aboutsummaryrefslogtreecommitdiff
path: root/src/dsp/x86/convolve_avx2.cc
blob: 3df2120ca801f2c309d0d831cb6d5cad6fb40e78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
// Copyright 2020 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "src/dsp/convolve.h"
#include "src/utils/cpu.h"

#if LIBGAV1_TARGETING_AVX2
#include <immintrin.h>

#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>

#include "src/dsp/constants.h"
#include "src/dsp/dsp.h"
#include "src/dsp/x86/common_avx2.h"
#include "src/dsp/x86/common_sse4.h"
#include "src/utils/common.h"
#include "src/utils/constants.h"

namespace libgav1 {
namespace dsp {
namespace low_bitdepth {
namespace {

constexpr int kHorizontalOffset = 3;

// Multiply every entry in |src[]| by the corresponding entry in |taps[]| and
// sum. The filters in |taps[]| are pre-shifted by 1. This prevents the final
// sum from outranging int16_t.
template <int filter_index>
__m256i SumOnePassTaps(const __m256i* const src, const __m256i* const taps) {
  __m256i sum;
  if (filter_index < 2) {
    // 6 taps.
    const __m256i v_madd_21 = _mm256_maddubs_epi16(src[0], taps[0]);  // k2k1
    const __m256i v_madd_43 = _mm256_maddubs_epi16(src[1], taps[1]);  // k4k3
    const __m256i v_madd_65 = _mm256_maddubs_epi16(src[2], taps[2]);  // k6k5
    sum = _mm256_add_epi16(v_madd_21, v_madd_43);
    sum = _mm256_add_epi16(sum, v_madd_65);
  } else if (filter_index == 2) {
    // 8 taps.
    const __m256i v_madd_10 = _mm256_maddubs_epi16(src[0], taps[0]);  // k1k0
    const __m256i v_madd_32 = _mm256_maddubs_epi16(src[1], taps[1]);  // k3k2
    const __m256i v_madd_54 = _mm256_maddubs_epi16(src[2], taps[2]);  // k5k4
    const __m256i v_madd_76 = _mm256_maddubs_epi16(src[3], taps[3]);  // k7k6
    const __m256i v_sum_3210 = _mm256_add_epi16(v_madd_10, v_madd_32);
    const __m256i v_sum_7654 = _mm256_add_epi16(v_madd_54, v_madd_76);
    sum = _mm256_add_epi16(v_sum_7654, v_sum_3210);
  } else if (filter_index == 3) {
    // 2 taps.
    sum = _mm256_maddubs_epi16(src[0], taps[0]);  // k4k3
  } else {
    // 4 taps.
    const __m256i v_madd_32 = _mm256_maddubs_epi16(src[0], taps[0]);  // k3k2
    const __m256i v_madd_54 = _mm256_maddubs_epi16(src[1], taps[1]);  // k5k4
    sum = _mm256_add_epi16(v_madd_32, v_madd_54);
  }
  return sum;
}

template <int filter_index>
__m256i SumHorizontalTaps(const __m256i* const src,
                          const __m256i* const v_tap) {
  __m256i v_src[4];
  const __m256i src_long = *src;
  const __m256i src_long_dup_lo = _mm256_unpacklo_epi8(src_long, src_long);
  const __m256i src_long_dup_hi = _mm256_unpackhi_epi8(src_long, src_long);

  if (filter_index < 2) {
    // 6 taps.
    v_src[0] = _mm256_alignr_epi8(src_long_dup_hi, src_long_dup_lo, 3);   // _21
    v_src[1] = _mm256_alignr_epi8(src_long_dup_hi, src_long_dup_lo, 7);   // _43
    v_src[2] = _mm256_alignr_epi8(src_long_dup_hi, src_long_dup_lo, 11);  // _65
  } else if (filter_index == 2) {
    // 8 taps.
    v_src[0] = _mm256_alignr_epi8(src_long_dup_hi, src_long_dup_lo, 1);   // _10
    v_src[1] = _mm256_alignr_epi8(src_long_dup_hi, src_long_dup_lo, 5);   // _32
    v_src[2] = _mm256_alignr_epi8(src_long_dup_hi, src_long_dup_lo, 9);   // _54
    v_src[3] = _mm256_alignr_epi8(src_long_dup_hi, src_long_dup_lo, 13);  // _76
  } else if (filter_index == 3) {
    // 2 taps.
    v_src[0] = _mm256_alignr_epi8(src_long_dup_hi, src_long_dup_lo, 7);  // _43
  } else if (filter_index > 3) {
    // 4 taps.
    v_src[0] = _mm256_alignr_epi8(src_long_dup_hi, src_long_dup_lo, 5);  // _32
    v_src[1] = _mm256_alignr_epi8(src_long_dup_hi, src_long_dup_lo, 9);  // _54
  }
  return SumOnePassTaps<filter_index>(v_src, v_tap);
}

template <int filter_index>
__m256i SimpleHorizontalTaps(const __m256i* const src,
                             const __m256i* const v_tap) {
  __m256i sum = SumHorizontalTaps<filter_index>(src, v_tap);

  // Normally the Horizontal pass does the downshift in two passes:
  // kInterRoundBitsHorizontal - 1 and then (kFilterBits -
  // kInterRoundBitsHorizontal). Each one uses a rounding shift. Combining them
  // requires adding the rounding offset from the skipped shift.
  constexpr int first_shift_rounding_bit = 1 << (kInterRoundBitsHorizontal - 2);

  sum = _mm256_add_epi16(sum, _mm256_set1_epi16(first_shift_rounding_bit));
  sum = RightShiftWithRounding_S16(sum, kFilterBits - 1);
  return _mm256_packus_epi16(sum, sum);
}

template <int filter_index>
__m128i SumHorizontalTaps2x2(const uint8_t* src, const ptrdiff_t src_stride,
                             const __m128i* const v_tap) {
  // 00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17
  const __m128i v_src = LoadHi8(LoadLo8(&src[0]), &src[src_stride]);

  if (filter_index == 3) {
    // 03 04 04 05 05 06 06 07 13 14 14 15 15 16 16 17
    const __m128i v_src_43 = _mm_shuffle_epi8(
        v_src, _mm_set_epi32(0x0f0e0e0d, 0x0d0c0c0b, 0x07060605, 0x05040403));
    const __m128i v_sum_43 = _mm_maddubs_epi16(v_src_43, v_tap[0]);  // k4k3
    return v_sum_43;
  }

  // 02 03 03 04 04 05 05 06 12 13 13 14 14 15 15 16
  const __m128i v_src_32 = _mm_shuffle_epi8(
      v_src, _mm_set_epi32(0x0e0d0d0c, 0x0c0b0b0a, 0x06050504, 0x04030302));
  // 04 05 05 06 06 07 07 xx 14 15 15 16 16 17 17 xx
  const __m128i v_src_54 = _mm_shuffle_epi8(
      v_src, _mm_set_epi32(0x800f0f0e, 0x0e0d0d0c, 0x80070706, 0x06050504));
  const __m128i v_madd_32 = _mm_maddubs_epi16(v_src_32, v_tap[0]);  // k3k2
  const __m128i v_madd_54 = _mm_maddubs_epi16(v_src_54, v_tap[1]);  // k5k4
  const __m128i v_sum_5432 = _mm_add_epi16(v_madd_54, v_madd_32);
  return v_sum_5432;
}

template <int filter_index>
__m128i SimpleHorizontalTaps2x2(const uint8_t* src, const ptrdiff_t src_stride,
                                const __m128i* const v_tap) {
  __m128i sum = SumHorizontalTaps2x2<filter_index>(src, src_stride, v_tap);

  // Normally the Horizontal pass does the downshift in two passes:
  // kInterRoundBitsHorizontal - 1 and then (kFilterBits -
  // kInterRoundBitsHorizontal). Each one uses a rounding shift. Combining them
  // requires adding the rounding offset from the skipped shift.
  constexpr int first_shift_rounding_bit = 1 << (kInterRoundBitsHorizontal - 2);

  sum = _mm_add_epi16(sum, _mm_set1_epi16(first_shift_rounding_bit));
  sum = RightShiftWithRounding_S16(sum, kFilterBits - 1);
  return _mm_packus_epi16(sum, sum);
}

template <int filter_index>
__m128i HorizontalTaps8To16_2x2(const uint8_t* src, const ptrdiff_t src_stride,
                                const __m128i* const v_tap) {
  const __m128i sum =
      SumHorizontalTaps2x2<filter_index>(src, src_stride, v_tap);

  return RightShiftWithRounding_S16(sum, kInterRoundBitsHorizontal - 1);
}

// Filter 2xh sizes.
template <int num_taps, int step, int filter_index, bool is_2d = false,
          bool is_compound = false>
void FilterHorizontal(const uint8_t* src, const ptrdiff_t src_stride,
                      void* const dest, const ptrdiff_t pred_stride,
                      const int /*width*/, const int height,
                      const __m128i* const v_tap) {
  auto* dest8 = static_cast<uint8_t*>(dest);
  auto* dest16 = static_cast<uint16_t*>(dest);

  // Horizontal passes only need to account for |num_taps| 2 and 4 when
  // |width| <= 4.
  assert(num_taps <= 4);
  if (num_taps <= 4) {
    if (!is_compound) {
      int y = 0;
      do {
        if (is_2d) {
          const __m128i sum =
              HorizontalTaps8To16_2x2<filter_index>(src, src_stride, v_tap);
          Store4(&dest16[0], sum);
          dest16 += pred_stride;
          Store4(&dest16[0], _mm_srli_si128(sum, 8));
          dest16 += pred_stride;
        } else {
          const __m128i sum =
              SimpleHorizontalTaps2x2<filter_index>(src, src_stride, v_tap);
          Store2(dest8, sum);
          dest8 += pred_stride;
          Store2(dest8, _mm_srli_si128(sum, 4));
          dest8 += pred_stride;
        }

        src += src_stride << 1;
        y += 2;
      } while (y < height - 1);

      // The 2d filters have an odd |height| because the horizontal pass
      // generates context for the vertical pass.
      if (is_2d) {
        assert(height % 2 == 1);
        __m128i sum;
        const __m128i input = LoadLo8(&src[2]);
        if (filter_index == 3) {
          // 03 04 04 05 05 06 06 07 ....
          const __m128i v_src_43 =
              _mm_srli_si128(_mm_unpacklo_epi8(input, input), 3);
          sum = _mm_maddubs_epi16(v_src_43, v_tap[0]);  // k4k3
        } else {
          // 02 03 03 04 04 05 05 06 06 07 ....
          const __m128i v_src_32 =
              _mm_srli_si128(_mm_unpacklo_epi8(input, input), 1);
          // 04 05 05 06 06 07 07 08 ...
          const __m128i v_src_54 = _mm_srli_si128(v_src_32, 4);
          const __m128i v_madd_32 =
              _mm_maddubs_epi16(v_src_32, v_tap[0]);  // k3k2
          const __m128i v_madd_54 =
              _mm_maddubs_epi16(v_src_54, v_tap[1]);  // k5k4
          sum = _mm_add_epi16(v_madd_54, v_madd_32);
        }
        sum = RightShiftWithRounding_S16(sum, kInterRoundBitsHorizontal - 1);
        Store4(dest16, sum);
      }
    }
  }
}

// Filter widths >= 4.
template <int num_taps, int step, int filter_index, bool is_2d = false,
          bool is_compound = false>
void FilterHorizontal(const uint8_t* src, const ptrdiff_t src_stride,
                      void* const dest, const ptrdiff_t pred_stride,
                      const int width, const int height,
                      const __m256i* const v_tap) {
  auto* dest8 = static_cast<uint8_t*>(dest);
  auto* dest16 = static_cast<uint16_t*>(dest);

  if (width >= 32) {
    int y = height;
    do {
      int x = 0;
      do {
        if (is_2d || is_compound) {
          // placeholder
        } else {
          // Load src used to calculate dest8[7:0] and dest8[23:16].
          const __m256i src_long = LoadUnaligned32(&src[x]);
          const __m256i result =
              SimpleHorizontalTaps<filter_index>(&src_long, v_tap);
          // Load src used to calculate dest8[15:8] and dest8[31:24].
          const __m256i src_long2 = LoadUnaligned32(&src[x + 8]);
          const __m256i result2 =
              SimpleHorizontalTaps<filter_index>(&src_long2, v_tap);
          // Combine results and store.
          StoreUnaligned32(&dest8[x], _mm256_unpacklo_epi64(result, result2));
        }
        x += step * 4;
      } while (x < width);
      src += src_stride;
      dest8 += pred_stride;
      dest16 += pred_stride;
    } while (--y != 0);
  } else if (width == 16) {
    int y = height;
    do {
      if (is_2d || is_compound) {
        // placeholder
      } else {
        // Load into 2 128 bit lanes.
        const __m256i src_long = SetrM128i(LoadUnaligned16(&src[0]),
                                           LoadUnaligned16(&src[src_stride]));
        const __m256i result =
            SimpleHorizontalTaps<filter_index>(&src_long, v_tap);
        const __m256i src_long2 = SetrM128i(
            LoadUnaligned16(&src[8]), LoadUnaligned16(&src[8 + src_stride]));
        const __m256i result2 =
            SimpleHorizontalTaps<filter_index>(&src_long2, v_tap);
        const __m256i packed_result = _mm256_unpacklo_epi64(result, result2);
        StoreUnaligned16(&dest8[0], _mm256_castsi256_si128(packed_result));
        StoreUnaligned16(&dest8[pred_stride],
                         _mm256_extracti128_si256(packed_result, 1));
      }
      src += src_stride * 2;
      dest8 += pred_stride * 2;
      dest16 += pred_stride * 2;
      y -= 2;
    } while (y != 0);
  } else if (width == 8) {
    int y = height;
    do {
      if (is_2d || is_compound) {
        // placeholder
      } else {
        const __m128i this_row = LoadUnaligned16(&src[0]);
        const __m128i next_row = LoadUnaligned16(&src[src_stride]);
        // Load into 2 128 bit lanes.
        const __m256i src_long = SetrM128i(this_row, next_row);
        const __m256i result =
            SimpleHorizontalTaps<filter_index>(&src_long, v_tap);
        StoreLo8(&dest8[0], _mm256_castsi256_si128(result));
        StoreLo8(&dest8[pred_stride], _mm256_extracti128_si256(result, 1));
      }
      src += src_stride * 2;
      dest8 += pred_stride * 2;
      dest16 += pred_stride * 2;
      y -= 2;
    } while (y != 0);
  } else {  // width == 4
    int y = height;
    do {
      if (is_2d || is_compound) {
        // placeholder
      } else {
        const __m128i this_row = LoadUnaligned16(&src[0]);
        const __m128i next_row = LoadUnaligned16(&src[src_stride]);
        // Load into 2 128 bit lanes.
        const __m256i src_long = SetrM128i(this_row, next_row);
        const __m256i result =
            SimpleHorizontalTaps<filter_index>(&src_long, v_tap);
        Store4(&dest8[0], _mm256_castsi256_si128(result));
        Store4(&dest8[pred_stride], _mm256_extracti128_si256(result, 1));
      }
      src += src_stride * 2;
      dest8 += pred_stride * 2;
      dest16 += pred_stride * 2;
      y -= 2;
    } while (y != 0);
  }
}

template <int num_taps, bool is_2d_vertical = false>
LIBGAV1_ALWAYS_INLINE void SetupTaps(const __m128i* const filter,
                                     __m128i* v_tap) {
  if (num_taps == 8) {
    v_tap[0] = _mm_shufflelo_epi16(*filter, 0x0);   // k1k0
    v_tap[1] = _mm_shufflelo_epi16(*filter, 0x55);  // k3k2
    v_tap[2] = _mm_shufflelo_epi16(*filter, 0xaa);  // k5k4
    v_tap[3] = _mm_shufflelo_epi16(*filter, 0xff);  // k7k6
    if (is_2d_vertical) {
      v_tap[0] = _mm_cvtepi8_epi16(v_tap[0]);
      v_tap[1] = _mm_cvtepi8_epi16(v_tap[1]);
      v_tap[2] = _mm_cvtepi8_epi16(v_tap[2]);
      v_tap[3] = _mm_cvtepi8_epi16(v_tap[3]);
    } else {
      v_tap[0] = _mm_unpacklo_epi64(v_tap[0], v_tap[0]);
      v_tap[1] = _mm_unpacklo_epi64(v_tap[1], v_tap[1]);
      v_tap[2] = _mm_unpacklo_epi64(v_tap[2], v_tap[2]);
      v_tap[3] = _mm_unpacklo_epi64(v_tap[3], v_tap[3]);
    }
  } else if (num_taps == 6) {
    const __m128i adjusted_filter = _mm_srli_si128(*filter, 1);
    v_tap[0] = _mm_shufflelo_epi16(adjusted_filter, 0x0);   // k2k1
    v_tap[1] = _mm_shufflelo_epi16(adjusted_filter, 0x55);  // k4k3
    v_tap[2] = _mm_shufflelo_epi16(adjusted_filter, 0xaa);  // k6k5
    if (is_2d_vertical) {
      v_tap[0] = _mm_cvtepi8_epi16(v_tap[0]);
      v_tap[1] = _mm_cvtepi8_epi16(v_tap[1]);
      v_tap[2] = _mm_cvtepi8_epi16(v_tap[2]);
    } else {
      v_tap[0] = _mm_unpacklo_epi64(v_tap[0], v_tap[0]);
      v_tap[1] = _mm_unpacklo_epi64(v_tap[1], v_tap[1]);
      v_tap[2] = _mm_unpacklo_epi64(v_tap[2], v_tap[2]);
    }
  } else if (num_taps == 4) {
    v_tap[0] = _mm_shufflelo_epi16(*filter, 0x55);  // k3k2
    v_tap[1] = _mm_shufflelo_epi16(*filter, 0xaa);  // k5k4
    if (is_2d_vertical) {
      v_tap[0] = _mm_cvtepi8_epi16(v_tap[0]);
      v_tap[1] = _mm_cvtepi8_epi16(v_tap[1]);
    } else {
      v_tap[0] = _mm_unpacklo_epi64(v_tap[0], v_tap[0]);
      v_tap[1] = _mm_unpacklo_epi64(v_tap[1], v_tap[1]);
    }
  } else {  // num_taps == 2
    const __m128i adjusted_filter = _mm_srli_si128(*filter, 1);
    v_tap[0] = _mm_shufflelo_epi16(adjusted_filter, 0x55);  // k4k3
    if (is_2d_vertical) {
      v_tap[0] = _mm_cvtepi8_epi16(v_tap[0]);
    } else {
      v_tap[0] = _mm_unpacklo_epi64(v_tap[0], v_tap[0]);
    }
  }
}

template <int num_taps, bool is_2d_vertical = false>
LIBGAV1_ALWAYS_INLINE void SetupTaps(const __m128i* const filter,
                                     __m256i* v_tap) {
  if (num_taps == 8) {
    v_tap[0] = _mm256_broadcastw_epi16(*filter);                     // k1k0
    v_tap[1] = _mm256_broadcastw_epi16(_mm_srli_si128(*filter, 2));  // k3k2
    v_tap[2] = _mm256_broadcastw_epi16(_mm_srli_si128(*filter, 4));  // k5k4
    v_tap[3] = _mm256_broadcastw_epi16(_mm_srli_si128(*filter, 6));  // k7k6
    if (is_2d_vertical) {
      // placeholder
    }
  } else if (num_taps == 6) {
    v_tap[0] = _mm256_broadcastw_epi16(_mm_srli_si128(*filter, 1));  // k2k1
    v_tap[1] = _mm256_broadcastw_epi16(_mm_srli_si128(*filter, 3));  // k4k3
    v_tap[2] = _mm256_broadcastw_epi16(_mm_srli_si128(*filter, 5));  // k6k5
    if (is_2d_vertical) {
      // placeholder
    }
  } else if (num_taps == 4) {
    v_tap[0] = _mm256_broadcastw_epi16(_mm_srli_si128(*filter, 2));  // k3k2
    v_tap[1] = _mm256_broadcastw_epi16(_mm_srli_si128(*filter, 4));  // k5k4
    if (is_2d_vertical) {
      // placeholder
    }
  } else {  // num_taps == 2
    v_tap[0] = _mm256_broadcastw_epi16(_mm_srli_si128(*filter, 3));  // k4k3
    if (is_2d_vertical) {
      // placeholder
    }
  }
}

template <bool is_2d = false, bool is_compound = false>
LIBGAV1_ALWAYS_INLINE void DoHorizontalPass2xH(
    const uint8_t* const src, const ptrdiff_t src_stride, void* const dst,
    const ptrdiff_t dst_stride, const int width, const int height,
    const int filter_id, const int filter_index) {
  assert(filter_id != 0);
  __m128i v_tap[4];
  const __m128i v_horizontal_filter =
      LoadLo8(kHalfSubPixelFilters[filter_index][filter_id]);

  if (filter_index == 4) {  // 4 tap.
    SetupTaps<4>(&v_horizontal_filter, v_tap);
    FilterHorizontal<4, 8, 4, is_2d, is_compound>(
        src, src_stride, dst, dst_stride, width, height, v_tap);
  } else if (filter_index == 5) {  // 4 tap.
    SetupTaps<4>(&v_horizontal_filter, v_tap);
    FilterHorizontal<4, 8, 5, is_2d, is_compound>(
        src, src_stride, dst, dst_stride, width, height, v_tap);
  } else {  // 2 tap.
    SetupTaps<2>(&v_horizontal_filter, v_tap);
    FilterHorizontal<2, 8, 3, is_2d, is_compound>(
        src, src_stride, dst, dst_stride, width, height, v_tap);
  }
}

template <bool is_2d = false, bool is_compound = false>
LIBGAV1_ALWAYS_INLINE void DoHorizontalPass(
    const uint8_t* const src, const ptrdiff_t src_stride, void* const dst,
    const ptrdiff_t dst_stride, const int width, const int height,
    const int filter_id, const int filter_index) {
  assert(filter_id != 0);
  __m256i v_tap[4];
  const __m128i v_horizontal_filter =
      LoadLo8(kHalfSubPixelFilters[filter_index][filter_id]);

  if (filter_index == 2) {  // 8 tap.
    SetupTaps<8>(&v_horizontal_filter, v_tap);
    FilterHorizontal<8, 8, 2, is_2d, is_compound>(
        src, src_stride, dst, dst_stride, width, height, v_tap);
  } else if (filter_index == 1) {  // 6 tap.
    SetupTaps<6>(&v_horizontal_filter, v_tap);
    FilterHorizontal<6, 8, 1, is_2d, is_compound>(
        src, src_stride, dst, dst_stride, width, height, v_tap);
  } else if (filter_index == 0) {  // 6 tap.
    SetupTaps<6>(&v_horizontal_filter, v_tap);
    FilterHorizontal<6, 8, 0, is_2d, is_compound>(
        src, src_stride, dst, dst_stride, width, height, v_tap);
  } else if (filter_index == 4) {  // 4 tap.
    SetupTaps<4>(&v_horizontal_filter, v_tap);
    FilterHorizontal<4, 8, 4, is_2d, is_compound>(
        src, src_stride, dst, dst_stride, width, height, v_tap);
  } else if (filter_index == 5) {  // 4 tap.
    SetupTaps<4>(&v_horizontal_filter, v_tap);
    FilterHorizontal<4, 8, 5, is_2d, is_compound>(
        src, src_stride, dst, dst_stride, width, height, v_tap);
  } else {  // 2 tap.
    SetupTaps<2>(&v_horizontal_filter, v_tap);
    FilterHorizontal<2, 8, 3, is_2d, is_compound>(
        src, src_stride, dst, dst_stride, width, height, v_tap);
  }
}

void ConvolveHorizontal_AVX2(const void* const reference,
                             const ptrdiff_t reference_stride,
                             const int horizontal_filter_index,
                             const int /*vertical_filter_index*/,
                             const int horizontal_filter_id,
                             const int /*vertical_filter_id*/, const int width,
                             const int height, void* prediction,
                             const ptrdiff_t pred_stride) {
  const int filter_index = GetFilterIndex(horizontal_filter_index, width);
  // Set |src| to the outermost tap.
  const auto* src = static_cast<const uint8_t*>(reference) - kHorizontalOffset;
  auto* dest = static_cast<uint8_t*>(prediction);

  if (width > 2) {
    DoHorizontalPass(src, reference_stride, dest, pred_stride, width, height,
                     horizontal_filter_id, filter_index);
  } else {
    // Use non avx2 version for smaller widths.
    DoHorizontalPass2xH(src, reference_stride, dest, pred_stride, width, height,
                        horizontal_filter_id, filter_index);
  }
}

void Init8bpp() {
  Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8);
  assert(dsp != nullptr);
  dsp->convolve[0][0][0][1] = ConvolveHorizontal_AVX2;
}

}  // namespace
}  // namespace low_bitdepth

void ConvolveInit_AVX2() { low_bitdepth::Init8bpp(); }

}  // namespace dsp
}  // namespace libgav1

#else  // !LIBGAV1_TARGETING_AVX2
namespace libgav1 {
namespace dsp {

void ConvolveInit_AVX2() {}

}  // namespace dsp
}  // namespace libgav1
#endif  // LIBGAV1_TARGETING_AVX2