1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
// Copyright 2019 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/dsp/intra_edge.h"
#include "src/utils/cpu.h"
#if LIBGAV1_TARGETING_SSE4_1
#include <xmmintrin.h>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include "src/dsp/constants.h"
#include "src/dsp/dsp.h"
#include "src/dsp/x86/common_sse4.h"
#include "src/utils/common.h"
namespace libgav1 {
namespace dsp {
namespace {
constexpr int kKernelTaps = 5;
constexpr int kKernels[3][kKernelTaps] = {
{0, 4, 8, 4, 0}, {0, 5, 6, 5, 0}, {2, 4, 4, 4, 2}};
constexpr int kMaxEdgeBufferSize = 129;
// This function applies the kernel [0, 4, 8, 4, 0] to 12 values.
// Assumes |edge| has 16 packed byte values. Produces 12 filter outputs to
// write as overlapping sets of 8-bytes.
inline void ComputeKernel1Store12(uint8_t* LIBGAV1_RESTRICT dest,
const uint8_t* LIBGAV1_RESTRICT source) {
const __m128i edge_lo = LoadUnaligned16(source);
const __m128i edge_hi = _mm_srli_si128(edge_lo, 6);
// Samples matched with the '4' tap, expanded to 16-bit.
const __m128i outers_lo = _mm_cvtepu8_epi16(edge_lo);
const __m128i outers_hi = _mm_cvtepu8_epi16(edge_hi);
// Samples matched with the '8' tap, expanded to 16-bit.
const __m128i centers_lo = _mm_srli_si128(outers_lo, 2);
const __m128i centers_hi = _mm_srli_si128(outers_hi, 2);
// Apply the taps by shifting.
const __m128i outers4_lo = _mm_slli_epi16(outers_lo, 2);
const __m128i outers4_hi = _mm_slli_epi16(outers_hi, 2);
const __m128i centers8_lo = _mm_slli_epi16(centers_lo, 3);
const __m128i centers8_hi = _mm_slli_epi16(centers_hi, 3);
// Move latter 4x values down to add with first 4x values for each output.
const __m128i partial_sums_lo =
_mm_add_epi16(outers4_lo, _mm_srli_si128(outers4_lo, 4));
const __m128i partial_sums_hi =
_mm_add_epi16(outers4_hi, _mm_srli_si128(outers4_hi, 4));
// Move 6x values down to add for the final kernel sum for each output.
const __m128i sums_lo = RightShiftWithRounding_U16(
_mm_add_epi16(partial_sums_lo, centers8_lo), 4);
const __m128i sums_hi = RightShiftWithRounding_U16(
_mm_add_epi16(partial_sums_hi, centers8_hi), 4);
const __m128i result_lo = _mm_packus_epi16(sums_lo, sums_lo);
const __m128i result_hi = _mm_packus_epi16(sums_hi, sums_hi);
const __m128i result =
_mm_alignr_epi8(result_hi, _mm_slli_si128(result_lo, 10), 10);
StoreUnaligned16(dest, result);
}
// This function applies the kernel [0, 5, 6, 5, 0] to 12 values.
// Assumes |edge| has 8 packed byte values, and that the 2 invalid values will
// be overwritten or safely discarded.
inline void ComputeKernel2Store12(uint8_t* LIBGAV1_RESTRICT dest,
const uint8_t* LIBGAV1_RESTRICT source) {
const __m128i edge_lo = LoadUnaligned16(source);
const __m128i edge_hi = _mm_srli_si128(edge_lo, 6);
const __m128i outers_lo = _mm_cvtepu8_epi16(edge_lo);
const __m128i centers_lo = _mm_srli_si128(outers_lo, 2);
const __m128i outers_hi = _mm_cvtepu8_epi16(edge_hi);
const __m128i centers_hi = _mm_srli_si128(outers_hi, 2);
// Samples matched with the '5' tap, expanded to 16-bit. Add x + 4x.
const __m128i outers5_lo =
_mm_add_epi16(outers_lo, _mm_slli_epi16(outers_lo, 2));
const __m128i outers5_hi =
_mm_add_epi16(outers_hi, _mm_slli_epi16(outers_hi, 2));
// Samples matched with the '6' tap, expanded to 16-bit. Add 2x + 4x.
const __m128i centers6_lo = _mm_add_epi16(_mm_slli_epi16(centers_lo, 1),
_mm_slli_epi16(centers_lo, 2));
const __m128i centers6_hi = _mm_add_epi16(_mm_slli_epi16(centers_hi, 1),
_mm_slli_epi16(centers_hi, 2));
// Move latter 5x values down to add with first 5x values for each output.
const __m128i partial_sums_lo =
_mm_add_epi16(outers5_lo, _mm_srli_si128(outers5_lo, 4));
// Move 6x values down to add for the final kernel sum for each output.
const __m128i sums_lo = RightShiftWithRounding_U16(
_mm_add_epi16(centers6_lo, partial_sums_lo), 4);
// Shift latter 5x values to add with first 5x values for each output.
const __m128i partial_sums_hi =
_mm_add_epi16(outers5_hi, _mm_srli_si128(outers5_hi, 4));
// Move 6x values down to add for the final kernel sum for each output.
const __m128i sums_hi = RightShiftWithRounding_U16(
_mm_add_epi16(centers6_hi, partial_sums_hi), 4);
// First 6 values are valid outputs.
const __m128i result_lo = _mm_packus_epi16(sums_lo, sums_lo);
const __m128i result_hi = _mm_packus_epi16(sums_hi, sums_hi);
const __m128i result =
_mm_alignr_epi8(result_hi, _mm_slli_si128(result_lo, 10), 10);
StoreUnaligned16(dest, result);
}
// This function applies the kernel [2, 4, 4, 4, 2] to 8 values.
inline void ComputeKernel3Store8(uint8_t* LIBGAV1_RESTRICT dest,
const uint8_t* LIBGAV1_RESTRICT source) {
const __m128i edge_lo = LoadUnaligned16(source);
const __m128i edge_hi = _mm_srli_si128(edge_lo, 4);
// Finish |edge_lo| life cycle quickly.
// Multiply for 2x.
const __m128i source2_lo = _mm_slli_epi16(_mm_cvtepu8_epi16(edge_lo), 1);
// Multiply 2x by 2 and align.
const __m128i source4_lo = _mm_srli_si128(_mm_slli_epi16(source2_lo, 1), 2);
// Finish |source2| life cycle quickly.
// Move latter 2x values down to add with first 2x values for each output.
__m128i sum = _mm_add_epi16(source2_lo, _mm_srli_si128(source2_lo, 8));
// First 4x values already aligned to add with running total.
sum = _mm_add_epi16(sum, source4_lo);
// Move second 4x values down to add with running total.
sum = _mm_add_epi16(sum, _mm_srli_si128(source4_lo, 2));
// Move third 4x values down to add with running total.
sum = _mm_add_epi16(sum, _mm_srli_si128(source4_lo, 4));
// Multiply for 2x.
const __m128i source2_hi = _mm_slli_epi16(_mm_cvtepu8_epi16(edge_hi), 1);
// Multiply 2x by 2 and align.
const __m128i source4_hi = _mm_srli_si128(_mm_slli_epi16(source2_hi, 1), 2);
// Move latter 2x values down to add with first 2x values for each output.
__m128i sum_hi = _mm_add_epi16(source2_hi, _mm_srli_si128(source2_hi, 8));
// First 4x values already aligned to add with running total.
sum_hi = _mm_add_epi16(sum_hi, source4_hi);
// Move second 4x values down to add with running total.
sum_hi = _mm_add_epi16(sum_hi, _mm_srli_si128(source4_hi, 2));
// Move third 4x values down to add with running total.
sum_hi = _mm_add_epi16(sum_hi, _mm_srli_si128(source4_hi, 4));
// Because we have only 8 values here, it is safe to align before packing down
// to 8-bit without losing data.
sum = _mm_alignr_epi8(sum_hi, _mm_slli_si128(sum, 8), 8);
sum = RightShiftWithRounding_U16(sum, 4);
StoreLo8(dest, _mm_packus_epi16(sum, sum));
}
void IntraEdgeFilter_SSE4_1(void* buffer, int size, int strength) {
uint8_t edge[kMaxEdgeBufferSize + 4];
memcpy(edge, buffer, size);
auto* dst_buffer = static_cast<uint8_t*>(buffer);
// Only process |size| - 1 elements. Nothing to do in this case.
if (size == 1) return;
int i = 0;
switch (strength) {
case 1:
// To avoid overwriting, we stop short from the total write size plus the
// initial offset. In this case 12 valid values are written in two blocks
// of 8 bytes each.
for (; i < size - 17; i += 12) {
ComputeKernel1Store12(dst_buffer + i + 1, edge + i);
}
break;
case 2:
// See the comment for case 1.
for (; i < size - 17; i += 12) {
ComputeKernel2Store12(dst_buffer + i + 1, edge + i);
}
break;
default:
assert(strength == 3);
// The first filter input is repeated for taps of value 2 and 4.
dst_buffer[1] = RightShiftWithRounding(
(6 * edge[0] + 4 * edge[1] + 4 * edge[2] + 2 * edge[3]), 4);
// In this case, one block of 8 bytes is written in each iteration, with
// an offset of 2.
for (; i < size - 10; i += 8) {
ComputeKernel3Store8(dst_buffer + i + 2, edge + i);
}
}
const int kernel_index = strength - 1;
for (int final_index = Clip3(i, 1, size - 2); final_index < size;
++final_index) {
int sum = 0;
for (int j = 0; j < kKernelTaps; ++j) {
const int k = Clip3(final_index + j - 2, 0, size - 1);
sum += kKernels[kernel_index][j] * edge[k];
}
dst_buffer[final_index] = RightShiftWithRounding(sum, 4);
}
}
constexpr int kMaxUpsampleSize = 16;
// Applies the upsampling kernel [-1, 9, 9, -1] to alternating pixels, and
// interleaves the results with the original values. This implementation assumes
// that it is safe to write the maximum number of upsampled pixels (32) to the
// edge buffer, even when |size| is small.
void IntraEdgeUpsampler_SSE4_1(void* buffer, int size) {
assert(size % 4 == 0 && size <= kMaxUpsampleSize);
auto* const pixel_buffer = static_cast<uint8_t*>(buffer);
uint8_t temp[kMaxUpsampleSize + 8];
temp[0] = temp[1] = pixel_buffer[-1];
memcpy(temp + 2, pixel_buffer, sizeof(temp[0]) * size);
temp[size + 2] = pixel_buffer[size - 1];
pixel_buffer[-2] = temp[0];
const __m128i data = LoadUnaligned16(temp);
const __m128i src_lo = _mm_cvtepu8_epi16(data);
const __m128i src_hi = _mm_unpackhi_epi8(data, _mm_setzero_si128());
const __m128i src9_hi = _mm_add_epi16(src_hi, _mm_slli_epi16(src_hi, 3));
const __m128i src9_lo = _mm_add_epi16(src_lo, _mm_slli_epi16(src_lo, 3));
__m128i sum_lo = _mm_sub_epi16(_mm_alignr_epi8(src9_hi, src9_lo, 2), src_lo);
sum_lo = _mm_add_epi16(sum_lo, _mm_alignr_epi8(src9_hi, src9_lo, 4));
sum_lo = _mm_sub_epi16(sum_lo, _mm_alignr_epi8(src_hi, src_lo, 6));
sum_lo = RightShiftWithRounding_S16(sum_lo, 4);
const __m128i result_lo = _mm_unpacklo_epi8(_mm_packus_epi16(sum_lo, sum_lo),
_mm_srli_si128(data, 2));
StoreUnaligned16(pixel_buffer - 1, result_lo);
if (size > 8) {
const __m128i src_hi_extra = _mm_cvtepu8_epi16(LoadLo8(temp + 16));
const __m128i src9_hi_extra =
_mm_add_epi16(src_hi_extra, _mm_slli_epi16(src_hi_extra, 3));
__m128i sum_hi =
_mm_sub_epi16(_mm_alignr_epi8(src9_hi_extra, src9_hi, 2), src_hi);
sum_hi = _mm_add_epi16(sum_hi, _mm_alignr_epi8(src9_hi_extra, src9_hi, 4));
sum_hi = _mm_sub_epi16(sum_hi, _mm_alignr_epi8(src_hi_extra, src_hi, 6));
sum_hi = RightShiftWithRounding_S16(sum_hi, 4);
const __m128i result_hi =
_mm_unpacklo_epi8(_mm_packus_epi16(sum_hi, sum_hi), LoadLo8(temp + 10));
StoreUnaligned16(pixel_buffer + 15, result_hi);
}
}
void Init8bpp() {
Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8);
assert(dsp != nullptr);
#if DSP_ENABLED_8BPP_SSE4_1(IntraEdgeFilter)
dsp->intra_edge_filter = IntraEdgeFilter_SSE4_1;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(IntraEdgeUpsampler)
dsp->intra_edge_upsampler = IntraEdgeUpsampler_SSE4_1;
#endif
}
} // namespace
void IntraEdgeInit_SSE4_1() { Init8bpp(); }
} // namespace dsp
} // namespace libgav1
#else // !LIBGAV1_TARGETING_SSE4_1
namespace libgav1 {
namespace dsp {
void IntraEdgeInit_SSE4_1() {}
} // namespace dsp
} // namespace libgav1
#endif // LIBGAV1_TARGETING_SSE4_1
|