1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
|
// Copyright 2019 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/dsp/intrapred.h"
#include "src/utils/cpu.h"
#if LIBGAV1_TARGETING_SSE4_1
#include <smmintrin.h>
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include "src/dsp/constants.h"
#include "src/dsp/dsp.h"
#include "src/dsp/x86/common_sse4.h"
#include "src/utils/common.h"
#include "src/utils/compiler_attributes.h"
namespace libgav1 {
namespace dsp {
namespace low_bitdepth {
namespace {
//------------------------------------------------------------------------------
// CflIntraPredictor_SSE4_1
inline __m128i CflPredictUnclipped(const __m128i* input, __m128i alpha_q12,
__m128i alpha_sign, __m128i dc_q0) {
__m128i ac_q3 = LoadUnaligned16(input);
__m128i ac_sign = _mm_sign_epi16(alpha_sign, ac_q3);
__m128i scaled_luma_q0 = _mm_mulhrs_epi16(_mm_abs_epi16(ac_q3), alpha_q12);
scaled_luma_q0 = _mm_sign_epi16(scaled_luma_q0, ac_sign);
return _mm_add_epi16(scaled_luma_q0, dc_q0);
}
template <int width, int height>
void CflIntraPredictor_SSE4_1(
void* const dest, ptrdiff_t stride,
const int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride],
const int alpha) {
auto* dst = static_cast<uint8_t*>(dest);
const __m128i alpha_sign = _mm_set1_epi16(alpha);
const __m128i alpha_q12 = _mm_slli_epi16(_mm_abs_epi16(alpha_sign), 9);
auto* row = reinterpret_cast<const __m128i*>(luma);
const int kCflLumaBufferStrideLog2_16i = 5;
const int kCflLumaBufferStrideLog2_128i = kCflLumaBufferStrideLog2_16i - 3;
const __m128i* row_end = row + (height << kCflLumaBufferStrideLog2_128i);
const __m128i dc_val = _mm_set1_epi16(dst[0]);
do {
__m128i res = CflPredictUnclipped(row, alpha_q12, alpha_sign, dc_val);
if (width < 16) {
res = _mm_packus_epi16(res, res);
if (width == 4) {
Store4(dst, res);
} else {
StoreLo8(dst, res);
}
} else {
__m128i next =
CflPredictUnclipped(row + 1, alpha_q12, alpha_sign, dc_val);
res = _mm_packus_epi16(res, next);
StoreUnaligned16(dst, res);
if (width == 32) {
res = CflPredictUnclipped(row + 2, alpha_q12, alpha_sign, dc_val);
next = CflPredictUnclipped(row + 3, alpha_q12, alpha_sign, dc_val);
res = _mm_packus_epi16(res, next);
StoreUnaligned16(dst + 16, res);
}
}
dst += stride;
} while ((row += (1 << kCflLumaBufferStrideLog2_128i)) < row_end);
}
template <int block_height_log2, bool is_inside>
void CflSubsampler444_4xH_SSE4_1(
int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride],
const int /*max_luma_width*/, const int max_luma_height,
const void* const source, ptrdiff_t stride) {
static_assert(block_height_log2 <= 4, "");
const int block_height = 1 << block_height_log2;
const int visible_height = max_luma_height;
const auto* src = static_cast<const uint8_t*>(source);
__m128i sum = _mm_setzero_si128();
int16_t* luma_ptr = luma[0];
const __m128i zero = _mm_setzero_si128();
__m128i samples;
int y = 0;
do {
samples = Load4(src);
src += stride;
int src_bytes;
memcpy(&src_bytes, src, 4);
samples = _mm_insert_epi32(samples, src_bytes, 1);
src += stride;
samples = _mm_slli_epi16(_mm_cvtepu8_epi16(samples), 3);
StoreLo8(luma_ptr, samples);
luma_ptr += kCflLumaBufferStride;
StoreHi8(luma_ptr, samples);
luma_ptr += kCflLumaBufferStride;
// The maximum value here is 2**bd * H * 2**shift. Since the maximum H for
// 4XH is 16 = 2**4, we have 2**(8 + 4 + 3) = 2**15, which fits in 16 bits.
sum = _mm_add_epi16(sum, samples);
y += 2;
} while (y < visible_height);
if (!is_inside) {
int y = visible_height;
do {
StoreHi8(luma_ptr, samples);
luma_ptr += kCflLumaBufferStride;
sum = _mm_add_epi16(sum, samples);
++y;
} while (y < block_height);
}
__m128i sum_tmp = _mm_unpackhi_epi16(sum, zero);
sum = _mm_cvtepu16_epi32(sum);
sum = _mm_add_epi32(sum, sum_tmp);
sum = _mm_add_epi32(sum, _mm_srli_si128(sum, 8));
sum = _mm_add_epi32(sum, _mm_srli_si128(sum, 4));
__m128i averages = RightShiftWithRounding_U32(
sum, block_height_log2 + 2 /* log2 of width 4 */);
averages = _mm_shufflelo_epi16(averages, 0);
luma_ptr = luma[0];
for (int y = 0; y < block_height; ++y, luma_ptr += kCflLumaBufferStride) {
const __m128i samples = LoadLo8(luma_ptr);
StoreLo8(luma_ptr, _mm_sub_epi16(samples, averages));
}
}
template <int block_height_log2>
void CflSubsampler444_4xH_SSE4_1(
int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride],
const int max_luma_width, const int max_luma_height,
const void* const source, ptrdiff_t stride) {
static_assert(block_height_log2 <= 4, "");
assert(max_luma_width >= 4);
assert(max_luma_height >= 4);
const int block_height = 1 << block_height_log2;
const int block_width = 4;
if (block_height <= max_luma_height && block_width <= max_luma_width) {
CflSubsampler444_4xH_SSE4_1<block_height_log2, true>(
luma, max_luma_width, max_luma_height, source, stride);
} else {
CflSubsampler444_4xH_SSE4_1<block_height_log2, false>(
luma, max_luma_width, max_luma_height, source, stride);
}
}
template <int block_height_log2, bool inside>
void CflSubsampler444_8xH_SSE4_1(
int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride],
const int max_luma_width, const int max_luma_height,
const void* const source, ptrdiff_t stride) {
static_assert(block_height_log2 <= 5, "");
const int block_height = 1 << block_height_log2, block_width = 8;
const int visible_height = max_luma_height;
const int invisible_width = inside ? 0 : block_width - max_luma_width;
const int visible_width = max_luma_width;
const __m128i blend_mask =
inside ? _mm_setzero_si128() : MaskHighNBytes(8 + invisible_width);
const __m128i dup16 = _mm_set1_epi32(0x01000100);
const auto* src = static_cast<const uint8_t*>(source);
int16_t* luma_ptr = luma[0];
const __m128i zero = _mm_setzero_si128();
// Since the maximum height is 32, if we split them by parity, each one only
// needs to accumulate 16 rows. Just like the calculation done in 4XH, we can
// store them in 16 bits without casting to 32 bits.
__m128i sum_even = _mm_setzero_si128(), sum_odd = _mm_setzero_si128();
__m128i sum;
__m128i samples1;
int y = 0;
do {
__m128i samples0 = LoadLo8(src);
if (!inside) {
const __m128i border0 =
_mm_set1_epi8(static_cast<int8_t>(src[visible_width - 1]));
samples0 = _mm_blendv_epi8(samples0, border0, blend_mask);
}
src += stride;
samples0 = _mm_slli_epi16(_mm_cvtepu8_epi16(samples0), 3);
StoreUnaligned16(luma_ptr, samples0);
luma_ptr += kCflLumaBufferStride;
sum_even = _mm_add_epi16(sum_even, samples0);
samples1 = LoadLo8(src);
if (!inside) {
const __m128i border1 =
_mm_set1_epi8(static_cast<int8_t>(src[visible_width - 1]));
samples1 = _mm_blendv_epi8(samples1, border1, blend_mask);
}
src += stride;
samples1 = _mm_slli_epi16(_mm_cvtepu8_epi16(samples1), 3);
StoreUnaligned16(luma_ptr, samples1);
luma_ptr += kCflLumaBufferStride;
sum_odd = _mm_add_epi16(sum_odd, samples1);
y += 2;
} while (y < visible_height);
if (!inside) {
for (int y = visible_height; y < block_height; y += 2) {
sum_even = _mm_add_epi16(sum_even, samples1);
StoreUnaligned16(luma_ptr, samples1);
luma_ptr += kCflLumaBufferStride;
sum_odd = _mm_add_epi16(sum_odd, samples1);
StoreUnaligned16(luma_ptr, samples1);
luma_ptr += kCflLumaBufferStride;
}
}
sum = _mm_add_epi32(_mm_unpackhi_epi16(sum_even, zero),
_mm_cvtepu16_epi32(sum_even));
sum = _mm_add_epi32(sum, _mm_unpackhi_epi16(sum_odd, zero));
sum = _mm_add_epi32(sum, _mm_cvtepu16_epi32(sum_odd));
sum = _mm_add_epi32(sum, _mm_srli_si128(sum, 8));
sum = _mm_add_epi32(sum, _mm_srli_si128(sum, 4));
__m128i averages = RightShiftWithRounding_U32(
sum, block_height_log2 + 3 /* log2 of width 8 */);
averages = _mm_shuffle_epi8(averages, dup16);
luma_ptr = luma[0];
for (int y = 0; y < block_height; ++y, luma_ptr += kCflLumaBufferStride) {
const __m128i samples = LoadUnaligned16(luma_ptr);
StoreUnaligned16(luma_ptr, _mm_sub_epi16(samples, averages));
}
}
template <int block_height_log2>
void CflSubsampler444_8xH_SSE4_1(
int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride],
const int max_luma_width, const int max_luma_height,
const void* const source, ptrdiff_t stride) {
static_assert(block_height_log2 <= 5, "");
assert(max_luma_width >= 4);
assert(max_luma_height >= 4);
const int block_height = 1 << block_height_log2;
const int block_width = 8;
const int horz_inside = block_width <= max_luma_width;
const int vert_inside = block_height <= max_luma_height;
if (horz_inside && vert_inside) {
CflSubsampler444_8xH_SSE4_1<block_height_log2, true>(
luma, max_luma_width, max_luma_height, source, stride);
} else {
CflSubsampler444_8xH_SSE4_1<block_height_log2, false>(
luma, max_luma_width, max_luma_height, source, stride);
}
}
// This function will only work for block_width 16 and 32.
template <int block_width_log2, int block_height_log2, bool inside>
void CflSubsampler444_SSE4_1(
int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride],
const int max_luma_width, const int max_luma_height,
const void* const source, ptrdiff_t stride) {
static_assert(block_width_log2 == 4 || block_width_log2 == 5, "");
static_assert(block_height_log2 <= 5, "");
assert(max_luma_width >= 4);
assert(max_luma_height >= 4);
const int block_height = 1 << block_height_log2;
const int block_width = 1 << block_width_log2;
const int visible_height = max_luma_height;
const int visible_width_16 = inside ? 16 : std::min(16, max_luma_width);
const int invisible_width_16 = 16 - visible_width_16;
const __m128i blend_mask_16 = MaskHighNBytes(invisible_width_16);
const int visible_width_32 = inside ? 32 : max_luma_width;
const int invisible_width_32 = 32 - visible_width_32;
const __m128i blend_mask_32 =
MaskHighNBytes(std::min(16, invisible_width_32));
const __m128i dup16 = _mm_set1_epi32(0x01000100);
const __m128i zero = _mm_setzero_si128();
const auto* src = static_cast<const uint8_t*>(source);
int16_t* luma_ptr = luma[0];
__m128i sum = _mm_setzero_si128();
__m128i samples0, samples1;
__m128i samples2, samples3;
__m128i inner_sum_lo, inner_sum_hi;
int y = 0;
do {
#if LIBGAV1_MSAN // We can load uninitialized values here. Even though they are
// then masked off by blendv, MSAN isn't smart enough to
// understand that. So we switch to a C implementation here.
uint16_t c_arr[16];
for (int x = 0; x < 16; x++) {
const int x_index = std::min(x, visible_width_16 - 1);
c_arr[x] = src[x_index] << 3;
}
samples0 = LoadUnaligned16(c_arr);
samples1 = LoadUnaligned16(c_arr + 8);
static_cast<void>(blend_mask_16);
#else
__m128i samples01 = LoadUnaligned16(src);
if (!inside) {
const __m128i border16 =
_mm_set1_epi8(static_cast<int8_t>(src[visible_width_16 - 1]));
samples01 = _mm_blendv_epi8(samples01, border16, blend_mask_16);
}
samples0 = _mm_slli_epi16(_mm_cvtepu8_epi16(samples01), 3);
samples1 = _mm_slli_epi16(_mm_unpackhi_epi8(samples01, zero), 3);
#endif // LIBGAV1_MSAN
StoreUnaligned16(luma_ptr, samples0);
StoreUnaligned16(luma_ptr + 8, samples1);
__m128i inner_sum = _mm_add_epi16(samples0, samples1);
if (block_width == 32) {
#if LIBGAV1_MSAN // We can load uninitialized values here. Even though they are
// then masked off by blendv, MSAN isn't smart enough to
// understand that. So we switch to a C implementation here.
uint16_t c_arr[16];
for (int x = 16; x < 32; x++) {
const int x_index = std::min(x, visible_width_32 - 1);
c_arr[x - 16] = src[x_index] << 3;
}
samples2 = LoadUnaligned16(c_arr);
samples3 = LoadUnaligned16(c_arr + 8);
static_cast<void>(blend_mask_32);
#else
__m128i samples23 = LoadUnaligned16(src + 16);
if (!inside) {
const __m128i border32 =
_mm_set1_epi8(static_cast<int8_t>(src[visible_width_32 - 1]));
samples23 = _mm_blendv_epi8(samples23, border32, blend_mask_32);
}
samples2 = _mm_slli_epi16(_mm_cvtepu8_epi16(samples23), 3);
samples3 = _mm_slli_epi16(_mm_unpackhi_epi8(samples23, zero), 3);
#endif // LIBGAV1_MSAN
StoreUnaligned16(luma_ptr + 16, samples2);
StoreUnaligned16(luma_ptr + 24, samples3);
inner_sum = _mm_add_epi16(samples2, inner_sum);
inner_sum = _mm_add_epi16(samples3, inner_sum);
}
inner_sum_lo = _mm_cvtepu16_epi32(inner_sum);
inner_sum_hi = _mm_unpackhi_epi16(inner_sum, zero);
sum = _mm_add_epi32(sum, inner_sum_lo);
sum = _mm_add_epi32(sum, inner_sum_hi);
luma_ptr += kCflLumaBufferStride;
src += stride;
} while (++y < visible_height);
if (!inside) {
for (int y = visible_height; y < block_height;
luma_ptr += kCflLumaBufferStride, ++y) {
sum = _mm_add_epi32(sum, inner_sum_lo);
StoreUnaligned16(luma_ptr, samples0);
sum = _mm_add_epi32(sum, inner_sum_hi);
StoreUnaligned16(luma_ptr + 8, samples1);
if (block_width == 32) {
StoreUnaligned16(luma_ptr + 16, samples2);
StoreUnaligned16(luma_ptr + 24, samples3);
}
}
}
sum = _mm_add_epi32(sum, _mm_srli_si128(sum, 8));
sum = _mm_add_epi32(sum, _mm_srli_si128(sum, 4));
__m128i averages =
RightShiftWithRounding_U32(sum, block_width_log2 + block_height_log2);
averages = _mm_shuffle_epi8(averages, dup16);
luma_ptr = luma[0];
for (int y = 0; y < block_height; ++y, luma_ptr += kCflLumaBufferStride) {
for (int x = 0; x < block_width; x += 8) {
__m128i samples = LoadUnaligned16(&luma_ptr[x]);
StoreUnaligned16(&luma_ptr[x], _mm_sub_epi16(samples, averages));
}
}
}
template <int block_width_log2, int block_height_log2>
void CflSubsampler444_SSE4_1(
int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride],
const int max_luma_width, const int max_luma_height,
const void* const source, ptrdiff_t stride) {
static_assert(block_width_log2 == 4 || block_width_log2 == 5, "");
static_assert(block_height_log2 <= 5, "");
assert(max_luma_width >= 4);
assert(max_luma_height >= 4);
const int block_height = 1 << block_height_log2;
const int block_width = 1 << block_width_log2;
const int horz_inside = block_width <= max_luma_width;
const int vert_inside = block_height <= max_luma_height;
if (horz_inside && vert_inside) {
CflSubsampler444_SSE4_1<block_width_log2, block_height_log2, true>(
luma, max_luma_width, max_luma_height, source, stride);
} else {
CflSubsampler444_SSE4_1<block_width_log2, block_height_log2, false>(
luma, max_luma_width, max_luma_height, source, stride);
}
}
// Takes in two sums of input row pairs, and completes the computation for two
// output rows.
inline __m128i StoreLumaResults4_420(const __m128i vertical_sum0,
const __m128i vertical_sum1,
int16_t* luma_ptr) {
__m128i result = _mm_hadd_epi16(vertical_sum0, vertical_sum1);
result = _mm_slli_epi16(result, 1);
StoreLo8(luma_ptr, result);
StoreHi8(luma_ptr + kCflLumaBufferStride, result);
return result;
}
// Takes two halves of a vertically added pair of rows and completes the
// computation for one output row.
inline __m128i StoreLumaResults8_420(const __m128i vertical_sum0,
const __m128i vertical_sum1,
int16_t* luma_ptr) {
__m128i result = _mm_hadd_epi16(vertical_sum0, vertical_sum1);
result = _mm_slli_epi16(result, 1);
StoreUnaligned16(luma_ptr, result);
return result;
}
template <int block_height_log2>
void CflSubsampler420_4xH_SSE4_1(
int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride],
const int /*max_luma_width*/, const int max_luma_height,
const void* const source, ptrdiff_t stride) {
const int block_height = 1 << block_height_log2;
const auto* src = static_cast<const uint8_t*>(source);
int16_t* luma_ptr = luma[0];
const __m128i zero = _mm_setzero_si128();
__m128i final_sum = zero;
const int luma_height = std::min(block_height, max_luma_height >> 1);
int y = 0;
do {
// Note that double sampling and converting to 16bit makes a row fill the
// vector.
const __m128i samples_row0 = _mm_cvtepu8_epi16(LoadLo8(src));
src += stride;
const __m128i samples_row1 = _mm_cvtepu8_epi16(LoadLo8(src));
src += stride;
const __m128i luma_sum01 = _mm_add_epi16(samples_row0, samples_row1);
const __m128i samples_row2 = _mm_cvtepu8_epi16(LoadLo8(src));
src += stride;
const __m128i samples_row3 = _mm_cvtepu8_epi16(LoadLo8(src));
src += stride;
const __m128i luma_sum23 = _mm_add_epi16(samples_row2, samples_row3);
__m128i sum = StoreLumaResults4_420(luma_sum01, luma_sum23, luma_ptr);
luma_ptr += kCflLumaBufferStride << 1;
const __m128i samples_row4 = _mm_cvtepu8_epi16(LoadLo8(src));
src += stride;
const __m128i samples_row5 = _mm_cvtepu8_epi16(LoadLo8(src));
src += stride;
const __m128i luma_sum45 = _mm_add_epi16(samples_row4, samples_row5);
const __m128i samples_row6 = _mm_cvtepu8_epi16(LoadLo8(src));
src += stride;
const __m128i samples_row7 = _mm_cvtepu8_epi16(LoadLo8(src));
src += stride;
const __m128i luma_sum67 = _mm_add_epi16(samples_row6, samples_row7);
sum = _mm_add_epi16(
sum, StoreLumaResults4_420(luma_sum45, luma_sum67, luma_ptr));
luma_ptr += kCflLumaBufferStride << 1;
final_sum = _mm_add_epi32(final_sum, _mm_cvtepu16_epi32(sum));
final_sum = _mm_add_epi32(final_sum, _mm_unpackhi_epi16(sum, zero));
y += 4;
} while (y < luma_height);
const __m128i final_fill = LoadLo8(luma_ptr - kCflLumaBufferStride);
const __m128i final_fill_to_sum = _mm_cvtepu16_epi32(final_fill);
for (; y < block_height; ++y) {
StoreLo8(luma_ptr, final_fill);
luma_ptr += kCflLumaBufferStride;
final_sum = _mm_add_epi32(final_sum, final_fill_to_sum);
}
final_sum = _mm_add_epi32(final_sum, _mm_srli_si128(final_sum, 8));
final_sum = _mm_add_epi32(final_sum, _mm_srli_si128(final_sum, 4));
__m128i averages = RightShiftWithRounding_U32(
final_sum, block_height_log2 + 2 /*log2 of width 4*/);
averages = _mm_shufflelo_epi16(averages, 0);
luma_ptr = luma[0];
for (int y = 0; y < block_height; ++y, luma_ptr += kCflLumaBufferStride) {
const __m128i samples = LoadLo8(luma_ptr);
StoreLo8(luma_ptr, _mm_sub_epi16(samples, averages));
}
}
// This duplicates the last two 16-bit values in |row|.
inline __m128i LastRowSamples(const __m128i row) {
return _mm_shuffle_epi32(row, 0xFF);
}
// This duplicates the last 16-bit value in |row|.
inline __m128i LastRowResult(const __m128i row) {
const __m128i dup_row = _mm_shufflehi_epi16(row, 0xFF);
return _mm_shuffle_epi32(dup_row, 0xFF);
}
template <int block_height_log2, int max_luma_width>
inline void CflSubsampler420Impl_8xH_SSE4_1(
int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride],
const int /*max_luma_width*/, const int max_luma_height,
const void* const source, ptrdiff_t stride) {
const int block_height = 1 << block_height_log2;
const auto* src = static_cast<const uint8_t*>(source);
const __m128i zero = _mm_setzero_si128();
__m128i final_sum = zero;
int16_t* luma_ptr = luma[0];
const int luma_height = std::min(block_height, max_luma_height >> 1);
int y = 0;
do {
const __m128i samples_row00 = _mm_cvtepu8_epi16(LoadLo8(src));
const __m128i samples_row01 = (max_luma_width == 16)
? _mm_cvtepu8_epi16(LoadLo8(src + 8))
: LastRowSamples(samples_row00);
src += stride;
const __m128i samples_row10 = _mm_cvtepu8_epi16(LoadLo8(src));
const __m128i samples_row11 = (max_luma_width == 16)
? _mm_cvtepu8_epi16(LoadLo8(src + 8))
: LastRowSamples(samples_row10);
src += stride;
const __m128i luma_sum00 = _mm_add_epi16(samples_row00, samples_row10);
const __m128i luma_sum01 = _mm_add_epi16(samples_row01, samples_row11);
__m128i sum = StoreLumaResults8_420(luma_sum00, luma_sum01, luma_ptr);
luma_ptr += kCflLumaBufferStride;
const __m128i samples_row20 = _mm_cvtepu8_epi16(LoadLo8(src));
const __m128i samples_row21 = (max_luma_width == 16)
? _mm_cvtepu8_epi16(LoadLo8(src + 8))
: LastRowSamples(samples_row20);
src += stride;
const __m128i samples_row30 = _mm_cvtepu8_epi16(LoadLo8(src));
const __m128i samples_row31 = (max_luma_width == 16)
? _mm_cvtepu8_epi16(LoadLo8(src + 8))
: LastRowSamples(samples_row30);
src += stride;
const __m128i luma_sum10 = _mm_add_epi16(samples_row20, samples_row30);
const __m128i luma_sum11 = _mm_add_epi16(samples_row21, samples_row31);
sum = _mm_add_epi16(
sum, StoreLumaResults8_420(luma_sum10, luma_sum11, luma_ptr));
luma_ptr += kCflLumaBufferStride;
const __m128i samples_row40 = _mm_cvtepu8_epi16(LoadLo8(src));
const __m128i samples_row41 = (max_luma_width == 16)
? _mm_cvtepu8_epi16(LoadLo8(src + 8))
: LastRowSamples(samples_row40);
src += stride;
const __m128i samples_row50 = _mm_cvtepu8_epi16(LoadLo8(src));
const __m128i samples_row51 = (max_luma_width == 16)
? _mm_cvtepu8_epi16(LoadLo8(src + 8))
: LastRowSamples(samples_row50);
src += stride;
const __m128i luma_sum20 = _mm_add_epi16(samples_row40, samples_row50);
const __m128i luma_sum21 = _mm_add_epi16(samples_row41, samples_row51);
sum = _mm_add_epi16(
sum, StoreLumaResults8_420(luma_sum20, luma_sum21, luma_ptr));
luma_ptr += kCflLumaBufferStride;
const __m128i samples_row60 = _mm_cvtepu8_epi16(LoadLo8(src));
const __m128i samples_row61 = (max_luma_width == 16)
? _mm_cvtepu8_epi16(LoadLo8(src + 8))
: LastRowSamples(samples_row60);
src += stride;
const __m128i samples_row70 = _mm_cvtepu8_epi16(LoadLo8(src));
const __m128i samples_row71 = (max_luma_width == 16)
? _mm_cvtepu8_epi16(LoadLo8(src + 8))
: LastRowSamples(samples_row70);
src += stride;
const __m128i luma_sum30 = _mm_add_epi16(samples_row60, samples_row70);
const __m128i luma_sum31 = _mm_add_epi16(samples_row61, samples_row71);
sum = _mm_add_epi16(
sum, StoreLumaResults8_420(luma_sum30, luma_sum31, luma_ptr));
luma_ptr += kCflLumaBufferStride;
final_sum = _mm_add_epi32(final_sum, _mm_cvtepu16_epi32(sum));
final_sum = _mm_add_epi32(final_sum, _mm_unpackhi_epi16(sum, zero));
y += 4;
} while (y < luma_height);
// Duplicate the final row downward to the end after max_luma_height.
const __m128i final_fill = LoadUnaligned16(luma_ptr - kCflLumaBufferStride);
const __m128i final_fill_to_sum0 = _mm_cvtepi16_epi32(final_fill);
const __m128i final_fill_to_sum1 =
_mm_cvtepi16_epi32(_mm_srli_si128(final_fill, 8));
const __m128i final_fill_to_sum =
_mm_add_epi32(final_fill_to_sum0, final_fill_to_sum1);
for (; y < block_height; ++y) {
StoreUnaligned16(luma_ptr, final_fill);
luma_ptr += kCflLumaBufferStride;
final_sum = _mm_add_epi32(final_sum, final_fill_to_sum);
}
final_sum = _mm_add_epi32(final_sum, _mm_srli_si128(final_sum, 8));
final_sum = _mm_add_epi32(final_sum, _mm_srli_si128(final_sum, 4));
__m128i averages = RightShiftWithRounding_S32(
final_sum, block_height_log2 + 3 /*log2 of width 8*/);
averages = _mm_shufflelo_epi16(averages, 0);
averages = _mm_shuffle_epi32(averages, 0);
luma_ptr = luma[0];
for (int y = 0; y < block_height; ++y, luma_ptr += kCflLumaBufferStride) {
const __m128i samples = LoadUnaligned16(luma_ptr);
StoreUnaligned16(luma_ptr, _mm_sub_epi16(samples, averages));
}
}
template <int block_height_log2>
void CflSubsampler420_8xH_SSE4_1(
int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride],
const int max_luma_width, const int max_luma_height,
const void* const source, ptrdiff_t stride) {
if (max_luma_width == 8) {
CflSubsampler420Impl_8xH_SSE4_1<block_height_log2, 8>(
luma, max_luma_width, max_luma_height, source, stride);
} else {
CflSubsampler420Impl_8xH_SSE4_1<block_height_log2, 16>(
luma, max_luma_width, max_luma_height, source, stride);
}
}
template <int block_width_log2, int block_height_log2, int max_luma_width>
inline void CflSubsampler420Impl_WxH_SSE4_1(
int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride],
const int /*max_luma_width*/, const int max_luma_height,
const void* const source, ptrdiff_t stride) {
const auto* src = static_cast<const uint8_t*>(source);
const __m128i zero = _mm_setzero_si128();
__m128i final_sum = zero;
const int block_height = 1 << block_height_log2;
const int luma_height = std::min(block_height, max_luma_height >> 1);
int16_t* luma_ptr = luma[0];
__m128i final_row_result;
// Begin first y section, covering width up to 16.
int y = 0;
do {
const uint8_t* src_next = src + stride;
const __m128i samples_row0_lo = LoadUnaligned16(src);
const __m128i samples_row00 = _mm_cvtepu8_epi16(samples_row0_lo);
const __m128i samples_row01 = (max_luma_width >= 16)
? _mm_unpackhi_epi8(samples_row0_lo, zero)
: LastRowSamples(samples_row00);
const __m128i samples_row0_hi = LoadUnaligned16(src + 16);
const __m128i samples_row02 = (max_luma_width >= 24)
? _mm_cvtepu8_epi16(samples_row0_hi)
: LastRowSamples(samples_row01);
const __m128i samples_row03 = (max_luma_width == 32)
? _mm_unpackhi_epi8(samples_row0_hi, zero)
: LastRowSamples(samples_row02);
const __m128i samples_row1_lo = LoadUnaligned16(src_next);
const __m128i samples_row10 = _mm_cvtepu8_epi16(samples_row1_lo);
const __m128i samples_row11 = (max_luma_width >= 16)
? _mm_unpackhi_epi8(samples_row1_lo, zero)
: LastRowSamples(samples_row10);
const __m128i samples_row1_hi = LoadUnaligned16(src_next + 16);
const __m128i samples_row12 = (max_luma_width >= 24)
? _mm_cvtepu8_epi16(samples_row1_hi)
: LastRowSamples(samples_row11);
const __m128i samples_row13 = (max_luma_width == 32)
? _mm_unpackhi_epi8(samples_row1_hi, zero)
: LastRowSamples(samples_row12);
const __m128i luma_sum0 = _mm_add_epi16(samples_row00, samples_row10);
const __m128i luma_sum1 = _mm_add_epi16(samples_row01, samples_row11);
const __m128i luma_sum2 = _mm_add_epi16(samples_row02, samples_row12);
const __m128i luma_sum3 = _mm_add_epi16(samples_row03, samples_row13);
__m128i sum = StoreLumaResults8_420(luma_sum0, luma_sum1, luma_ptr);
final_row_result =
StoreLumaResults8_420(luma_sum2, luma_sum3, luma_ptr + 8);
sum = _mm_add_epi16(sum, final_row_result);
final_sum = _mm_add_epi32(final_sum, _mm_cvtepu16_epi32(sum));
final_sum = _mm_add_epi32(final_sum, _mm_unpackhi_epi16(sum, zero));
src += stride << 1;
luma_ptr += kCflLumaBufferStride;
} while (++y < luma_height);
// Because max_luma_width is at most 32, any values beyond x=16 will
// necessarily be duplicated.
if (block_width_log2 == 5) {
const __m128i wide_fill = LastRowResult(final_row_result);
// Multiply duplicated value by number of occurrences, height * 4, since
// there are 16 in each row and the value appears in the vector 4 times.
final_sum = _mm_add_epi32(
final_sum,
_mm_slli_epi32(_mm_cvtepi16_epi32(wide_fill), block_height_log2 + 2));
}
// Begin second y section.
if (y < block_height) {
const __m128i final_fill0 =
LoadUnaligned16(luma_ptr - kCflLumaBufferStride);
const __m128i final_fill1 =
LoadUnaligned16(luma_ptr - kCflLumaBufferStride + 8);
const __m128i final_inner_sum = _mm_add_epi16(final_fill0, final_fill1);
const __m128i final_inner_sum0 = _mm_cvtepu16_epi32(final_inner_sum);
const __m128i final_inner_sum1 = _mm_unpackhi_epi16(final_inner_sum, zero);
const __m128i final_fill_to_sum =
_mm_add_epi32(final_inner_sum0, final_inner_sum1);
do {
StoreUnaligned16(luma_ptr, final_fill0);
StoreUnaligned16(luma_ptr + 8, final_fill1);
luma_ptr += kCflLumaBufferStride;
final_sum = _mm_add_epi32(final_sum, final_fill_to_sum);
} while (++y < block_height);
} // End second y section.
final_sum = _mm_add_epi32(final_sum, _mm_srli_si128(final_sum, 8));
final_sum = _mm_add_epi32(final_sum, _mm_srli_si128(final_sum, 4));
__m128i averages = RightShiftWithRounding_S32(
final_sum, block_width_log2 + block_height_log2);
averages = _mm_shufflelo_epi16(averages, 0);
averages = _mm_shuffle_epi32(averages, 0);
luma_ptr = luma[0];
for (int y = 0; y < block_height; ++y, luma_ptr += kCflLumaBufferStride) {
const __m128i samples0 = LoadUnaligned16(luma_ptr);
StoreUnaligned16(luma_ptr, _mm_sub_epi16(samples0, averages));
const __m128i samples1 = LoadUnaligned16(luma_ptr + 8);
final_row_result = _mm_sub_epi16(samples1, averages);
StoreUnaligned16(luma_ptr + 8, final_row_result);
}
if (block_width_log2 == 5) {
int16_t* wide_luma_ptr = luma[0] + 16;
const __m128i wide_fill = LastRowResult(final_row_result);
for (int i = 0; i < block_height;
++i, wide_luma_ptr += kCflLumaBufferStride) {
StoreUnaligned16(wide_luma_ptr, wide_fill);
StoreUnaligned16(wide_luma_ptr + 8, wide_fill);
}
}
}
template <int block_width_log2, int block_height_log2>
void CflSubsampler420_WxH_SSE4_1(
int16_t luma[kCflLumaBufferStride][kCflLumaBufferStride],
const int max_luma_width, const int max_luma_height,
const void* const source, ptrdiff_t stride) {
switch (max_luma_width) {
case 8:
CflSubsampler420Impl_WxH_SSE4_1<block_width_log2, block_height_log2, 8>(
luma, max_luma_width, max_luma_height, source, stride);
return;
case 16:
CflSubsampler420Impl_WxH_SSE4_1<block_width_log2, block_height_log2, 16>(
luma, max_luma_width, max_luma_height, source, stride);
return;
case 24:
CflSubsampler420Impl_WxH_SSE4_1<block_width_log2, block_height_log2, 24>(
luma, max_luma_width, max_luma_height, source, stride);
return;
default:
assert(max_luma_width == 32);
CflSubsampler420Impl_WxH_SSE4_1<block_width_log2, block_height_log2, 32>(
luma, max_luma_width, max_luma_height, source, stride);
return;
}
}
void Init8bpp() {
Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8);
assert(dsp != nullptr);
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x4_CflSubsampler420)
dsp->cfl_subsamplers[kTransformSize4x4][kSubsamplingType420] =
CflSubsampler420_4xH_SSE4_1<2>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x8_CflSubsampler420)
dsp->cfl_subsamplers[kTransformSize4x8][kSubsamplingType420] =
CflSubsampler420_4xH_SSE4_1<3>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x16_CflSubsampler420)
dsp->cfl_subsamplers[kTransformSize4x16][kSubsamplingType420] =
CflSubsampler420_4xH_SSE4_1<4>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x4_CflSubsampler420)
dsp->cfl_subsamplers[kTransformSize8x4][kSubsamplingType420] =
CflSubsampler420_8xH_SSE4_1<2>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x8_CflSubsampler420)
dsp->cfl_subsamplers[kTransformSize8x8][kSubsamplingType420] =
CflSubsampler420_8xH_SSE4_1<3>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x16_CflSubsampler420)
dsp->cfl_subsamplers[kTransformSize8x16][kSubsamplingType420] =
CflSubsampler420_8xH_SSE4_1<4>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x32_CflSubsampler420)
dsp->cfl_subsamplers[kTransformSize8x32][kSubsamplingType420] =
CflSubsampler420_8xH_SSE4_1<5>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x4_CflSubsampler420)
dsp->cfl_subsamplers[kTransformSize16x4][kSubsamplingType420] =
CflSubsampler420_WxH_SSE4_1<4, 2>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x8_CflSubsampler420)
dsp->cfl_subsamplers[kTransformSize16x8][kSubsamplingType420] =
CflSubsampler420_WxH_SSE4_1<4, 3>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x16_CflSubsampler420)
dsp->cfl_subsamplers[kTransformSize16x16][kSubsamplingType420] =
CflSubsampler420_WxH_SSE4_1<4, 4>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x32_CflSubsampler420)
dsp->cfl_subsamplers[kTransformSize16x32][kSubsamplingType420] =
CflSubsampler420_WxH_SSE4_1<4, 5>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x8_CflSubsampler420)
dsp->cfl_subsamplers[kTransformSize32x8][kSubsamplingType420] =
CflSubsampler420_WxH_SSE4_1<5, 3>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x16_CflSubsampler420)
dsp->cfl_subsamplers[kTransformSize32x16][kSubsamplingType420] =
CflSubsampler420_WxH_SSE4_1<5, 4>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x32_CflSubsampler420)
dsp->cfl_subsamplers[kTransformSize32x32][kSubsamplingType420] =
CflSubsampler420_WxH_SSE4_1<5, 5>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x4_CflSubsampler444)
dsp->cfl_subsamplers[kTransformSize4x4][kSubsamplingType444] =
CflSubsampler444_4xH_SSE4_1<2>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x8_CflSubsampler444)
dsp->cfl_subsamplers[kTransformSize4x8][kSubsamplingType444] =
CflSubsampler444_4xH_SSE4_1<3>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x16_CflSubsampler444)
dsp->cfl_subsamplers[kTransformSize4x16][kSubsamplingType444] =
CflSubsampler444_4xH_SSE4_1<4>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x4_CflSubsampler444)
dsp->cfl_subsamplers[kTransformSize8x4][kSubsamplingType444] =
CflSubsampler444_8xH_SSE4_1<2>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x8_CflSubsampler444)
dsp->cfl_subsamplers[kTransformSize8x8][kSubsamplingType444] =
CflSubsampler444_8xH_SSE4_1<3>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x16_CflSubsampler444)
dsp->cfl_subsamplers[kTransformSize8x16][kSubsamplingType444] =
CflSubsampler444_8xH_SSE4_1<4>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x32_CflSubsampler444)
dsp->cfl_subsamplers[kTransformSize8x32][kSubsamplingType444] =
CflSubsampler444_8xH_SSE4_1<5>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x4_CflSubsampler444)
dsp->cfl_subsamplers[kTransformSize16x4][kSubsamplingType444] =
CflSubsampler444_SSE4_1<4, 2>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x8_CflSubsampler444)
dsp->cfl_subsamplers[kTransformSize16x8][kSubsamplingType444] =
CflSubsampler444_SSE4_1<4, 3>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x16_CflSubsampler444)
dsp->cfl_subsamplers[kTransformSize16x16][kSubsamplingType444] =
CflSubsampler444_SSE4_1<4, 4>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x32_CflSubsampler444)
dsp->cfl_subsamplers[kTransformSize16x32][kSubsamplingType444] =
CflSubsampler444_SSE4_1<4, 5>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x8_CflSubsampler444)
dsp->cfl_subsamplers[kTransformSize32x8][kSubsamplingType444] =
CflSubsampler444_SSE4_1<5, 3>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x16_CflSubsampler444)
dsp->cfl_subsamplers[kTransformSize32x16][kSubsamplingType444] =
CflSubsampler444_SSE4_1<5, 4>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x32_CflSubsampler444)
dsp->cfl_subsamplers[kTransformSize32x32][kSubsamplingType444] =
CflSubsampler444_SSE4_1<5, 5>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x4_CflIntraPredictor)
dsp->cfl_intra_predictors[kTransformSize4x4] = CflIntraPredictor_SSE4_1<4, 4>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x8_CflIntraPredictor)
dsp->cfl_intra_predictors[kTransformSize4x8] = CflIntraPredictor_SSE4_1<4, 8>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize4x16_CflIntraPredictor)
dsp->cfl_intra_predictors[kTransformSize4x16] =
CflIntraPredictor_SSE4_1<4, 16>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x4_CflIntraPredictor)
dsp->cfl_intra_predictors[kTransformSize8x4] = CflIntraPredictor_SSE4_1<8, 4>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x8_CflIntraPredictor)
dsp->cfl_intra_predictors[kTransformSize8x8] = CflIntraPredictor_SSE4_1<8, 8>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x16_CflIntraPredictor)
dsp->cfl_intra_predictors[kTransformSize8x16] =
CflIntraPredictor_SSE4_1<8, 16>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize8x32_CflIntraPredictor)
dsp->cfl_intra_predictors[kTransformSize8x32] =
CflIntraPredictor_SSE4_1<8, 32>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x4_CflIntraPredictor)
dsp->cfl_intra_predictors[kTransformSize16x4] =
CflIntraPredictor_SSE4_1<16, 4>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x8_CflIntraPredictor)
dsp->cfl_intra_predictors[kTransformSize16x8] =
CflIntraPredictor_SSE4_1<16, 8>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x16_CflIntraPredictor)
dsp->cfl_intra_predictors[kTransformSize16x16] =
CflIntraPredictor_SSE4_1<16, 16>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize16x32_CflIntraPredictor)
dsp->cfl_intra_predictors[kTransformSize16x32] =
CflIntraPredictor_SSE4_1<16, 32>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x8_CflIntraPredictor)
dsp->cfl_intra_predictors[kTransformSize32x8] =
CflIntraPredictor_SSE4_1<32, 8>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x16_CflIntraPredictor)
dsp->cfl_intra_predictors[kTransformSize32x16] =
CflIntraPredictor_SSE4_1<32, 16>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(TransformSize32x32_CflIntraPredictor)
dsp->cfl_intra_predictors[kTransformSize32x32] =
CflIntraPredictor_SSE4_1<32, 32>;
#endif
}
} // namespace
} // namespace low_bitdepth
void IntraPredCflInit_SSE4_1() { low_bitdepth::Init8bpp(); }
} // namespace dsp
} // namespace libgav1
#else // !LIBGAV1_TARGETING_SSE4_1
namespace libgav1 {
namespace dsp {
void IntraPredCflInit_SSE4_1() {}
} // namespace dsp
} // namespace libgav1
#endif // LIBGAV1_TARGETING_SSE4_1
|