_si128(primary_strength));
  const __m256i secondary_threshold =
      _mm256_broadcastw_epi16(_mm_cvtsi32_si128(secondary_strength));

  int y = height;
  do {
    __m128i pixel_128;
    if (width == 8) {
      pixel_128 = LoadUnaligned16(src);
    } else {
      pixel_128 = LoadHi8(LoadLo8(src), src + src_stride);
    }

    __m256i pixel = SetrM128i(pixel_128, pixel_128);

    __m256i min = pixel;
    __m256i max = pixel;
    __m256i sum_pair;

    if (enable_primary) {
      // Primary |direction|.
      __m128i primary_val_128[4];
      if (width == 8) {
        LoadDirection(src, src_stride, primary_val_128, direction);
      } else {
        LoadDirection4(src, src_stride, primary_val_128, direction);
      }

      __m256i primary_val[2];
      primary_val[0] = SetrM128i(primary_val_128[0], primary_val_128[1]);
      primary_val[1] = SetrM128i(primary_val_128[2], primary_val_128[3]);

      if (clipping_required) {
        min = _mm256_min_epu16(min, primary_val[0]);
        min = _mm256_min_epu16(min, primary_val[1]);

        // The source is 16 bits, however, we only really care about the lower
        // 8 bits.  The upper 8 bits contain the "large" flag.  After the final
        // primary max has been calculated, zero out the upper 8 bits.  Use this
        // to find the "16 bit" max.
        const __m256i max_p01 = _mm256_max_epu8(primary_val[0], primary_val[1]);
        max = _mm256_max_epu16(
            max, _mm256_and_si256(max_p01, cdef_large_value_mask));
      }

      sum_pair = ApplyConstrainAndTap(pixel, primary_val[0], primary_tap_0,
                                      primary_damping_shift, primary_threshold);
      sum_pair = _mm256_add_epi16(
          sum_pair,
          ApplyConstrainAndTap(pixel, primary_val[1], primary_tap_1,
                               primary_damping_shift, primary_threshold));
    } else {
      sum_pair = _mm256_setzero_si256();
    }

    if (enable_secondary) {
      // Secondary |direction| values (+/- 2). Clamp |direction|.
      __m128i secondary_val_128[8];
      if (width == 8) {
        LoadDirection(src, src_stride, secondary_val_128, direction + 2);
        LoadDirection(src, src_stride, secondary_val_128 + 4, direction - 2);
      } else {
        LoadDirection4(src, src_stride, secondary_val_128, direction + 2);
        LoadDirection4(src, src_stride, secondary_val_128 + 4, direction - 2);
      }

      __m256i secondary_val[4];
      secondary_val[0] = SetrM128i(secondary_val_128[0], secondary_val_128[1]);
      secondary_val[1] = SetrM128i(secondary_val_128[2], secondary_val_128[3]);
      secondary_val[2] = SetrM128i(secondary_val_128[4], secondary_val_128[5]);
      secondary_val[3] = SetrM128i(secondary_val_128[6], secondary_val_128[7]);

      if (clipping_required) {
        min = _mm256_min_epu16(min, secondary_val[0]);
        min = _mm256_min_epu16(min, secondary_val[1]);
        min = _mm256_min_epu16(min, secondary_val[2]);
        min = _mm256_min_epu16(min, secondary_val[3]);

        const __m256i max_s01 =
            _mm256_max_epu8(secondary_val[0], secondary_val[1]);
        const __m256i max_s23 =
            _mm256_max_epu8(secondary_val[2], secondary_val[3]);
        const __m256i max_s = _mm256_max_epu8(max_s01, max_s23);
        max = _mm256_max_epu8(max,
                              _mm256_and_si256(max_s, cdef_large_value_mask));
      }

      sum_pair = _mm256_add_epi16(
          sum_pair,
          ApplyConstrainAndTap(pixel, secondary_val[0], secondary_tap_0,
                               secondary_damping_shift, secondary_threshold));
      sum_pair = _mm256_add_epi16(
          sum_pair,
          ApplyConstrainAndTap(pixel, secondary_val[1], secondary_tap_1,
                               secondary_damping_shift, secondary_threshold));
      sum_pair = _mm256_add_epi16(
          sum_pair,
          ApplyConstrainAndTap(pixel, secondary_val[2], secondary_tap_0,
                               secondary_damping_shift, secondary_threshold));
      sum_pair = _mm256_add_epi16(
          sum_pair,
          ApplyConstrainAndTap(pixel, secondary_val[3], secondary_tap_1,
                               secondary_damping_shift, secondary_threshold));
    }

    __m128i sum = _mm_add_epi16(_mm256_castsi256_si128(sum_pair),
                                _mm256_extracti128_si256(sum_pair, 1));

    // Clip3(pixel + ((8 + sum - (sum < 0)) >> 4), min, max))
    const __m128i sum_lt_0 = _mm_srai_epi16(sum, 15);
    // 8 + sum
    sum = _mm_add_epi16(sum, _mm_set1_epi16(8));
    // (... - (sum < 0)) >> 4
    sum = _mm_add_epi16(sum, sum_lt_0);
    sum = _mm_srai_epi16(sum, 4);
    // pixel + ...
    sum = _mm_add_epi16(sum, _mm256_castsi256_si128(pixel));
    if (clipping_required) {
      const __m128i min_128 = _mm_min_epu16(_mm256_castsi256_si128(min),
                                            _mm256_extracti128_si256(min, 1));

      const __m128i max_128 = _mm_max_epu16(_mm256_castsi256_si128(max),
                                            _mm256_extracti128_si256(max, 1));
      // Clip3
      sum = _mm_min_epi16(sum, max_128);
      sum = _mm_max_epi16(sum, min_128);
    }

    const __m128i result = _mm_packus_epi16(sum, sum);
    if (width == 8) {
      src += src_stride;
      StoreLo8(dst, result);
      dst += dst_stride;
      --y;
    } else {
      src += src_stride << 1;
      Store4(dst, result);
      dst += dst_stride;
      Store4(dst, _mm_srli_si128(result, 4));
      dst += dst_stride;
      y -= 2;
    }
  } while (y != 0);
}

void Init8bpp() {
  Dsp* const dsp = dsp_internal::GetWritableDspTable(8);
  assert(dsp != nullptr);
  dsp->cdef_direction = CdefDirection_AVX2;

  dsp->cdef_filters[0][0] = CdefFilter_AVX2<4>;
  dsp->cdef_filters[0][1] =
      CdefFilter_AVX2<4, /*enable_primary=*/true, /*enable_secondary=*/false>;
  dsp->cdef_filters[0][2] = CdefFilter_AVX2<4, /*enable_primary=*/false>;
  dsp->cdef_filters[1][0] = CdefFilter_AVX2<8>;
  dsp->cdef_filters[1][1] =
      CdefFilter_AVX2<8, /*enable_primary=*/true, /*enable_secondary=*/false>;
  dsp->cdef_filters[1][2] = CdefFilter_AVX2<8, /*enable_primary=*/false>;
}

}  // namespace
}  // namespace low_bitdepth

void CdefInit_AVX2() { low_bitdepth::Init8bpp(); }

}  // namespace dsp
}  // namespace libgav1
#else   // !LIBGAV1_TARGETING_AVX2
namespace libgav1 {
namespace dsp {

void CdefInit_AVX2() {}

}  // namespace dsp
}  // namespace libgav1
#endif  // LIBGAV1_TARGETING_AVX2