1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
|
// Copyright 2019 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/dsp/mask_blend.h"
#include "src/utils/cpu.h"
#if LIBGAV1_TARGETING_SSE4_1
#include <smmintrin.h>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include "src/dsp/constants.h"
#include "src/dsp/dsp.h"
#include "src/dsp/x86/common_sse4.h"
#include "src/utils/common.h"
namespace libgav1 {
namespace dsp {
namespace low_bitdepth {
namespace {
// Width can only be 4 when it is subsampled from a block of width 8, hence
// subsampling_x is always 1 when this function is called.
template <int subsampling_x, int subsampling_y>
inline __m128i GetMask4x2(const uint8_t* LIBGAV1_RESTRICT mask,
ptrdiff_t mask_stride) {
if (subsampling_x == 1) {
const __m128i mask_val_0 = _mm_cvtepu8_epi16(LoadLo8(mask));
const __m128i mask_val_1 =
_mm_cvtepu8_epi16(LoadLo8(mask + (mask_stride << subsampling_y)));
__m128i subsampled_mask = _mm_hadd_epi16(mask_val_0, mask_val_1);
if (subsampling_y == 1) {
const __m128i next_mask_val_0 =
_mm_cvtepu8_epi16(LoadLo8(mask + mask_stride));
const __m128i next_mask_val_1 =
_mm_cvtepu8_epi16(LoadLo8(mask + mask_stride * 3));
subsampled_mask = _mm_add_epi16(
subsampled_mask, _mm_hadd_epi16(next_mask_val_0, next_mask_val_1));
}
return RightShiftWithRounding_U16(subsampled_mask, 1 + subsampling_y);
}
const __m128i mask_val_0 = Load4(mask);
const __m128i mask_val_1 = Load4(mask + mask_stride);
return _mm_cvtepu8_epi16(
_mm_or_si128(mask_val_0, _mm_slli_si128(mask_val_1, 4)));
}
// This function returns a 16-bit packed mask to fit in _mm_madd_epi16.
// 16-bit is also the lowest packing for hadd, but without subsampling there is
// an unfortunate conversion required.
template <int subsampling_x, int subsampling_y>
inline __m128i GetMask8(const uint8_t* LIBGAV1_RESTRICT mask,
ptrdiff_t stride) {
if (subsampling_x == 1) {
const __m128i row_vals = LoadUnaligned16(mask);
const __m128i mask_val_0 = _mm_cvtepu8_epi16(row_vals);
const __m128i mask_val_1 = _mm_cvtepu8_epi16(_mm_srli_si128(row_vals, 8));
__m128i subsampled_mask = _mm_hadd_epi16(mask_val_0, mask_val_1);
if (subsampling_y == 1) {
const __m128i next_row_vals = LoadUnaligned16(mask + stride);
const __m128i next_mask_val_0 = _mm_cvtepu8_epi16(next_row_vals);
const __m128i next_mask_val_1 =
_mm_cvtepu8_epi16(_mm_srli_si128(next_row_vals, 8));
subsampled_mask = _mm_add_epi16(
subsampled_mask, _mm_hadd_epi16(next_mask_val_0, next_mask_val_1));
}
return RightShiftWithRounding_U16(subsampled_mask, 1 + subsampling_y);
}
assert(subsampling_y == 0 && subsampling_x == 0);
const __m128i mask_val = LoadLo8(mask);
return _mm_cvtepu8_epi16(mask_val);
}
// This version returns 8-bit packed values to fit in _mm_maddubs_epi16 because,
// when is_inter_intra is true, the prediction values are brought to 8-bit
// packing as well.
template <int subsampling_x, int subsampling_y>
inline __m128i GetInterIntraMask8(const uint8_t* LIBGAV1_RESTRICT mask,
ptrdiff_t stride) {
if (subsampling_x == 1) {
const __m128i row_vals = LoadUnaligned16(mask);
const __m128i mask_val_0 = _mm_cvtepu8_epi16(row_vals);
const __m128i mask_val_1 = _mm_cvtepu8_epi16(_mm_srli_si128(row_vals, 8));
__m128i subsampled_mask = _mm_hadd_epi16(mask_val_0, mask_val_1);
if (subsampling_y == 1) {
const __m128i next_row_vals = LoadUnaligned16(mask + stride);
const __m128i next_mask_val_0 = _mm_cvtepu8_epi16(next_row_vals);
const __m128i next_mask_val_1 =
_mm_cvtepu8_epi16(_mm_srli_si128(next_row_vals, 8));
subsampled_mask = _mm_add_epi16(
subsampled_mask, _mm_hadd_epi16(next_mask_val_0, next_mask_val_1));
}
const __m128i ret =
RightShiftWithRounding_U16(subsampled_mask, 1 + subsampling_y);
return _mm_packus_epi16(ret, ret);
}
assert(subsampling_y == 0 && subsampling_x == 0);
// Unfortunately there is no shift operation for 8-bit packing, or else we
// could return everything with 8-bit packing.
const __m128i mask_val = LoadLo8(mask);
return mask_val;
}
inline void WriteMaskBlendLine4x2(const int16_t* LIBGAV1_RESTRICT const pred_0,
const int16_t* LIBGAV1_RESTRICT const pred_1,
const __m128i pred_mask_0,
const __m128i pred_mask_1,
uint8_t* LIBGAV1_RESTRICT dst,
const ptrdiff_t dst_stride) {
const __m128i pred_val_0 = LoadAligned16(pred_0);
const __m128i pred_val_1 = LoadAligned16(pred_1);
const __m128i mask_lo = _mm_unpacklo_epi16(pred_mask_0, pred_mask_1);
const __m128i mask_hi = _mm_unpackhi_epi16(pred_mask_0, pred_mask_1);
const __m128i pred_lo = _mm_unpacklo_epi16(pred_val_0, pred_val_1);
const __m128i pred_hi = _mm_unpackhi_epi16(pred_val_0, pred_val_1);
// int res = (mask_value * prediction_0[x] +
// (64 - mask_value) * prediction_1[x]) >> 6;
const __m128i compound_pred_lo = _mm_madd_epi16(pred_lo, mask_lo);
const __m128i compound_pred_hi = _mm_madd_epi16(pred_hi, mask_hi);
const __m128i compound_pred = _mm_packus_epi32(
_mm_srli_epi32(compound_pred_lo, 6), _mm_srli_epi32(compound_pred_hi, 6));
// dst[x] = static_cast<Pixel>(
// Clip3(RightShiftWithRounding(res, inter_post_round_bits), 0,
// (1 << kBitdepth8) - 1));
const __m128i result = RightShiftWithRounding_S16(compound_pred, 4);
const __m128i res = _mm_packus_epi16(result, result);
Store4(dst, res);
Store4(dst + dst_stride, _mm_srli_si128(res, 4));
}
template <int subsampling_x, int subsampling_y>
inline void MaskBlending4x4_SSE4(const int16_t* LIBGAV1_RESTRICT pred_0,
const int16_t* LIBGAV1_RESTRICT pred_1,
const uint8_t* LIBGAV1_RESTRICT mask,
const ptrdiff_t mask_stride,
uint8_t* LIBGAV1_RESTRICT dst,
const ptrdiff_t dst_stride) {
const __m128i mask_inverter = _mm_set1_epi16(64);
__m128i pred_mask_0 =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
__m128i pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
WriteMaskBlendLine4x2(pred_0, pred_1, pred_mask_0, pred_mask_1, dst,
dst_stride);
pred_0 += 4 << 1;
pred_1 += 4 << 1;
mask += mask_stride << (1 + subsampling_y);
dst += dst_stride << 1;
pred_mask_0 = GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
WriteMaskBlendLine4x2(pred_0, pred_1, pred_mask_0, pred_mask_1, dst,
dst_stride);
}
template <int subsampling_x, int subsampling_y>
inline void MaskBlending4xH_SSE4(const int16_t* LIBGAV1_RESTRICT pred_0,
const int16_t* LIBGAV1_RESTRICT pred_1,
const uint8_t* LIBGAV1_RESTRICT const mask_ptr,
const ptrdiff_t mask_stride, const int height,
uint8_t* LIBGAV1_RESTRICT dst,
const ptrdiff_t dst_stride) {
const uint8_t* mask = mask_ptr;
if (height == 4) {
MaskBlending4x4_SSE4<subsampling_x, subsampling_y>(
pred_0, pred_1, mask, mask_stride, dst, dst_stride);
return;
}
const __m128i mask_inverter = _mm_set1_epi16(64);
int y = 0;
do {
__m128i pred_mask_0 =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
__m128i pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
WriteMaskBlendLine4x2(pred_0, pred_1, pred_mask_0, pred_mask_1, dst,
dst_stride);
pred_0 += 4 << 1;
pred_1 += 4 << 1;
mask += mask_stride << (1 + subsampling_y);
dst += dst_stride << 1;
pred_mask_0 = GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
WriteMaskBlendLine4x2(pred_0, pred_1, pred_mask_0, pred_mask_1, dst,
dst_stride);
pred_0 += 4 << 1;
pred_1 += 4 << 1;
mask += mask_stride << (1 + subsampling_y);
dst += dst_stride << 1;
pred_mask_0 = GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
WriteMaskBlendLine4x2(pred_0, pred_1, pred_mask_0, pred_mask_1, dst,
dst_stride);
pred_0 += 4 << 1;
pred_1 += 4 << 1;
mask += mask_stride << (1 + subsampling_y);
dst += dst_stride << 1;
pred_mask_0 = GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
WriteMaskBlendLine4x2(pred_0, pred_1, pred_mask_0, pred_mask_1, dst,
dst_stride);
pred_0 += 4 << 1;
pred_1 += 4 << 1;
mask += mask_stride << (1 + subsampling_y);
dst += dst_stride << 1;
y += 8;
} while (y < height);
}
template <int subsampling_x, int subsampling_y>
inline void MaskBlend_SSE4(const void* LIBGAV1_RESTRICT prediction_0,
const void* LIBGAV1_RESTRICT prediction_1,
const ptrdiff_t /*prediction_stride_1*/,
const uint8_t* LIBGAV1_RESTRICT const mask_ptr,
const ptrdiff_t mask_stride, const int width,
const int height, void* LIBGAV1_RESTRICT dest,
const ptrdiff_t dst_stride) {
auto* dst = static_cast<uint8_t*>(dest);
const auto* pred_0 = static_cast<const int16_t*>(prediction_0);
const auto* pred_1 = static_cast<const int16_t*>(prediction_1);
const ptrdiff_t pred_stride_0 = width;
const ptrdiff_t pred_stride_1 = width;
if (width == 4) {
MaskBlending4xH_SSE4<subsampling_x, subsampling_y>(
pred_0, pred_1, mask_ptr, mask_stride, height, dst, dst_stride);
return;
}
const uint8_t* mask = mask_ptr;
const __m128i mask_inverter = _mm_set1_epi16(64);
int y = 0;
do {
int x = 0;
do {
const __m128i pred_mask_0 = GetMask8<subsampling_x, subsampling_y>(
mask + (x << subsampling_x), mask_stride);
// 64 - mask
const __m128i pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
const __m128i mask_lo = _mm_unpacklo_epi16(pred_mask_0, pred_mask_1);
const __m128i mask_hi = _mm_unpackhi_epi16(pred_mask_0, pred_mask_1);
const __m128i pred_val_0 = LoadAligned16(pred_0 + x);
const __m128i pred_val_1 = LoadAligned16(pred_1 + x);
const __m128i pred_lo = _mm_unpacklo_epi16(pred_val_0, pred_val_1);
const __m128i pred_hi = _mm_unpackhi_epi16(pred_val_0, pred_val_1);
// int res = (mask_value * prediction_0[x] +
// (64 - mask_value) * prediction_1[x]) >> 6;
const __m128i compound_pred_lo = _mm_madd_epi16(pred_lo, mask_lo);
const __m128i compound_pred_hi = _mm_madd_epi16(pred_hi, mask_hi);
const __m128i res = _mm_packus_epi32(_mm_srli_epi32(compound_pred_lo, 6),
_mm_srli_epi32(compound_pred_hi, 6));
// dst[x] = static_cast<Pixel>(
// Clip3(RightShiftWithRounding(res, inter_post_round_bits), 0,
// (1 << kBitdepth8) - 1));
const __m128i result = RightShiftWithRounding_S16(res, 4);
StoreLo8(dst + x, _mm_packus_epi16(result, result));
x += 8;
} while (x < width);
dst += dst_stride;
pred_0 += pred_stride_0;
pred_1 += pred_stride_1;
mask += mask_stride << subsampling_y;
} while (++y < height);
}
inline void InterIntraWriteMaskBlendLine8bpp4x2(
const uint8_t* LIBGAV1_RESTRICT const pred_0,
uint8_t* LIBGAV1_RESTRICT const pred_1, const ptrdiff_t pred_stride_1,
const __m128i pred_mask_0, const __m128i pred_mask_1) {
const __m128i pred_mask = _mm_unpacklo_epi8(pred_mask_0, pred_mask_1);
const __m128i pred_val_0 = LoadLo8(pred_0);
// TODO(b/150326556): One load.
__m128i pred_val_1 = Load4(pred_1);
pred_val_1 = _mm_or_si128(_mm_slli_si128(Load4(pred_1 + pred_stride_1), 4),
pred_val_1);
const __m128i pred = _mm_unpacklo_epi8(pred_val_0, pred_val_1);
// int res = (mask_value * prediction_1[x] +
// (64 - mask_value) * prediction_0[x]) >> 6;
const __m128i compound_pred = _mm_maddubs_epi16(pred, pred_mask);
const __m128i result = RightShiftWithRounding_U16(compound_pred, 6);
const __m128i res = _mm_packus_epi16(result, result);
Store4(pred_1, res);
Store4(pred_1 + pred_stride_1, _mm_srli_si128(res, 4));
}
template <int subsampling_x, int subsampling_y>
inline void InterIntraMaskBlending8bpp4x4_SSE4(
const uint8_t* LIBGAV1_RESTRICT pred_0, uint8_t* LIBGAV1_RESTRICT pred_1,
const ptrdiff_t pred_stride_1, const uint8_t* LIBGAV1_RESTRICT mask,
const ptrdiff_t mask_stride) {
const __m128i mask_inverter = _mm_set1_epi8(64);
const __m128i pred_mask_u16_first =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
mask += mask_stride << (1 + subsampling_y);
const __m128i pred_mask_u16_second =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
mask += mask_stride << (1 + subsampling_y);
__m128i pred_mask_1 =
_mm_packus_epi16(pred_mask_u16_first, pred_mask_u16_second);
__m128i pred_mask_0 = _mm_sub_epi8(mask_inverter, pred_mask_1);
InterIntraWriteMaskBlendLine8bpp4x2(pred_0, pred_1, pred_stride_1,
pred_mask_0, pred_mask_1);
pred_0 += 4 << 1;
pred_1 += pred_stride_1 << 1;
pred_mask_1 = _mm_srli_si128(pred_mask_1, 8);
pred_mask_0 = _mm_sub_epi8(mask_inverter, pred_mask_1);
InterIntraWriteMaskBlendLine8bpp4x2(pred_0, pred_1, pred_stride_1,
pred_mask_0, pred_mask_1);
}
template <int subsampling_x, int subsampling_y>
inline void InterIntraMaskBlending8bpp4xH_SSE4(
const uint8_t* LIBGAV1_RESTRICT pred_0, uint8_t* LIBGAV1_RESTRICT pred_1,
const ptrdiff_t pred_stride_1,
const uint8_t* LIBGAV1_RESTRICT const mask_ptr, const ptrdiff_t mask_stride,
const int height) {
const uint8_t* mask = mask_ptr;
if (height == 4) {
InterIntraMaskBlending8bpp4x4_SSE4<subsampling_x, subsampling_y>(
pred_0, pred_1, pred_stride_1, mask, mask_stride);
return;
}
int y = 0;
do {
InterIntraMaskBlending8bpp4x4_SSE4<subsampling_x, subsampling_y>(
pred_0, pred_1, pred_stride_1, mask, mask_stride);
pred_0 += 4 << 2;
pred_1 += pred_stride_1 << 2;
mask += mask_stride << (2 + subsampling_y);
InterIntraMaskBlending8bpp4x4_SSE4<subsampling_x, subsampling_y>(
pred_0, pred_1, pred_stride_1, mask, mask_stride);
pred_0 += 4 << 2;
pred_1 += pred_stride_1 << 2;
mask += mask_stride << (2 + subsampling_y);
y += 8;
} while (y < height);
}
template <int subsampling_x, int subsampling_y>
void InterIntraMaskBlend8bpp_SSE4(
const uint8_t* LIBGAV1_RESTRICT prediction_0,
uint8_t* LIBGAV1_RESTRICT prediction_1, const ptrdiff_t prediction_stride_1,
const uint8_t* LIBGAV1_RESTRICT const mask_ptr, const ptrdiff_t mask_stride,
const int width, const int height) {
if (width == 4) {
InterIntraMaskBlending8bpp4xH_SSE4<subsampling_x, subsampling_y>(
prediction_0, prediction_1, prediction_stride_1, mask_ptr, mask_stride,
height);
return;
}
const uint8_t* mask = mask_ptr;
const __m128i mask_inverter = _mm_set1_epi8(64);
int y = 0;
do {
int x = 0;
do {
const __m128i pred_mask_1 =
GetInterIntraMask8<subsampling_x, subsampling_y>(
mask + (x << subsampling_x), mask_stride);
// 64 - mask
const __m128i pred_mask_0 = _mm_sub_epi8(mask_inverter, pred_mask_1);
const __m128i pred_mask = _mm_unpacklo_epi8(pred_mask_0, pred_mask_1);
const __m128i pred_val_0 = LoadLo8(prediction_0 + x);
const __m128i pred_val_1 = LoadLo8(prediction_1 + x);
const __m128i pred = _mm_unpacklo_epi8(pred_val_0, pred_val_1);
// int res = (mask_value * prediction_1[x] +
// (64 - mask_value) * prediction_0[x]) >> 6;
const __m128i compound_pred = _mm_maddubs_epi16(pred, pred_mask);
const __m128i result = RightShiftWithRounding_U16(compound_pred, 6);
const __m128i res = _mm_packus_epi16(result, result);
StoreLo8(prediction_1 + x, res);
x += 8;
} while (x < width);
prediction_0 += width;
prediction_1 += prediction_stride_1;
mask += mask_stride << subsampling_y;
} while (++y < height);
}
void Init8bpp() {
Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8);
assert(dsp != nullptr);
#if DSP_ENABLED_8BPP_SSE4_1(MaskBlend444)
dsp->mask_blend[0][0] = MaskBlend_SSE4<0, 0>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(MaskBlend422)
dsp->mask_blend[1][0] = MaskBlend_SSE4<1, 0>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(MaskBlend420)
dsp->mask_blend[2][0] = MaskBlend_SSE4<1, 1>;
#endif
// The is_inter_intra index of mask_blend[][] is replaced by
// inter_intra_mask_blend_8bpp[] in 8-bit.
#if DSP_ENABLED_8BPP_SSE4_1(InterIntraMaskBlend8bpp444)
dsp->inter_intra_mask_blend_8bpp[0] = InterIntraMaskBlend8bpp_SSE4<0, 0>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(InterIntraMaskBlend8bpp422)
dsp->inter_intra_mask_blend_8bpp[1] = InterIntraMaskBlend8bpp_SSE4<1, 0>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(InterIntraMaskBlend8bpp420)
dsp->inter_intra_mask_blend_8bpp[2] = InterIntraMaskBlend8bpp_SSE4<1, 1>;
#endif
}
} // namespace
} // namespace low_bitdepth
#if LIBGAV1_MAX_BITDEPTH >= 10
namespace high_bitdepth {
namespace {
constexpr int kMax10bppSample = (1 << 10) - 1;
constexpr int kMaskInverse = 64;
constexpr int kRoundBitsMaskBlend = 4;
inline __m128i RightShiftWithRoundingZero_U16(const __m128i v_val_d, int bits,
const __m128i zero) {
// Shift out all but the last bit.
const __m128i v_tmp_d = _mm_srli_epi16(v_val_d, bits - 1);
// Avg with zero will shift by 1 and round.
return _mm_avg_epu16(v_tmp_d, zero);
}
inline __m128i RightShiftWithRoundingConst_S32(const __m128i v_val_d, int bits,
const __m128i shift) {
const __m128i v_tmp_d = _mm_add_epi32(v_val_d, shift);
return _mm_srai_epi32(v_tmp_d, bits);
}
template <int subsampling_x, int subsampling_y>
inline __m128i GetMask4x2(const uint8_t* mask, ptrdiff_t mask_stride,
const __m128i zero) {
if (subsampling_x == 1) {
if (subsampling_y == 0) {
const __m128i mask_val_0 = _mm_cvtepu8_epi16(LoadLo8(mask));
const __m128i mask_val_1 =
_mm_cvtepu8_epi16(LoadLo8(mask + (mask_stride << subsampling_y)));
__m128i subsampled_mask = _mm_hadd_epi16(mask_val_0, mask_val_1);
return RightShiftWithRoundingZero_U16(subsampled_mask, 1, zero);
}
const __m128i one = _mm_set1_epi8(1);
const __m128i mask_val_0 =
LoadHi8(LoadLo8(mask), mask + (mask_stride << 1));
const __m128i mask_val_1 = LoadHi8(LoadLo8(mask + mask_stride),
mask + (mask_stride << 1) + mask_stride);
const __m128i add = _mm_adds_epu8(mask_val_0, mask_val_1);
const __m128i subsampled_mask = _mm_maddubs_epi16(add, one);
return RightShiftWithRoundingZero_U16(subsampled_mask, 2, zero);
}
assert(subsampling_y == 0 && subsampling_x == 0);
const __m128i mask_val_0 = Load4(mask);
const __m128i mask_val_1 = Load4(mask + mask_stride);
return _mm_cvtepu8_epi16(
_mm_or_si128(mask_val_0, _mm_slli_si128(mask_val_1, 4)));
}
template <int subsampling_x, int subsampling_y>
inline __m128i GetMask8(const uint8_t* mask, const ptrdiff_t stride,
const __m128i zero) {
if (subsampling_x == 1) {
if (subsampling_y == 0) {
const __m128i row_vals = LoadUnaligned16(mask);
const __m128i mask_val_0 = _mm_cvtepu8_epi16(row_vals);
const __m128i mask_val_1 = _mm_cvtepu8_epi16(_mm_srli_si128(row_vals, 8));
__m128i subsampled_mask = _mm_hadd_epi16(mask_val_0, mask_val_1);
return RightShiftWithRoundingZero_U16(subsampled_mask, 1, zero);
}
const __m128i one = _mm_set1_epi8(1);
const __m128i mask_val_0 = LoadUnaligned16(mask);
const __m128i mask_val_1 = LoadUnaligned16(mask + stride);
const __m128i add_0 = _mm_adds_epu8(mask_val_0, mask_val_1);
const __m128i mask_0 = _mm_maddubs_epi16(add_0, one);
return RightShiftWithRoundingZero_U16(mask_0, 2, zero);
}
assert(subsampling_y == 0 && subsampling_x == 0);
const __m128i mask_val = LoadLo8(mask);
return _mm_cvtepu8_epi16(mask_val);
}
inline void WriteMaskBlendLine10bpp4x2_SSE4_1(
const uint16_t* LIBGAV1_RESTRICT pred_0,
const uint16_t* LIBGAV1_RESTRICT pred_1, const ptrdiff_t pred_stride_1,
const __m128i& pred_mask_0, const __m128i& pred_mask_1,
const __m128i& offset, const __m128i& max, const __m128i& shift4,
uint16_t* LIBGAV1_RESTRICT dst, const ptrdiff_t dst_stride) {
const __m128i pred_val_0 = LoadUnaligned16(pred_0);
const __m128i pred_val_1 = LoadHi8(LoadLo8(pred_1), pred_1 + pred_stride_1);
// int res = (mask_value * pred_0[x] + (64 - mask_value) * pred_1[x]) >> 6;
const __m128i compound_pred_lo_0 = _mm_mullo_epi16(pred_val_0, pred_mask_0);
const __m128i compound_pred_hi_0 = _mm_mulhi_epu16(pred_val_0, pred_mask_0);
const __m128i compound_pred_lo_1 = _mm_mullo_epi16(pred_val_1, pred_mask_1);
const __m128i compound_pred_hi_1 = _mm_mulhi_epu16(pred_val_1, pred_mask_1);
const __m128i pack0_lo =
_mm_unpacklo_epi16(compound_pred_lo_0, compound_pred_hi_0);
const __m128i pack0_hi =
_mm_unpackhi_epi16(compound_pred_lo_0, compound_pred_hi_0);
const __m128i pack1_lo =
_mm_unpacklo_epi16(compound_pred_lo_1, compound_pred_hi_1);
const __m128i pack1_hi =
_mm_unpackhi_epi16(compound_pred_lo_1, compound_pred_hi_1);
const __m128i compound_pred_lo = _mm_add_epi32(pack0_lo, pack1_lo);
const __m128i compound_pred_hi = _mm_add_epi32(pack0_hi, pack1_hi);
// res -= (bitdepth == 8) ? 0 : kCompoundOffset;
const __m128i sub_0 =
_mm_sub_epi32(_mm_srli_epi32(compound_pred_lo, 6), offset);
const __m128i sub_1 =
_mm_sub_epi32(_mm_srli_epi32(compound_pred_hi, 6), offset);
// dst[x] = static_cast<Pixel>(
// Clip3(RightShiftWithRounding(res, inter_post_round_bits), 0,
// (1 << kBitdepth8) - 1));
const __m128i shift_0 =
RightShiftWithRoundingConst_S32(sub_0, kRoundBitsMaskBlend, shift4);
const __m128i shift_1 =
RightShiftWithRoundingConst_S32(sub_1, kRoundBitsMaskBlend, shift4);
const __m128i result = _mm_min_epi16(_mm_packus_epi32(shift_0, shift_1), max);
StoreLo8(dst, result);
StoreHi8(dst + dst_stride, result);
}
template <int subsampling_x, int subsampling_y>
inline void MaskBlend10bpp4x4_SSE4_1(const uint16_t* LIBGAV1_RESTRICT pred_0,
const uint16_t* LIBGAV1_RESTRICT pred_1,
const ptrdiff_t pred_stride_1,
const uint8_t* LIBGAV1_RESTRICT mask,
const ptrdiff_t mask_stride,
uint16_t* LIBGAV1_RESTRICT dst,
const ptrdiff_t dst_stride) {
const __m128i mask_inverter = _mm_set1_epi16(kMaskInverse);
const __m128i zero = _mm_setzero_si128();
const __m128i shift4 = _mm_set1_epi32((1 << kRoundBitsMaskBlend) >> 1);
const __m128i offset = _mm_set1_epi32(kCompoundOffset);
const __m128i max = _mm_set1_epi16(kMax10bppSample);
__m128i pred_mask_0 =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride, zero);
__m128i pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
WriteMaskBlendLine10bpp4x2_SSE4_1(pred_0, pred_1, pred_stride_1, pred_mask_0,
pred_mask_1, offset, max, shift4, dst,
dst_stride);
pred_0 += 4 << 1;
pred_1 += pred_stride_1 << 1;
mask += mask_stride << (1 + subsampling_y);
dst += dst_stride << 1;
pred_mask_0 =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride, zero);
pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
WriteMaskBlendLine10bpp4x2_SSE4_1(pred_0, pred_1, pred_stride_1, pred_mask_0,
pred_mask_1, offset, max, shift4, dst,
dst_stride);
}
template <int subsampling_x, int subsampling_y>
inline void MaskBlend10bpp4xH_SSE4_1(
const uint16_t* LIBGAV1_RESTRICT pred_0,
const uint16_t* LIBGAV1_RESTRICT pred_1, const ptrdiff_t pred_stride_1,
const uint8_t* LIBGAV1_RESTRICT const mask_ptr, const ptrdiff_t mask_stride,
const int height, uint16_t* LIBGAV1_RESTRICT dst,
const ptrdiff_t dst_stride) {
const uint8_t* mask = mask_ptr;
if (height == 4) {
MaskBlend10bpp4x4_SSE4_1<subsampling_x, subsampling_y>(
pred_0, pred_1, pred_stride_1, mask, mask_stride, dst, dst_stride);
return;
}
const __m128i mask_inverter = _mm_set1_epi16(kMaskInverse);
const __m128i zero = _mm_setzero_si128();
const uint8_t pred0_stride2 = 4 << 1;
const ptrdiff_t pred1_stride2 = pred_stride_1 << 1;
const ptrdiff_t mask_stride2 = mask_stride << (1 + subsampling_y);
const ptrdiff_t dst_stride2 = dst_stride << 1;
const __m128i offset = _mm_set1_epi32(kCompoundOffset);
const __m128i max = _mm_set1_epi16(kMax10bppSample);
const __m128i shift4 = _mm_set1_epi32((1 << kRoundBitsMaskBlend) >> 1);
int y = height;
do {
__m128i pred_mask_0 =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride, zero);
__m128i pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
WriteMaskBlendLine10bpp4x2_SSE4_1(pred_0, pred_1, pred_stride_1,
pred_mask_0, pred_mask_1, offset, max,
shift4, dst, dst_stride);
pred_0 += pred0_stride2;
pred_1 += pred1_stride2;
mask += mask_stride2;
dst += dst_stride2;
pred_mask_0 =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride, zero);
pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
WriteMaskBlendLine10bpp4x2_SSE4_1(pred_0, pred_1, pred_stride_1,
pred_mask_0, pred_mask_1, offset, max,
shift4, dst, dst_stride);
pred_0 += pred0_stride2;
pred_1 += pred1_stride2;
mask += mask_stride2;
dst += dst_stride2;
pred_mask_0 =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride, zero);
pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
WriteMaskBlendLine10bpp4x2_SSE4_1(pred_0, pred_1, pred_stride_1,
pred_mask_0, pred_mask_1, offset, max,
shift4, dst, dst_stride);
pred_0 += pred0_stride2;
pred_1 += pred1_stride2;
mask += mask_stride2;
dst += dst_stride2;
pred_mask_0 =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride, zero);
pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
WriteMaskBlendLine10bpp4x2_SSE4_1(pred_0, pred_1, pred_stride_1,
pred_mask_0, pred_mask_1, offset, max,
shift4, dst, dst_stride);
pred_0 += pred0_stride2;
pred_1 += pred1_stride2;
mask += mask_stride2;
dst += dst_stride2;
y -= 8;
} while (y != 0);
}
template <int subsampling_x, int subsampling_y>
inline void MaskBlend10bpp_SSE4_1(
const void* LIBGAV1_RESTRICT prediction_0,
const void* LIBGAV1_RESTRICT prediction_1,
const ptrdiff_t prediction_stride_1,
const uint8_t* LIBGAV1_RESTRICT const mask_ptr, const ptrdiff_t mask_stride,
const int width, const int height, void* LIBGAV1_RESTRICT dest,
const ptrdiff_t dest_stride) {
auto* dst = static_cast<uint16_t*>(dest);
const ptrdiff_t dst_stride = dest_stride / sizeof(dst[0]);
const auto* pred_0 = static_cast<const uint16_t*>(prediction_0);
const auto* pred_1 = static_cast<const uint16_t*>(prediction_1);
const ptrdiff_t pred_stride_0 = width;
const ptrdiff_t pred_stride_1 = prediction_stride_1;
if (width == 4) {
MaskBlend10bpp4xH_SSE4_1<subsampling_x, subsampling_y>(
pred_0, pred_1, pred_stride_1, mask_ptr, mask_stride, height, dst,
dst_stride);
return;
}
const uint8_t* mask = mask_ptr;
const __m128i mask_inverter = _mm_set1_epi16(kMaskInverse);
const __m128i zero = _mm_setzero_si128();
const ptrdiff_t mask_stride_ss = mask_stride << subsampling_y;
const __m128i offset = _mm_set1_epi32(kCompoundOffset);
const __m128i max = _mm_set1_epi16(kMax10bppSample);
const __m128i shift4 = _mm_set1_epi32((1 << kRoundBitsMaskBlend) >> 1);
int y = height;
do {
int x = 0;
do {
const __m128i pred_mask_0 = GetMask8<subsampling_x, subsampling_y>(
mask + (x << subsampling_x), mask_stride, zero);
const __m128i pred_val_0 = LoadUnaligned16(pred_0 + x);
const __m128i pred_val_1 = LoadUnaligned16(pred_1 + x);
// 64 - mask
const __m128i pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
const __m128i compound_pred_lo_0 =
_mm_mullo_epi16(pred_val_0, pred_mask_0);
const __m128i compound_pred_hi_0 =
_mm_mulhi_epu16(pred_val_0, pred_mask_0);
const __m128i compound_pred_lo_1 =
_mm_mullo_epi16(pred_val_1, pred_mask_1);
const __m128i compound_pred_hi_1 =
_mm_mulhi_epu16(pred_val_1, pred_mask_1);
const __m128i pack0_lo =
_mm_unpacklo_epi16(compound_pred_lo_0, compound_pred_hi_0);
const __m128i pack0_hi =
_mm_unpackhi_epi16(compound_pred_lo_0, compound_pred_hi_0);
const __m128i pack1_lo =
_mm_unpacklo_epi16(compound_pred_lo_1, compound_pred_hi_1);
const __m128i pack1_hi =
_mm_unpackhi_epi16(compound_pred_lo_1, compound_pred_hi_1);
const __m128i compound_pred_lo = _mm_add_epi32(pack0_lo, pack1_lo);
const __m128i compound_pred_hi = _mm_add_epi32(pack0_hi, pack1_hi);
const __m128i sub_0 =
_mm_sub_epi32(_mm_srli_epi32(compound_pred_lo, 6), offset);
const __m128i sub_1 =
_mm_sub_epi32(_mm_srli_epi32(compound_pred_hi, 6), offset);
const __m128i shift_0 =
RightShiftWithRoundingConst_S32(sub_0, kRoundBitsMaskBlend, shift4);
const __m128i shift_1 =
RightShiftWithRoundingConst_S32(sub_1, kRoundBitsMaskBlend, shift4);
const __m128i result =
_mm_min_epi16(_mm_packus_epi32(shift_0, shift_1), max);
StoreUnaligned16(dst + x, result);
x += 8;
} while (x < width);
dst += dst_stride;
pred_0 += pred_stride_0;
pred_1 += pred_stride_1;
mask += mask_stride_ss;
} while (--y != 0);
}
inline void InterIntraWriteMaskBlendLine10bpp4x2_SSE4_1(
const uint16_t* LIBGAV1_RESTRICT prediction_0,
const uint16_t* LIBGAV1_RESTRICT prediction_1,
const ptrdiff_t pred_stride_1, const __m128i& pred_mask_0,
const __m128i& pred_mask_1, const __m128i& shift6,
uint16_t* LIBGAV1_RESTRICT dst, const ptrdiff_t dst_stride) {
const __m128i pred_val_0 = LoadUnaligned16(prediction_0);
const __m128i pred_val_1 =
LoadHi8(LoadLo8(prediction_1), prediction_1 + pred_stride_1);
const __m128i mask_0 = _mm_unpacklo_epi16(pred_mask_1, pred_mask_0);
const __m128i mask_1 = _mm_unpackhi_epi16(pred_mask_1, pred_mask_0);
const __m128i pred_0 = _mm_unpacklo_epi16(pred_val_0, pred_val_1);
const __m128i pred_1 = _mm_unpackhi_epi16(pred_val_0, pred_val_1);
const __m128i compound_pred_0 = _mm_madd_epi16(pred_0, mask_0);
const __m128i compound_pred_1 = _mm_madd_epi16(pred_1, mask_1);
const __m128i shift_0 =
RightShiftWithRoundingConst_S32(compound_pred_0, 6, shift6);
const __m128i shift_1 =
RightShiftWithRoundingConst_S32(compound_pred_1, 6, shift6);
const __m128i res = _mm_packus_epi32(shift_0, shift_1);
StoreLo8(dst, res);
StoreHi8(dst + dst_stride, res);
}
template <int subsampling_x, int subsampling_y>
inline void InterIntraMaskBlend10bpp4x4_SSE4_1(
const uint16_t* LIBGAV1_RESTRICT pred_0,
const uint16_t* LIBGAV1_RESTRICT pred_1, const ptrdiff_t pred_stride_1,
const uint8_t* LIBGAV1_RESTRICT mask, const ptrdiff_t mask_stride,
uint16_t* LIBGAV1_RESTRICT dst, const ptrdiff_t dst_stride) {
const __m128i mask_inverter = _mm_set1_epi16(kMaskInverse);
const __m128i shift6 = _mm_set1_epi32((1 << 6) >> 1);
const __m128i zero = _mm_setzero_si128();
__m128i pred_mask_0 =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride, zero);
__m128i pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
InterIntraWriteMaskBlendLine10bpp4x2_SSE4_1(pred_0, pred_1, pred_stride_1,
pred_mask_0, pred_mask_1, shift6,
dst, dst_stride);
pred_0 += 4 << 1;
pred_1 += pred_stride_1 << 1;
mask += mask_stride << (1 + subsampling_y);
dst += dst_stride << 1;
pred_mask_0 =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride, zero);
pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
InterIntraWriteMaskBlendLine10bpp4x2_SSE4_1(pred_0, pred_1, pred_stride_1,
pred_mask_0, pred_mask_1, shift6,
dst, dst_stride);
}
template <int subsampling_x, int subsampling_y>
inline void InterIntraMaskBlend10bpp4xH_SSE4_1(
const uint16_t* LIBGAV1_RESTRICT pred_0,
const uint16_t* LIBGAV1_RESTRICT pred_1, const ptrdiff_t pred_stride_1,
const uint8_t* LIBGAV1_RESTRICT const mask_ptr, const ptrdiff_t mask_stride,
const int height, uint16_t* LIBGAV1_RESTRICT dst,
const ptrdiff_t dst_stride) {
const uint8_t* mask = mask_ptr;
if (height == 4) {
InterIntraMaskBlend10bpp4x4_SSE4_1<subsampling_x, subsampling_y>(
pred_0, pred_1, pred_stride_1, mask, mask_stride, dst, dst_stride);
return;
}
const __m128i mask_inverter = _mm_set1_epi16(kMaskInverse);
const __m128i zero = _mm_setzero_si128();
const __m128i shift6 = _mm_set1_epi32((1 << 6) >> 1);
const uint8_t pred0_stride2 = 4 << 1;
const ptrdiff_t pred1_stride2 = pred_stride_1 << 1;
const ptrdiff_t mask_stride2 = mask_stride << (1 + subsampling_y);
const ptrdiff_t dst_stride2 = dst_stride << 1;
int y = height;
do {
__m128i pred_mask_0 =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride, zero);
__m128i pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
InterIntraWriteMaskBlendLine10bpp4x2_SSE4_1(pred_0, pred_1, pred_stride_1,
pred_mask_0, pred_mask_1,
shift6, dst, dst_stride);
pred_0 += pred0_stride2;
pred_1 += pred1_stride2;
mask += mask_stride2;
dst += dst_stride2;
pred_mask_0 =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride, zero);
pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
InterIntraWriteMaskBlendLine10bpp4x2_SSE4_1(pred_0, pred_1, pred_stride_1,
pred_mask_0, pred_mask_1,
shift6, dst, dst_stride);
pred_0 += pred0_stride2;
pred_1 += pred1_stride2;
mask += mask_stride2;
dst += dst_stride2;
pred_mask_0 =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride, zero);
pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
InterIntraWriteMaskBlendLine10bpp4x2_SSE4_1(pred_0, pred_1, pred_stride_1,
pred_mask_0, pred_mask_1,
shift6, dst, dst_stride);
pred_0 += pred0_stride2;
pred_1 += pred1_stride2;
mask += mask_stride2;
dst += dst_stride2;
pred_mask_0 =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride, zero);
pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
InterIntraWriteMaskBlendLine10bpp4x2_SSE4_1(pred_0, pred_1, pred_stride_1,
pred_mask_0, pred_mask_1,
shift6, dst, dst_stride);
pred_0 += pred0_stride2;
pred_1 += pred1_stride2;
mask += mask_stride2;
dst += dst_stride2;
y -= 8;
} while (y != 0);
}
template <int subsampling_x, int subsampling_y>
inline void InterIntraMaskBlend10bpp_SSE4_1(
const void* LIBGAV1_RESTRICT prediction_0,
const void* LIBGAV1_RESTRICT prediction_1,
const ptrdiff_t prediction_stride_1,
const uint8_t* LIBGAV1_RESTRICT const mask_ptr, const ptrdiff_t mask_stride,
const int width, const int height, void* LIBGAV1_RESTRICT dest,
const ptrdiff_t dest_stride) {
auto* dst = static_cast<uint16_t*>(dest);
const ptrdiff_t dst_stride = dest_stride / sizeof(dst[0]);
const auto* pred_0 = static_cast<const uint16_t*>(prediction_0);
const auto* pred_1 = static_cast<const uint16_t*>(prediction_1);
const ptrdiff_t pred_stride_0 = width;
const ptrdiff_t pred_stride_1 = prediction_stride_1;
if (width == 4) {
InterIntraMaskBlend10bpp4xH_SSE4_1<subsampling_x, subsampling_y>(
pred_0, pred_1, pred_stride_1, mask_ptr, mask_stride, height, dst,
dst_stride);
return;
}
const uint8_t* mask = mask_ptr;
const __m128i mask_inverter = _mm_set1_epi16(kMaskInverse);
const __m128i shift6 = _mm_set1_epi32((1 << 6) >> 1);
const __m128i zero = _mm_setzero_si128();
const ptrdiff_t mask_stride_ss = mask_stride << subsampling_y;
int y = height;
do {
int x = 0;
do {
const __m128i pred_mask_0 = GetMask8<subsampling_x, subsampling_y>(
mask + (x << subsampling_x), mask_stride, zero);
const __m128i pred_val_0 = LoadUnaligned16(pred_0 + x);
const __m128i pred_val_1 = LoadUnaligned16(pred_1 + x);
// 64 - mask
const __m128i pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
const __m128i mask_0 = _mm_unpacklo_epi16(pred_mask_1, pred_mask_0);
const __m128i mask_1 = _mm_unpackhi_epi16(pred_mask_1, pred_mask_0);
const __m128i pred_0 = _mm_unpacklo_epi16(pred_val_0, pred_val_1);
const __m128i pred_1 = _mm_unpackhi_epi16(pred_val_0, pred_val_1);
const __m128i compound_pred_0 = _mm_madd_epi16(pred_0, mask_0);
const __m128i compound_pred_1 = _mm_madd_epi16(pred_1, mask_1);
const __m128i shift_0 =
RightShiftWithRoundingConst_S32(compound_pred_0, 6, shift6);
const __m128i shift_1 =
RightShiftWithRoundingConst_S32(compound_pred_1, 6, shift6);
StoreUnaligned16(dst + x, _mm_packus_epi32(shift_0, shift_1));
x += 8;
} while (x < width);
dst += dst_stride;
pred_0 += pred_stride_0;
pred_1 += pred_stride_1;
mask += mask_stride_ss;
} while (--y != 0);
}
void Init10bpp() {
Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth10);
assert(dsp != nullptr);
#if DSP_ENABLED_10BPP_SSE4_1(MaskBlend444)
dsp->mask_blend[0][0] = MaskBlend10bpp_SSE4_1<0, 0>;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(MaskBlend422)
dsp->mask_blend[1][0] = MaskBlend10bpp_SSE4_1<1, 0>;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(MaskBlend420)
dsp->mask_blend[2][0] = MaskBlend10bpp_SSE4_1<1, 1>;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(MaskBlendInterIntra444)
dsp->mask_blend[0][1] = InterIntraMaskBlend10bpp_SSE4_1<0, 0>;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(MaskBlendInterIntra422)
dsp->mask_blend[1][1] = InterIntraMaskBlend10bpp_SSE4_1<1, 0>;
#endif
#if DSP_ENABLED_10BPP_SSE4_1(MaskBlendInterIntra420)
dsp->mask_blend[2][1] = InterIntraMaskBlend10bpp_SSE4_1<1, 1>;
#endif
}
} // namespace
} // namespace high_bitdepth
#endif // LIBGAV1_MAX_BITDEPTH >= 10
void MaskBlendInit_SSE4_1() {
low_bitdepth::Init8bpp();
#if LIBGAV1_MAX_BITDEPTH >= 10
high_bitdepth::Init10bpp();
#endif // LIBGAV1_MAX_BITDEPTH >= 10
}
} // namespace dsp
} // namespace libgav1
#else // !LIBGAV1_TARGETING_SSE4_1
namespace libgav1 {
namespace dsp {
void MaskBlendInit_SSE4_1() {}
} // namespace dsp
} // namespace libgav1
#endif // LIBGAV1_TARGETING_SSE4_1
|