1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
|
// Copyright 2019 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/dsp/mask_blend.h"
#include "src/utils/cpu.h"
#if LIBGAV1_TARGETING_SSE4_1
#include <smmintrin.h>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include "src/dsp/constants.h"
#include "src/dsp/dsp.h"
#include "src/dsp/x86/common_sse4.h"
#include "src/utils/common.h"
namespace libgav1 {
namespace dsp {
namespace low_bitdepth {
namespace {
// Width can only be 4 when it is subsampled from a block of width 8, hence
// subsampling_x is always 1 when this function is called.
template <int subsampling_x, int subsampling_y>
inline __m128i GetMask4x2(const uint8_t* mask, ptrdiff_t mask_stride) {
if (subsampling_x == 1) {
const __m128i mask_val_0 = _mm_cvtepu8_epi16(LoadLo8(mask));
const __m128i mask_val_1 =
_mm_cvtepu8_epi16(LoadLo8(mask + (mask_stride << subsampling_y)));
__m128i subsampled_mask = _mm_hadd_epi16(mask_val_0, mask_val_1);
if (subsampling_y == 1) {
const __m128i next_mask_val_0 =
_mm_cvtepu8_epi16(LoadLo8(mask + mask_stride));
const __m128i next_mask_val_1 =
_mm_cvtepu8_epi16(LoadLo8(mask + mask_stride * 3));
subsampled_mask = _mm_add_epi16(
subsampled_mask, _mm_hadd_epi16(next_mask_val_0, next_mask_val_1));
}
return RightShiftWithRounding_U16(subsampled_mask, 1 + subsampling_y);
}
const __m128i mask_val_0 = Load4(mask);
const __m128i mask_val_1 = Load4(mask + mask_stride);
return _mm_cvtepu8_epi16(
_mm_or_si128(mask_val_0, _mm_slli_si128(mask_val_1, 4)));
}
// This function returns a 16-bit packed mask to fit in _mm_madd_epi16.
// 16-bit is also the lowest packing for hadd, but without subsampling there is
// an unfortunate conversion required.
template <int subsampling_x, int subsampling_y>
inline __m128i GetMask8(const uint8_t* mask, ptrdiff_t stride) {
if (subsampling_x == 1) {
const __m128i row_vals = LoadUnaligned16(mask);
const __m128i mask_val_0 = _mm_cvtepu8_epi16(row_vals);
const __m128i mask_val_1 = _mm_cvtepu8_epi16(_mm_srli_si128(row_vals, 8));
__m128i subsampled_mask = _mm_hadd_epi16(mask_val_0, mask_val_1);
if (subsampling_y == 1) {
const __m128i next_row_vals = LoadUnaligned16(mask + stride);
const __m128i next_mask_val_0 = _mm_cvtepu8_epi16(next_row_vals);
const __m128i next_mask_val_1 =
_mm_cvtepu8_epi16(_mm_srli_si128(next_row_vals, 8));
subsampled_mask = _mm_add_epi16(
subsampled_mask, _mm_hadd_epi16(next_mask_val_0, next_mask_val_1));
}
return RightShiftWithRounding_U16(subsampled_mask, 1 + subsampling_y);
}
assert(subsampling_y == 0 && subsampling_x == 0);
const __m128i mask_val = LoadLo8(mask);
return _mm_cvtepu8_epi16(mask_val);
}
// This version returns 8-bit packed values to fit in _mm_maddubs_epi16 because,
// when is_inter_intra is true, the prediction values are brought to 8-bit
// packing as well.
template <int subsampling_x, int subsampling_y>
inline __m128i GetInterIntraMask8(const uint8_t* mask, ptrdiff_t stride) {
if (subsampling_x == 1) {
const __m128i row_vals = LoadUnaligned16(mask);
const __m128i mask_val_0 = _mm_cvtepu8_epi16(row_vals);
const __m128i mask_val_1 = _mm_cvtepu8_epi16(_mm_srli_si128(row_vals, 8));
__m128i subsampled_mask = _mm_hadd_epi16(mask_val_0, mask_val_1);
if (subsampling_y == 1) {
const __m128i next_row_vals = LoadUnaligned16(mask + stride);
const __m128i next_mask_val_0 = _mm_cvtepu8_epi16(next_row_vals);
const __m128i next_mask_val_1 =
_mm_cvtepu8_epi16(_mm_srli_si128(next_row_vals, 8));
subsampled_mask = _mm_add_epi16(
subsampled_mask, _mm_hadd_epi16(next_mask_val_0, next_mask_val_1));
}
const __m128i ret =
RightShiftWithRounding_U16(subsampled_mask, 1 + subsampling_y);
return _mm_packus_epi16(ret, ret);
}
assert(subsampling_y == 0 && subsampling_x == 0);
// Unfortunately there is no shift operation for 8-bit packing, or else we
// could return everything with 8-bit packing.
const __m128i mask_val = LoadLo8(mask);
return mask_val;
}
inline void WriteMaskBlendLine4x2(const int16_t* const pred_0,
const int16_t* const pred_1,
const __m128i pred_mask_0,
const __m128i pred_mask_1, uint8_t* dst,
const ptrdiff_t dst_stride) {
const __m128i pred_val_0 = LoadAligned16(pred_0);
const __m128i pred_val_1 = LoadAligned16(pred_1);
const __m128i mask_lo = _mm_unpacklo_epi16(pred_mask_0, pred_mask_1);
const __m128i mask_hi = _mm_unpackhi_epi16(pred_mask_0, pred_mask_1);
const __m128i pred_lo = _mm_unpacklo_epi16(pred_val_0, pred_val_1);
const __m128i pred_hi = _mm_unpackhi_epi16(pred_val_0, pred_val_1);
// int res = (mask_value * prediction_0[x] +
// (64 - mask_value) * prediction_1[x]) >> 6;
const __m128i compound_pred_lo = _mm_madd_epi16(pred_lo, mask_lo);
const __m128i compound_pred_hi = _mm_madd_epi16(pred_hi, mask_hi);
const __m128i compound_pred = _mm_packus_epi32(
_mm_srli_epi32(compound_pred_lo, 6), _mm_srli_epi32(compound_pred_hi, 6));
// dst[x] = static_cast<Pixel>(
// Clip3(RightShiftWithRounding(res, inter_post_round_bits), 0,
// (1 << kBitdepth8) - 1));
const __m128i result = RightShiftWithRounding_S16(compound_pred, 4);
const __m128i res = _mm_packus_epi16(result, result);
Store4(dst, res);
Store4(dst + dst_stride, _mm_srli_si128(res, 4));
}
template <int subsampling_x, int subsampling_y>
inline void MaskBlending4x4_SSE4(const int16_t* pred_0, const int16_t* pred_1,
const uint8_t* mask,
const ptrdiff_t mask_stride, uint8_t* dst,
const ptrdiff_t dst_stride) {
const __m128i mask_inverter = _mm_set1_epi16(64);
__m128i pred_mask_0 =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
__m128i pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
WriteMaskBlendLine4x2(pred_0, pred_1, pred_mask_0, pred_mask_1, dst,
dst_stride);
pred_0 += 4 << 1;
pred_1 += 4 << 1;
mask += mask_stride << (1 + subsampling_y);
dst += dst_stride << 1;
pred_mask_0 = GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
WriteMaskBlendLine4x2(pred_0, pred_1, pred_mask_0, pred_mask_1, dst,
dst_stride);
}
template <int subsampling_x, int subsampling_y>
inline void MaskBlending4xH_SSE4(const int16_t* pred_0, const int16_t* pred_1,
const uint8_t* const mask_ptr,
const ptrdiff_t mask_stride, const int height,
uint8_t* dst, const ptrdiff_t dst_stride) {
const uint8_t* mask = mask_ptr;
if (height == 4) {
MaskBlending4x4_SSE4<subsampling_x, subsampling_y>(
pred_0, pred_1, mask, mask_stride, dst, dst_stride);
return;
}
const __m128i mask_inverter = _mm_set1_epi16(64);
int y = 0;
do {
__m128i pred_mask_0 =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
__m128i pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
WriteMaskBlendLine4x2(pred_0, pred_1, pred_mask_0, pred_mask_1, dst,
dst_stride);
pred_0 += 4 << 1;
pred_1 += 4 << 1;
mask += mask_stride << (1 + subsampling_y);
dst += dst_stride << 1;
pred_mask_0 = GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
WriteMaskBlendLine4x2(pred_0, pred_1, pred_mask_0, pred_mask_1, dst,
dst_stride);
pred_0 += 4 << 1;
pred_1 += 4 << 1;
mask += mask_stride << (1 + subsampling_y);
dst += dst_stride << 1;
pred_mask_0 = GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
WriteMaskBlendLine4x2(pred_0, pred_1, pred_mask_0, pred_mask_1, dst,
dst_stride);
pred_0 += 4 << 1;
pred_1 += 4 << 1;
mask += mask_stride << (1 + subsampling_y);
dst += dst_stride << 1;
pred_mask_0 = GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
WriteMaskBlendLine4x2(pred_0, pred_1, pred_mask_0, pred_mask_1, dst,
dst_stride);
pred_0 += 4 << 1;
pred_1 += 4 << 1;
mask += mask_stride << (1 + subsampling_y);
dst += dst_stride << 1;
y += 8;
} while (y < height);
}
template <int subsampling_x, int subsampling_y>
inline void MaskBlend_SSE4(const void* prediction_0, const void* prediction_1,
const ptrdiff_t /*prediction_stride_1*/,
const uint8_t* const mask_ptr,
const ptrdiff_t mask_stride, const int width,
const int height, void* dest,
const ptrdiff_t dst_stride) {
auto* dst = static_cast<uint8_t*>(dest);
const auto* pred_0 = static_cast<const int16_t*>(prediction_0);
const auto* pred_1 = static_cast<const int16_t*>(prediction_1);
const ptrdiff_t pred_stride_0 = width;
const ptrdiff_t pred_stride_1 = width;
if (width == 4) {
MaskBlending4xH_SSE4<subsampling_x, subsampling_y>(
pred_0, pred_1, mask_ptr, mask_stride, height, dst, dst_stride);
return;
}
const uint8_t* mask = mask_ptr;
const __m128i mask_inverter = _mm_set1_epi16(64);
int y = 0;
do {
int x = 0;
do {
const __m128i pred_mask_0 = GetMask8<subsampling_x, subsampling_y>(
mask + (x << subsampling_x), mask_stride);
// 64 - mask
const __m128i pred_mask_1 = _mm_sub_epi16(mask_inverter, pred_mask_0);
const __m128i mask_lo = _mm_unpacklo_epi16(pred_mask_0, pred_mask_1);
const __m128i mask_hi = _mm_unpackhi_epi16(pred_mask_0, pred_mask_1);
const __m128i pred_val_0 = LoadAligned16(pred_0 + x);
const __m128i pred_val_1 = LoadAligned16(pred_1 + x);
const __m128i pred_lo = _mm_unpacklo_epi16(pred_val_0, pred_val_1);
const __m128i pred_hi = _mm_unpackhi_epi16(pred_val_0, pred_val_1);
// int res = (mask_value * prediction_0[x] +
// (64 - mask_value) * prediction_1[x]) >> 6;
const __m128i compound_pred_lo = _mm_madd_epi16(pred_lo, mask_lo);
const __m128i compound_pred_hi = _mm_madd_epi16(pred_hi, mask_hi);
const __m128i res = _mm_packus_epi32(_mm_srli_epi32(compound_pred_lo, 6),
_mm_srli_epi32(compound_pred_hi, 6));
// dst[x] = static_cast<Pixel>(
// Clip3(RightShiftWithRounding(res, inter_post_round_bits), 0,
// (1 << kBitdepth8) - 1));
const __m128i result = RightShiftWithRounding_S16(res, 4);
StoreLo8(dst + x, _mm_packus_epi16(result, result));
x += 8;
} while (x < width);
dst += dst_stride;
pred_0 += pred_stride_0;
pred_1 += pred_stride_1;
mask += mask_stride << subsampling_y;
} while (++y < height);
}
inline void InterIntraWriteMaskBlendLine8bpp4x2(const uint8_t* const pred_0,
uint8_t* const pred_1,
const ptrdiff_t pred_stride_1,
const __m128i pred_mask_0,
const __m128i pred_mask_1) {
const __m128i pred_mask = _mm_unpacklo_epi8(pred_mask_0, pred_mask_1);
const __m128i pred_val_0 = LoadLo8(pred_0);
// TODO(b/150326556): One load.
__m128i pred_val_1 = Load4(pred_1);
pred_val_1 = _mm_or_si128(_mm_slli_si128(Load4(pred_1 + pred_stride_1), 4),
pred_val_1);
const __m128i pred = _mm_unpacklo_epi8(pred_val_0, pred_val_1);
// int res = (mask_value * prediction_1[x] +
// (64 - mask_value) * prediction_0[x]) >> 6;
const __m128i compound_pred = _mm_maddubs_epi16(pred, pred_mask);
const __m128i result = RightShiftWithRounding_U16(compound_pred, 6);
const __m128i res = _mm_packus_epi16(result, result);
Store4(pred_1, res);
Store4(pred_1 + pred_stride_1, _mm_srli_si128(res, 4));
}
template <int subsampling_x, int subsampling_y>
inline void InterIntraMaskBlending8bpp4x4_SSE4(const uint8_t* pred_0,
uint8_t* pred_1,
const ptrdiff_t pred_stride_1,
const uint8_t* mask,
const ptrdiff_t mask_stride) {
const __m128i mask_inverter = _mm_set1_epi8(64);
const __m128i pred_mask_u16_first =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
mask += mask_stride << (1 + subsampling_y);
const __m128i pred_mask_u16_second =
GetMask4x2<subsampling_x, subsampling_y>(mask, mask_stride);
mask += mask_stride << (1 + subsampling_y);
__m128i pred_mask_1 =
_mm_packus_epi16(pred_mask_u16_first, pred_mask_u16_second);
__m128i pred_mask_0 = _mm_sub_epi8(mask_inverter, pred_mask_1);
InterIntraWriteMaskBlendLine8bpp4x2(pred_0, pred_1, pred_stride_1,
pred_mask_0, pred_mask_1);
pred_0 += 4 << 1;
pred_1 += pred_stride_1 << 1;
pred_mask_1 = _mm_srli_si128(pred_mask_1, 8);
pred_mask_0 = _mm_sub_epi8(mask_inverter, pred_mask_1);
InterIntraWriteMaskBlendLine8bpp4x2(pred_0, pred_1, pred_stride_1,
pred_mask_0, pred_mask_1);
}
template <int subsampling_x, int subsampling_y>
inline void InterIntraMaskBlending8bpp4xH_SSE4(const uint8_t* pred_0,
uint8_t* pred_1,
const ptrdiff_t pred_stride_1,
const uint8_t* const mask_ptr,
const ptrdiff_t mask_stride,
const int height) {
const uint8_t* mask = mask_ptr;
if (height == 4) {
InterIntraMaskBlending8bpp4x4_SSE4<subsampling_x, subsampling_y>(
pred_0, pred_1, pred_stride_1, mask, mask_stride);
return;
}
int y = 0;
do {
InterIntraMaskBlending8bpp4x4_SSE4<subsampling_x, subsampling_y>(
pred_0, pred_1, pred_stride_1, mask, mask_stride);
pred_0 += 4 << 2;
pred_1 += pred_stride_1 << 2;
mask += mask_stride << (2 + subsampling_y);
InterIntraMaskBlending8bpp4x4_SSE4<subsampling_x, subsampling_y>(
pred_0, pred_1, pred_stride_1, mask, mask_stride);
pred_0 += 4 << 2;
pred_1 += pred_stride_1 << 2;
mask += mask_stride << (2 + subsampling_y);
y += 8;
} while (y < height);
}
template <int subsampling_x, int subsampling_y>
void InterIntraMaskBlend8bpp_SSE4(const uint8_t* prediction_0,
uint8_t* prediction_1,
const ptrdiff_t prediction_stride_1,
const uint8_t* const mask_ptr,
const ptrdiff_t mask_stride, const int width,
const int height) {
if (width == 4) {
InterIntraMaskBlending8bpp4xH_SSE4<subsampling_x, subsampling_y>(
prediction_0, prediction_1, prediction_stride_1, mask_ptr, mask_stride,
height);
return;
}
const uint8_t* mask = mask_ptr;
const __m128i mask_inverter = _mm_set1_epi8(64);
int y = 0;
do {
int x = 0;
do {
const __m128i pred_mask_1 =
GetInterIntraMask8<subsampling_x, subsampling_y>(
mask + (x << subsampling_x), mask_stride);
// 64 - mask
const __m128i pred_mask_0 = _mm_sub_epi8(mask_inverter, pred_mask_1);
const __m128i pred_mask = _mm_unpacklo_epi8(pred_mask_0, pred_mask_1);
const __m128i pred_val_0 = LoadLo8(prediction_0 + x);
const __m128i pred_val_1 = LoadLo8(prediction_1 + x);
const __m128i pred = _mm_unpacklo_epi8(pred_val_0, pred_val_1);
// int res = (mask_value * prediction_1[x] +
// (64 - mask_value) * prediction_0[x]) >> 6;
const __m128i compound_pred = _mm_maddubs_epi16(pred, pred_mask);
const __m128i result = RightShiftWithRounding_U16(compound_pred, 6);
const __m128i res = _mm_packus_epi16(result, result);
StoreLo8(prediction_1 + x, res);
x += 8;
} while (x < width);
prediction_0 += width;
prediction_1 += prediction_stride_1;
mask += mask_stride << subsampling_y;
} while (++y < height);
}
void Init8bpp() {
Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8);
assert(dsp != nullptr);
#if DSP_ENABLED_8BPP_SSE4_1(MaskBlend444)
dsp->mask_blend[0][0] = MaskBlend_SSE4<0, 0>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(MaskBlend422)
dsp->mask_blend[1][0] = MaskBlend_SSE4<1, 0>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(MaskBlend420)
dsp->mask_blend[2][0] = MaskBlend_SSE4<1, 1>;
#endif
// The is_inter_intra index of mask_blend[][] is replaced by
// inter_intra_mask_blend_8bpp[] in 8-bit.
#if DSP_ENABLED_8BPP_SSE4_1(InterIntraMaskBlend8bpp444)
dsp->inter_intra_mask_blend_8bpp[0] = InterIntraMaskBlend8bpp_SSE4<0, 0>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(InterIntraMaskBlend8bpp422)
dsp->inter_intra_mask_blend_8bpp[1] = InterIntraMaskBlend8bpp_SSE4<1, 0>;
#endif
#if DSP_ENABLED_8BPP_SSE4_1(InterIntraMaskBlend8bpp420)
dsp->inter_intra_mask_blend_8bpp[2] = InterIntraMaskBlend8bpp_SSE4<1, 1>;
#endif
}
} // namespace
} // namespace low_bitdepth
void MaskBlendInit_SSE4_1() { low_bitdepth::Init8bpp(); }
} // namespace dsp
} // namespace libgav1
#else // !LIBGAV1_TARGETING_SSE4_1
namespace libgav1 {
namespace dsp {
void MaskBlendInit_SSE4_1() {}
} // namespace dsp
} // namespace libgav1
#endif // LIBGAV1_TARGETING_SSE4_1
|