1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
|
// Copyright 2019 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/motion_vector.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <memory>
#include "src/dsp/dsp.h"
#include "src/utils/bit_mask_set.h"
#include "src/utils/common.h"
#include "src/utils/constants.h"
#include "src/utils/logging.h"
namespace libgav1 {
namespace {
// Entry at index i is computed as:
// Clip3(std::max(kBlockWidthPixels[i], kBlockHeightPixels[i], 16, 112)).
constexpr int kWarpValidThreshold[kMaxBlockSizes] = {
16, 16, 16, 16, 16, 16, 32, 16, 16, 16, 32,
64, 32, 32, 32, 64, 64, 64, 64, 112, 112, 112};
// 7.10.2.10.
void LowerMvPrecision(const ObuFrameHeader& frame_header,
MotionVector* const mvs) {
if (frame_header.allow_high_precision_mv) return;
if (frame_header.force_integer_mv != 0) {
for (auto& mv : mvs->mv) {
// The next line is equivalent to:
// const int value = (std::abs(static_cast<int>(mv)) + 3) & ~7;
// const int sign = mv >> 15;
// mv = ApplySign(value, sign);
mv = (mv + 3 - (mv >> 15)) & ~7;
}
} else {
for (auto& mv : mvs->mv) {
// The next line is equivalent to:
// if ((mv & 1) != 0) mv += (mv > 0) ? -1 : 1;
mv = (mv - (mv >> 15)) & ~1;
}
}
}
// 7.10.2.1.
void SetupGlobalMv(const Tile::Block& block, int index,
MotionVector* const mv) {
const BlockParameters& bp = *block.bp;
const ObuFrameHeader& frame_header = block.tile.frame_header();
ReferenceFrameType reference_type = bp.reference_frame[index];
const auto& gm = frame_header.global_motion[reference_type];
if (reference_type == kReferenceFrameIntra ||
gm.type == kGlobalMotionTransformationTypeIdentity) {
mv->mv32 = 0;
return;
}
if (gm.type == kGlobalMotionTransformationTypeTranslation) {
for (int i = 0; i < 2; ++i) {
mv->mv[i] = gm.params[i] >> (kWarpedModelPrecisionBits - 3);
}
LowerMvPrecision(frame_header, mv);
return;
}
const int x = MultiplyBy4(block.column4x4) + DivideBy2(block.width) - 1;
const int y = MultiplyBy4(block.row4x4) + DivideBy2(block.height) - 1;
const int xc = (gm.params[2] - (1 << kWarpedModelPrecisionBits)) * x +
gm.params[3] * y + gm.params[0];
const int yc = gm.params[4] * x +
(gm.params[5] - (1 << kWarpedModelPrecisionBits)) * y +
gm.params[1];
if (frame_header.allow_high_precision_mv) {
mv->mv[0] = RightShiftWithRoundingSigned(yc, kWarpedModelPrecisionBits - 3);
mv->mv[1] = RightShiftWithRoundingSigned(xc, kWarpedModelPrecisionBits - 3);
} else {
mv->mv[0] = MultiplyBy2(
RightShiftWithRoundingSigned(yc, kWarpedModelPrecisionBits - 2));
mv->mv[1] = MultiplyBy2(
RightShiftWithRoundingSigned(xc, kWarpedModelPrecisionBits - 2));
LowerMvPrecision(frame_header, mv);
}
}
constexpr BitMaskSet kPredictionModeNewMvMask(kPredictionModeNewMv,
kPredictionModeNewNewMv,
kPredictionModeNearNewMv,
kPredictionModeNewNearMv,
kPredictionModeNearestNewMv,
kPredictionModeNewNearestMv);
// 7.10.2.8.
void SearchStack(const Tile::Block& block, const BlockParameters& mv_bp,
int index, int weight, bool* const found_new_mv,
bool* const found_match, int* const num_mv_found) {
const BlockParameters& bp = *block.bp;
const std::array<GlobalMotion, kNumReferenceFrameTypes>& global_motion =
block.tile.frame_header().global_motion;
PredictionParameters& prediction_parameters = *bp.prediction_parameters;
MotionVector candidate_mv;
// LowerMvPrecision() is not necessary, since the values in
// |prediction_parameters.global_mv| and |mv_bp.mv| were generated by it.
const auto global_motion_type = global_motion[bp.reference_frame[0]].type;
if (IsGlobalMvBlock(mv_bp, global_motion_type)) {
candidate_mv = prediction_parameters.global_mv[0];
} else {
candidate_mv = mv_bp.mv.mv[index];
}
*found_new_mv |= kPredictionModeNewMvMask.Contains(mv_bp.y_mode);
*found_match = true;
MotionVector* const ref_mv_stack = prediction_parameters.ref_mv_stack;
const int num_found = *num_mv_found;
const auto result = std::find_if(ref_mv_stack, ref_mv_stack + num_found,
[&candidate_mv](const MotionVector& ref_mv) {
return ref_mv.mv32 == candidate_mv.mv32;
});
if (result != ref_mv_stack + num_found) {
prediction_parameters.IncreaseWeight(std::distance(ref_mv_stack, result),
weight);
return;
}
if (num_found >= kMaxRefMvStackSize) return;
ref_mv_stack[num_found] = candidate_mv;
prediction_parameters.SetWeightIndexStackEntry(num_found, weight);
++*num_mv_found;
}
// 7.10.2.9.
void CompoundSearchStack(const Tile::Block& block, const BlockParameters& mv_bp,
int weight, bool* const found_new_mv,
bool* const found_match, int* const num_mv_found) {
const BlockParameters& bp = *block.bp;
const std::array<GlobalMotion, kNumReferenceFrameTypes>& global_motion =
block.tile.frame_header().global_motion;
PredictionParameters& prediction_parameters = *bp.prediction_parameters;
// LowerMvPrecision() is not necessary, since the values in
// |prediction_parameters.global_mv| and |mv_bp.mv| were generated by it.
CompoundMotionVector candidate_mv = mv_bp.mv;
for (int i = 0; i < 2; ++i) {
const auto global_motion_type = global_motion[bp.reference_frame[i]].type;
if (IsGlobalMvBlock(mv_bp, global_motion_type)) {
candidate_mv.mv[i] = prediction_parameters.global_mv[i];
}
}
*found_new_mv |= kPredictionModeNewMvMask.Contains(mv_bp.y_mode);
*found_match = true;
CompoundMotionVector* const compound_ref_mv_stack =
prediction_parameters.compound_ref_mv_stack;
const int num_found = *num_mv_found;
const auto result =
std::find_if(compound_ref_mv_stack, compound_ref_mv_stack + num_found,
[&candidate_mv](const CompoundMotionVector& ref_mv) {
return ref_mv.mv64 == candidate_mv.mv64;
});
if (result != compound_ref_mv_stack + num_found) {
prediction_parameters.IncreaseWeight(
std::distance(compound_ref_mv_stack, result), weight);
return;
}
if (num_found >= kMaxRefMvStackSize) return;
compound_ref_mv_stack[num_found].mv64 = candidate_mv.mv64;
prediction_parameters.SetWeightIndexStackEntry(num_found, weight);
++*num_mv_found;
}
// 7.10.2.7.
void AddReferenceMvCandidate(const Tile::Block& block,
const BlockParameters& mv_bp, bool is_compound,
int weight, bool* const found_new_mv,
bool* const found_match, int* const num_mv_found) {
if (!mv_bp.is_inter) return;
const BlockParameters& bp = *block.bp;
if (is_compound) {
if (mv_bp.reference_frame[0] == bp.reference_frame[0] &&
mv_bp.reference_frame[1] == bp.reference_frame[1]) {
CompoundSearchStack(block, mv_bp, weight, found_new_mv, found_match,
num_mv_found);
}
return;
}
for (int i = 0; i < 2; ++i) {
if (mv_bp.reference_frame[i] == bp.reference_frame[0]) {
SearchStack(block, mv_bp, i, weight, found_new_mv, found_match,
num_mv_found);
}
}
}
int GetMinimumStep(int block_width_or_height4x4, int delta_row_or_column) {
assert(delta_row_or_column < 0);
if (block_width_or_height4x4 >= 16) return 4;
if (delta_row_or_column < -1) return 2;
return 0;
}
// 7.10.2.2.
void ScanRow(const Tile::Block& block, int mv_column, int delta_row,
bool is_compound, bool* const found_new_mv,
bool* const found_match, int* const num_mv_found) {
const int mv_row = block.row4x4 + delta_row;
const Tile& tile = block.tile;
if (!tile.IsTopInside(mv_row + 1)) return;
const int width4x4 = block.width4x4;
const int min_step = GetMinimumStep(width4x4, delta_row);
BlockParameters** bps = tile.BlockParametersAddress(mv_row, mv_column);
BlockParameters** const end_bps =
bps + std::min({static_cast<int>(width4x4),
tile.frame_header().columns4x4 - block.column4x4, 16});
do {
const BlockParameters& mv_bp = **bps;
const int step = std::max(
std::min(width4x4, static_cast<int>(kNum4x4BlocksWide[mv_bp.size])),
min_step);
AddReferenceMvCandidate(block, mv_bp, is_compound, MultiplyBy2(step),
found_new_mv, found_match, num_mv_found);
bps += step;
} while (bps < end_bps);
}
// 7.10.2.3.
void ScanColumn(const Tile::Block& block, int mv_row, int delta_column,
bool is_compound, bool* const found_new_mv,
bool* const found_match, int* const num_mv_found) {
const int mv_column = block.column4x4 + delta_column;
const Tile& tile = block.tile;
if (!tile.IsLeftInside(mv_column + 1)) return;
const int height4x4 = block.height4x4;
const int min_step = GetMinimumStep(height4x4, delta_column);
const ptrdiff_t stride = tile.BlockParametersStride();
BlockParameters** bps = tile.BlockParametersAddress(mv_row, mv_column);
BlockParameters** const end_bps =
bps + stride * std::min({static_cast<int>(height4x4),
tile.frame_header().rows4x4 - block.row4x4, 16});
do {
const BlockParameters& mv_bp = **bps;
const int step = std::max(
std::min(height4x4, static_cast<int>(kNum4x4BlocksHigh[mv_bp.size])),
min_step);
AddReferenceMvCandidate(block, mv_bp, is_compound, MultiplyBy2(step),
found_new_mv, found_match, num_mv_found);
bps += step * stride;
} while (bps < end_bps);
}
// 7.10.2.4.
void ScanPoint(const Tile::Block& block, int delta_row, int delta_column,
bool is_compound, bool* const found_new_mv,
bool* const found_match, int* const num_mv_found) {
const int mv_row = block.row4x4 + delta_row;
const int mv_column = block.column4x4 + delta_column;
const Tile& tile = block.tile;
if (!tile.IsInside(mv_row, mv_column) ||
!tile.HasParameters(mv_row, mv_column)) {
return;
}
const BlockParameters& mv_bp = tile.Parameters(mv_row, mv_column);
if (mv_bp.reference_frame[0] == kReferenceFrameNone) return;
AddReferenceMvCandidate(block, mv_bp, is_compound, 4, found_new_mv,
found_match, num_mv_found);
}
// 7.10.2.6.
void AddTemporalReferenceMvCandidate(
const ObuFrameHeader& frame_header, const int reference_offsets[2],
const MotionVector* const temporal_mvs,
const int8_t* const temporal_reference_offsets, int count, bool is_compound,
int* const zero_mv_context, int* const num_mv_found,
PredictionParameters* const prediction_parameters) {
const int mv_projection_function_index =
frame_header.allow_high_precision_mv ? 2 : frame_header.force_integer_mv;
const MotionVector* const global_mv = prediction_parameters->global_mv;
if (is_compound) {
alignas(kMaxAlignment)
CompoundMotionVector candidate_mvs[kMaxTemporalMvCandidatesWithPadding];
const dsp::Dsp& dsp = *dsp::GetDspTable(8);
dsp.mv_projection_compound[mv_projection_function_index](
temporal_mvs, temporal_reference_offsets, reference_offsets, count,
candidate_mvs);
if (*zero_mv_context == -1) {
int max_difference =
std::max(std::abs(candidate_mvs[0].mv[0].mv[0] - global_mv[0].mv[0]),
std::abs(candidate_mvs[0].mv[0].mv[1] - global_mv[0].mv[1]));
max_difference =
std::max(max_difference,
std::abs(candidate_mvs[0].mv[1].mv[0] - global_mv[1].mv[0]));
max_difference =
std::max(max_difference,
std::abs(candidate_mvs[0].mv[1].mv[1] - global_mv[1].mv[1]));
*zero_mv_context = static_cast<int>(max_difference >= 16);
}
CompoundMotionVector* const compound_ref_mv_stack =
prediction_parameters->compound_ref_mv_stack;
int num_found = *num_mv_found;
int index = 0;
do {
const CompoundMotionVector& candidate_mv = candidate_mvs[index];
const auto result =
std::find_if(compound_ref_mv_stack, compound_ref_mv_stack + num_found,
[&candidate_mv](const CompoundMotionVector& ref_mv) {
return ref_mv.mv64 == candidate_mv.mv64;
});
if (result != compound_ref_mv_stack + num_found) {
prediction_parameters->IncreaseWeight(
std::distance(compound_ref_mv_stack, result), 2);
continue;
}
if (num_found >= kMaxRefMvStackSize) continue;
compound_ref_mv_stack[num_found].mv64 = candidate_mv.mv64;
prediction_parameters->SetWeightIndexStackEntry(num_found, 2);
++num_found;
} while (++index < count);
*num_mv_found = num_found;
return;
}
MotionVector* const ref_mv_stack = prediction_parameters->ref_mv_stack;
if (reference_offsets[0] == 0) {
if (*zero_mv_context == -1) {
const int max_difference =
std::max(std::abs(global_mv[0].mv[0]), std::abs(global_mv[0].mv[1]));
*zero_mv_context = static_cast<int>(max_difference >= 16);
}
const MotionVector candidate_mv = {};
const int num_found = *num_mv_found;
const auto result =
std::find_if(ref_mv_stack, ref_mv_stack + num_found,
[&candidate_mv](const MotionVector& ref_mv) {
return ref_mv.mv32 == candidate_mv.mv32;
});
if (result != ref_mv_stack + num_found) {
prediction_parameters->IncreaseWeight(std::distance(ref_mv_stack, result),
2 * count);
return;
}
if (num_found >= kMaxRefMvStackSize) return;
ref_mv_stack[num_found] = candidate_mv;
prediction_parameters->SetWeightIndexStackEntry(num_found, 2 * count);
++*num_mv_found;
return;
}
alignas(kMaxAlignment)
MotionVector candidate_mvs[kMaxTemporalMvCandidatesWithPadding];
const dsp::Dsp& dsp = *dsp::GetDspTable(8);
dsp.mv_projection_single[mv_projection_function_index](
temporal_mvs, temporal_reference_offsets, reference_offsets[0], count,
candidate_mvs);
if (*zero_mv_context == -1) {
const int max_difference =
std::max(std::abs(candidate_mvs[0].mv[0] - global_mv[0].mv[0]),
std::abs(candidate_mvs[0].mv[1] - global_mv[0].mv[1]));
*zero_mv_context = static_cast<int>(max_difference >= 16);
}
int num_found = *num_mv_found;
int index = 0;
do {
const MotionVector& candidate_mv = candidate_mvs[index];
const auto result =
std::find_if(ref_mv_stack, ref_mv_stack + num_found,
[&candidate_mv](const MotionVector& ref_mv) {
return ref_mv.mv32 == candidate_mv.mv32;
});
if (result != ref_mv_stack + num_found) {
prediction_parameters->IncreaseWeight(std::distance(ref_mv_stack, result),
2);
continue;
}
if (num_found >= kMaxRefMvStackSize) continue;
ref_mv_stack[num_found] = candidate_mv;
prediction_parameters->SetWeightIndexStackEntry(num_found, 2);
++num_found;
} while (++index < count);
*num_mv_found = num_found;
}
// Part of 7.10.2.5.
bool IsWithinTheSame64x64Block(const Tile::Block& block, int delta_row,
int delta_column) {
const int row = (block.row4x4 & 15) + delta_row;
const int column = (block.column4x4 & 15) + delta_column;
// |block.height4x4| is at least 2 for all elements in |kTemporalScanMask|.
// So |row| are all non-negative.
assert(row >= 0);
return row < 16 && column >= 0 && column < 16;
}
constexpr BitMaskSet kTemporalScanMask(kBlock8x8, kBlock8x16, kBlock8x32,
kBlock16x8, kBlock16x16, kBlock16x32,
kBlock32x8, kBlock32x16, kBlock32x32);
// 7.10.2.5.
void TemporalScan(const Tile::Block& block, bool is_compound,
int* const zero_mv_context, int* const num_mv_found) {
const int step_w = (block.width4x4 >= 16) ? 4 : 2;
const int step_h = (block.height4x4 >= 16) ? 4 : 2;
const int row_start = block.row4x4 | 1;
const int column_start = block.column4x4 | 1;
const int row_end =
row_start + std::min(static_cast<int>(block.height4x4), 16);
const int column_end =
column_start + std::min(static_cast<int>(block.width4x4), 16);
const Tile& tile = block.tile;
const TemporalMotionField& motion_field = tile.motion_field();
const int stride = motion_field.mv.columns();
const MotionVector* motion_field_mv = motion_field.mv[0];
const int8_t* motion_field_reference_offset =
motion_field.reference_offset[0];
alignas(kMaxAlignment)
MotionVector temporal_mvs[kMaxTemporalMvCandidatesWithPadding];
int8_t temporal_reference_offsets[kMaxTemporalMvCandidatesWithPadding];
int count = 0;
int offset = stride * (row_start >> 1);
int mv_row = row_start;
do {
int mv_column = column_start;
do {
// Both horizontal and vertical offsets are positive. Only bottom and
// right boundaries need to be checked.
if (tile.IsBottomRightInside(mv_row, mv_column)) {
const int x8 = mv_column >> 1;
const MotionVector temporal_mv = motion_field_mv[offset + x8];
if (temporal_mv.mv[0] == kInvalidMvValue) {
if (mv_row == row_start && mv_column == column_start) {
*zero_mv_context = 1;
}
} else {
temporal_mvs[count] = temporal_mv;
temporal_reference_offsets[count++] =
motion_field_reference_offset[offset + x8];
}
}
mv_column += step_w;
} while (mv_column < column_end);
offset += stride * step_h >> 1;
mv_row += step_h;
} while (mv_row < row_end);
if (kTemporalScanMask.Contains(block.size)) {
const int temporal_sample_positions[3][2] = {
{block.height4x4, -2},
{block.height4x4, block.width4x4},
{block.height4x4 - 2, block.width4x4}};
// Getting the address of an element in Array2D is slow. Precalculate the
// offsets.
int temporal_sample_offsets[3];
temporal_sample_offsets[0] = stride * ((row_start + block.height4x4) >> 1) +
((column_start - 2) >> 1);
temporal_sample_offsets[1] =
temporal_sample_offsets[0] + ((block.width4x4 + 2) >> 1);
temporal_sample_offsets[2] = temporal_sample_offsets[1] - stride;
for (int i = 0; i < 3; i++) {
const int row = temporal_sample_positions[i][0];
const int column = temporal_sample_positions[i][1];
if (!IsWithinTheSame64x64Block(block, row, column)) continue;
const int mv_row = row_start + row;
const int mv_column = column_start + column;
// IsWithinTheSame64x64Block() guarantees the reference block is inside
// the top and left boundary.
if (!tile.IsBottomRightInside(mv_row, mv_column)) continue;
const MotionVector temporal_mv =
motion_field_mv[temporal_sample_offsets[i]];
if (temporal_mv.mv[0] != kInvalidMvValue) {
temporal_mvs[count] = temporal_mv;
temporal_reference_offsets[count++] =
motion_field_reference_offset[temporal_sample_offsets[i]];
}
}
}
if (count != 0) {
BlockParameters* const bp = block.bp;
int reference_offsets[2];
const int offset_0 = tile.current_frame()
.reference_info()
->relative_distance_to[bp->reference_frame[0]];
reference_offsets[0] =
Clip3(offset_0, -kMaxFrameDistance, kMaxFrameDistance);
if (is_compound) {
const int offset_1 = tile.current_frame()
.reference_info()
->relative_distance_to[bp->reference_frame[1]];
reference_offsets[1] =
Clip3(offset_1, -kMaxFrameDistance, kMaxFrameDistance);
// Pad so that SIMD implementations won't read uninitialized memory.
if ((count & 1) != 0) {
temporal_mvs[count].mv32 = 0;
temporal_reference_offsets[count] = 0;
}
} else {
// Pad so that SIMD implementations won't read uninitialized memory.
for (int i = count; i < ((count + 3) & ~3); ++i) {
temporal_mvs[i].mv32 = 0;
temporal_reference_offsets[i] = 0;
}
}
AddTemporalReferenceMvCandidate(
tile.frame_header(), reference_offsets, temporal_mvs,
temporal_reference_offsets, count, is_compound, zero_mv_context,
num_mv_found, &(*bp->prediction_parameters));
}
}
// Part of 7.10.2.13.
void AddExtraCompoundMvCandidate(const Tile::Block& block, int mv_row,
int mv_column, int* const ref_id_count,
MotionVector ref_id[2][2],
int* const ref_diff_count,
MotionVector ref_diff[2][2]) {
const auto& bp = block.tile.Parameters(mv_row, mv_column);
const std::array<bool, kNumReferenceFrameTypes>& reference_frame_sign_bias =
block.tile.reference_frame_sign_bias();
for (int i = 0; i < 2; ++i) {
const ReferenceFrameType candidate_reference_frame = bp.reference_frame[i];
if (candidate_reference_frame <= kReferenceFrameIntra) continue;
for (int j = 0; j < 2; ++j) {
MotionVector candidate_mv = bp.mv.mv[i];
const ReferenceFrameType block_reference_frame =
block.bp->reference_frame[j];
if (candidate_reference_frame == block_reference_frame &&
ref_id_count[j] < 2) {
ref_id[j][ref_id_count[j]] = candidate_mv;
++ref_id_count[j];
} else if (ref_diff_count[j] < 2) {
if (reference_frame_sign_bias[candidate_reference_frame] !=
reference_frame_sign_bias[block_reference_frame]) {
candidate_mv.mv[0] *= -1;
candidate_mv.mv[1] *= -1;
}
ref_diff[j][ref_diff_count[j]] = candidate_mv;
++ref_diff_count[j];
}
}
}
}
// Part of 7.10.2.13.
void AddExtraSingleMvCandidate(const Tile::Block& block, int mv_row,
int mv_column, int* const num_mv_found) {
const auto& bp = block.tile.Parameters(mv_row, mv_column);
const std::array<bool, kNumReferenceFrameTypes>& reference_frame_sign_bias =
block.tile.reference_frame_sign_bias();
const ReferenceFrameType block_reference_frame = block.bp->reference_frame[0];
PredictionParameters& prediction_parameters =
*block.bp->prediction_parameters;
MotionVector* const ref_mv_stack = prediction_parameters.ref_mv_stack;
int num_found = *num_mv_found;
for (int i = 0; i < 2; ++i) {
const ReferenceFrameType candidate_reference_frame = bp.reference_frame[i];
if (candidate_reference_frame <= kReferenceFrameIntra) continue;
MotionVector candidate_mv = bp.mv.mv[i];
if (reference_frame_sign_bias[candidate_reference_frame] !=
reference_frame_sign_bias[block_reference_frame]) {
candidate_mv.mv[0] *= -1;
candidate_mv.mv[1] *= -1;
}
assert(num_found <= 2);
if ((num_found != 0 && ref_mv_stack[0].mv32 == candidate_mv.mv32) ||
(num_found == 2 && ref_mv_stack[1].mv32 == candidate_mv.mv32)) {
continue;
}
ref_mv_stack[num_found] = candidate_mv;
prediction_parameters.SetWeightIndexStackEntry(num_found, 0);
++num_found;
}
*num_mv_found = num_found;
}
// 7.10.2.12.
void ExtraSearch(const Tile::Block& block, bool is_compound,
int* const num_mv_found) {
const Tile& tile = block.tile;
const int num4x4 = std::min({static_cast<int>(block.width4x4),
tile.frame_header().columns4x4 - block.column4x4,
static_cast<int>(block.height4x4),
tile.frame_header().rows4x4 - block.row4x4, 16});
int ref_id_count[2] = {};
MotionVector ref_id[2][2] = {};
int ref_diff_count[2] = {};
MotionVector ref_diff[2][2] = {};
PredictionParameters& prediction_parameters =
*block.bp->prediction_parameters;
for (int pass = 0; pass < 2 && *num_mv_found < 2; ++pass) {
for (int i = 0; i < num4x4;) {
const int mv_row = block.row4x4 + ((pass == 0) ? -1 : i);
const int mv_column = block.column4x4 + ((pass == 0) ? i : -1);
if (!tile.IsTopLeftInside(mv_row + 1, mv_column + 1)) break;
if (is_compound) {
AddExtraCompoundMvCandidate(block, mv_row, mv_column, ref_id_count,
ref_id, ref_diff_count, ref_diff);
} else {
AddExtraSingleMvCandidate(block, mv_row, mv_column, num_mv_found);
if (*num_mv_found >= 2) break;
}
const auto& bp = tile.Parameters(mv_row, mv_column);
i +=
(pass == 0) ? kNum4x4BlocksWide[bp.size] : kNum4x4BlocksHigh[bp.size];
}
}
if (is_compound) {
// Merge compound mode extra search into mv stack.
CompoundMotionVector* const compound_ref_mv_stack =
prediction_parameters.compound_ref_mv_stack;
CompoundMotionVector combined_mvs[2] = {};
for (int i = 0; i < 2; ++i) {
int count = 0;
assert(ref_id_count[i] <= 2);
for (int j = 0; j < ref_id_count[i]; ++j, ++count) {
combined_mvs[count].mv[i] = ref_id[i][j];
}
for (int j = 0; j < ref_diff_count[i] && count < 2; ++j, ++count) {
combined_mvs[count].mv[i] = ref_diff[i][j];
}
for (; count < 2; ++count) {
combined_mvs[count].mv[i] = prediction_parameters.global_mv[i];
}
}
if (*num_mv_found == 1) {
if (combined_mvs[0].mv64 == compound_ref_mv_stack[0].mv64) {
compound_ref_mv_stack[1].mv64 = combined_mvs[1].mv64;
} else {
compound_ref_mv_stack[1].mv64 = combined_mvs[0].mv64;
}
prediction_parameters.SetWeightIndexStackEntry(1, 0);
} else {
assert(*num_mv_found == 0);
for (int i = 0; i < 2; ++i) {
compound_ref_mv_stack[i].mv64 = combined_mvs[i].mv64;
prediction_parameters.SetWeightIndexStackEntry(i, 0);
}
}
*num_mv_found = 2;
} else {
// single prediction mode
MotionVector* const ref_mv_stack = prediction_parameters.ref_mv_stack;
for (int i = *num_mv_found; i < 2; ++i) {
ref_mv_stack[i] = prediction_parameters.global_mv[0];
prediction_parameters.SetWeightIndexStackEntry(i, 0);
}
}
}
void DescendingOrderTwo(int* const a, int* const b) {
if (*a < *b) {
std::swap(*a, *b);
}
}
// Comparator used for sorting candidate motion vectors in descending order of
// their weights (as specified in 7.10.2.11).
bool CompareCandidateMotionVectors(const int16_t& lhs, const int16_t& rhs) {
return lhs > rhs;
}
void SortWeightIndexStack(const int size, const int sort_to_n,
int16_t* const weight_index_stack) {
if (size <= 1) return;
if (size <= 3) {
// Specialize small sort sizes to speed up.
int weight_index_0 = weight_index_stack[0];
int weight_index_1 = weight_index_stack[1];
DescendingOrderTwo(&weight_index_0, &weight_index_1);
if (size == 3) {
int weight_index_2 = weight_index_stack[2];
DescendingOrderTwo(&weight_index_1, &weight_index_2);
DescendingOrderTwo(&weight_index_0, &weight_index_1);
weight_index_stack[2] = weight_index_2;
}
weight_index_stack[0] = weight_index_0;
weight_index_stack[1] = weight_index_1;
return;
}
if (sort_to_n == 1) {
// std::max_element() is not efficient. Find the max element in a loop.
int16_t max_element = weight_index_stack[0];
int i = 1;
do {
max_element = std::max(max_element, weight_index_stack[i]);
} while (++i < size);
weight_index_stack[0] = max_element;
return;
}
std::partial_sort(&weight_index_stack[0], &weight_index_stack[sort_to_n],
&weight_index_stack[size], CompareCandidateMotionVectors);
}
// 7.10.2.14 (part 2).
void ComputeContexts(bool found_new_mv, int nearest_matches, int total_matches,
int* new_mv_context, int* reference_mv_context) {
switch (nearest_matches) {
case 0:
*new_mv_context = std::min(total_matches, 1);
*reference_mv_context = total_matches;
break;
case 1:
*new_mv_context = 3 - static_cast<int>(found_new_mv);
*reference_mv_context = 2 + total_matches;
break;
default:
*new_mv_context = 5 - static_cast<int>(found_new_mv);
*reference_mv_context = 5;
break;
}
}
// 7.10.4.2.
void AddSample(const Tile::Block& block, int delta_row, int delta_column,
int* const num_warp_samples, int* const num_samples_scanned,
int candidates[kMaxLeastSquaresSamples][4]) {
if (*num_samples_scanned >= kMaxLeastSquaresSamples) return;
const int mv_row = block.row4x4 + delta_row;
const int mv_column = block.column4x4 + delta_column;
const Tile& tile = block.tile;
if (!tile.IsInside(mv_row, mv_column) ||
!tile.HasParameters(mv_row, mv_column)) {
return;
}
const BlockParameters& bp = *block.bp;
const BlockParameters& mv_bp = tile.Parameters(mv_row, mv_column);
if (mv_bp.reference_frame[0] != bp.reference_frame[0] ||
mv_bp.reference_frame[1] != kReferenceFrameNone) {
return;
}
++*num_samples_scanned;
const int candidate_height4x4 = kNum4x4BlocksHigh[mv_bp.size];
const int candidate_row = mv_row & ~(candidate_height4x4 - 1);
const int candidate_width4x4 = kNum4x4BlocksWide[mv_bp.size];
const int candidate_column = mv_column & ~(candidate_width4x4 - 1);
const BlockParameters& candidate_bp =
tile.Parameters(candidate_row, candidate_column);
const int mv_diff_row =
std::abs(candidate_bp.mv.mv[0].mv[0] - bp.mv.mv[0].mv[0]);
const int mv_diff_column =
std::abs(candidate_bp.mv.mv[0].mv[1] - bp.mv.mv[0].mv[1]);
const bool is_valid =
mv_diff_row + mv_diff_column <= kWarpValidThreshold[block.size];
if (!is_valid && *num_samples_scanned > 1) {
return;
}
const int mid_y =
MultiplyBy4(candidate_row) + MultiplyBy2(candidate_height4x4) - 1;
const int mid_x =
MultiplyBy4(candidate_column) + MultiplyBy2(candidate_width4x4) - 1;
candidates[*num_warp_samples][0] = MultiplyBy8(mid_y);
candidates[*num_warp_samples][1] = MultiplyBy8(mid_x);
candidates[*num_warp_samples][2] =
MultiplyBy8(mid_y) + candidate_bp.mv.mv[0].mv[0];
candidates[*num_warp_samples][3] =
MultiplyBy8(mid_x) + candidate_bp.mv.mv[0].mv[1];
if (is_valid) ++*num_warp_samples;
}
// 7.9.2.
// In the spec, |dst_sign| is either 1 or -1. Here we set |dst_sign| to either 0
// or -1 so that it can be XORed and subtracted directly in ApplySign() and
// corresponding SIMD implementations.
bool MotionFieldProjection(
const ObuFrameHeader& frame_header,
const std::array<RefCountedBufferPtr, kNumReferenceFrameTypes>&
reference_frames,
ReferenceFrameType source, int reference_to_current_with_sign, int dst_sign,
int y8_start, int y8_end, int x8_start, int x8_end,
TemporalMotionField* const motion_field) {
const int source_index =
frame_header.reference_frame_index[source - kReferenceFrameLast];
auto* const source_frame = reference_frames[source_index].get();
assert(source_frame != nullptr);
assert(dst_sign == 0 || dst_sign == -1);
if (source_frame->rows4x4() != frame_header.rows4x4 ||
source_frame->columns4x4() != frame_header.columns4x4 ||
IsIntraFrame(source_frame->frame_type())) {
return false;
}
assert(reference_to_current_with_sign >= -kMaxFrameDistance);
if (reference_to_current_with_sign > kMaxFrameDistance) return true;
const ReferenceInfo& reference_info = *source_frame->reference_info();
const dsp::Dsp& dsp = *dsp::GetDspTable(8);
dsp.motion_field_projection_kernel(
reference_info, reference_to_current_with_sign, dst_sign, y8_start,
y8_end, x8_start, x8_end, motion_field);
return true;
}
} // namespace
void FindMvStack(const Tile::Block& block, bool is_compound,
MvContexts* const contexts) {
PredictionParameters& prediction_parameters =
*block.bp->prediction_parameters;
SetupGlobalMv(block, 0, &prediction_parameters.global_mv[0]);
if (is_compound) SetupGlobalMv(block, 1, &prediction_parameters.global_mv[1]);
bool found_new_mv = false;
bool found_row_match = false;
int num_mv_found = 0;
ScanRow(block, block.column4x4, -1, is_compound, &found_new_mv,
&found_row_match, &num_mv_found);
bool found_column_match = false;
ScanColumn(block, block.row4x4, -1, is_compound, &found_new_mv,
&found_column_match, &num_mv_found);
if (std::max(block.width4x4, block.height4x4) <= 16) {
ScanPoint(block, -1, block.width4x4, is_compound, &found_new_mv,
&found_row_match, &num_mv_found);
}
const int nearest_matches =
static_cast<int>(found_row_match) + static_cast<int>(found_column_match);
prediction_parameters.nearest_mv_count = num_mv_found;
if (block.tile.frame_header().use_ref_frame_mvs) {
// Initialize to invalid value, and it will be set when temporal mv is zero.
contexts->zero_mv = -1;
TemporalScan(block, is_compound, &contexts->zero_mv, &num_mv_found);
} else {
contexts->zero_mv = 0;
}
bool dummy_bool = false;
ScanPoint(block, -1, -1, is_compound, &dummy_bool, &found_row_match,
&num_mv_found);
static constexpr int deltas[2] = {-3, -5};
for (int i = 0; i < 2; ++i) {
if (i == 0 || block.height4x4 > 1) {
ScanRow(block, block.column4x4 | 1, deltas[i] + (block.row4x4 & 1),
is_compound, &dummy_bool, &found_row_match, &num_mv_found);
}
if (i == 0 || block.width4x4 > 1) {
ScanColumn(block, block.row4x4 | 1, deltas[i] + (block.column4x4 & 1),
is_compound, &dummy_bool, &found_column_match, &num_mv_found);
}
}
if (num_mv_found < 2) {
ExtraSearch(block, is_compound, &num_mv_found);
} else {
// The sort of |weight_index_stack| could be moved to Tile::AssignIntraMv()
// and Tile::AssignInterMv(), and only do a partial sort to the max index we
// need. However, the speed gain is trivial.
// For intra case, only the first 1 or 2 mvs in the stack will be used.
// For inter case, |prediction_parameters.ref_mv_index| is at most 3.
// We only need to do the partial sort up to the first 4 mvs.
SortWeightIndexStack(prediction_parameters.nearest_mv_count, 4,
prediction_parameters.weight_index_stack);
// When there are 4 or more nearest mvs, the other mvs will not be used.
if (prediction_parameters.nearest_mv_count < 4) {
SortWeightIndexStack(
num_mv_found - prediction_parameters.nearest_mv_count,
4 - prediction_parameters.nearest_mv_count,
prediction_parameters.weight_index_stack +
prediction_parameters.nearest_mv_count);
}
}
prediction_parameters.ref_mv_count = num_mv_found;
const int total_matches =
static_cast<int>(found_row_match) + static_cast<int>(found_column_match);
ComputeContexts(found_new_mv, nearest_matches, total_matches,
&contexts->new_mv, &contexts->reference_mv);
// The mv stack clamping process is in Tile::AssignIntraMv() and
// Tile::AssignInterMv(), and only up to two mvs are clamped.
}
void FindWarpSamples(const Tile::Block& block, int* const num_warp_samples,
int* const num_samples_scanned,
int candidates[kMaxLeastSquaresSamples][4]) {
const Tile& tile = block.tile;
bool top_left = true;
bool top_right = true;
int step = 1;
if (block.top_available[kPlaneY]) {
BlockSize source_size =
tile.Parameters(block.row4x4 - 1, block.column4x4).size;
const int source_width4x4 = kNum4x4BlocksWide[source_size];
if (block.width4x4 <= source_width4x4) {
// The & here is equivalent to % since source_width4x4 is a power of two.
const int column_offset = -(block.column4x4 & (source_width4x4 - 1));
if (column_offset < 0) top_left = false;
if (column_offset + source_width4x4 > block.width4x4) top_right = false;
AddSample(block, -1, 0, num_warp_samples, num_samples_scanned,
candidates);
} else {
for (int i = 0;
i < std::min(static_cast<int>(block.width4x4),
tile.frame_header().columns4x4 - block.column4x4);
i += step) {
source_size =
tile.Parameters(block.row4x4 - 1, block.column4x4 + i).size;
step = std::min(static_cast<int>(block.width4x4),
static_cast<int>(kNum4x4BlocksWide[source_size]));
AddSample(block, -1, i, num_warp_samples, num_samples_scanned,
candidates);
}
}
}
if (block.left_available[kPlaneY]) {
BlockSize source_size =
tile.Parameters(block.row4x4, block.column4x4 - 1).size;
const int source_height4x4 = kNum4x4BlocksHigh[source_size];
if (block.height4x4 <= source_height4x4) {
const int row_offset = -(block.row4x4 & (source_height4x4 - 1));
if (row_offset < 0) top_left = false;
AddSample(block, 0, -1, num_warp_samples, num_samples_scanned,
candidates);
} else {
for (int i = 0; i < std::min(static_cast<int>(block.height4x4),
tile.frame_header().rows4x4 - block.row4x4);
i += step) {
source_size =
tile.Parameters(block.row4x4 + i, block.column4x4 - 1).size;
step = std::min(static_cast<int>(block.height4x4),
static_cast<int>(kNum4x4BlocksHigh[source_size]));
AddSample(block, i, -1, num_warp_samples, num_samples_scanned,
candidates);
}
}
}
if (top_left) {
AddSample(block, -1, -1, num_warp_samples, num_samples_scanned, candidates);
}
if (top_right && block.size <= kBlock64x64) {
AddSample(block, -1, block.width4x4, num_warp_samples, num_samples_scanned,
candidates);
}
if (*num_warp_samples == 0 && *num_samples_scanned > 0) *num_warp_samples = 1;
}
void SetupMotionField(
const ObuFrameHeader& frame_header, const RefCountedBuffer& current_frame,
const std::array<RefCountedBufferPtr, kNumReferenceFrameTypes>&
reference_frames,
int row4x4_start, int row4x4_end, int column4x4_start, int column4x4_end,
TemporalMotionField* const motion_field) {
assert(frame_header.use_ref_frame_mvs);
const int y8_start = DivideBy2(row4x4_start);
const int y8_end = DivideBy2(std::min(row4x4_end, frame_header.rows4x4));
const int x8_start = DivideBy2(column4x4_start);
const int x8_end =
DivideBy2(std::min(column4x4_end, frame_header.columns4x4));
const int last_index = frame_header.reference_frame_index[0];
const ReferenceInfo& reference_info = *current_frame.reference_info();
if (!IsIntraFrame(reference_frames[last_index]->frame_type())) {
const int last_alternate_order_hint =
reference_frames[last_index]
->reference_info()
->order_hint[kReferenceFrameAlternate];
const int current_gold_order_hint =
reference_info.order_hint[kReferenceFrameGolden];
if (last_alternate_order_hint != current_gold_order_hint) {
const int reference_offset_last =
-reference_info.relative_distance_from[kReferenceFrameLast];
if (std::abs(reference_offset_last) <= kMaxFrameDistance) {
MotionFieldProjection(frame_header, reference_frames,
kReferenceFrameLast, reference_offset_last, -1,
y8_start, y8_end, x8_start, x8_end, motion_field);
}
}
}
int ref_stamp = 1;
const int reference_offset_backward =
reference_info.relative_distance_from[kReferenceFrameBackward];
if (reference_offset_backward > 0 &&
MotionFieldProjection(frame_header, reference_frames,
kReferenceFrameBackward, reference_offset_backward,
0, y8_start, y8_end, x8_start, x8_end,
motion_field)) {
--ref_stamp;
}
const int reference_offset_alternate2 =
reference_info.relative_distance_from[kReferenceFrameAlternate2];
if (reference_offset_alternate2 > 0 &&
MotionFieldProjection(frame_header, reference_frames,
kReferenceFrameAlternate2,
reference_offset_alternate2, 0, y8_start, y8_end,
x8_start, x8_end, motion_field)) {
--ref_stamp;
}
if (ref_stamp >= 0) {
const int reference_offset_alternate =
reference_info.relative_distance_from[kReferenceFrameAlternate];
if (reference_offset_alternate > 0 &&
MotionFieldProjection(frame_header, reference_frames,
kReferenceFrameAlternate,
reference_offset_alternate, 0, y8_start, y8_end,
x8_start, x8_end, motion_field)) {
--ref_stamp;
}
}
if (ref_stamp >= 0) {
const int reference_offset_last2 =
-reference_info.relative_distance_from[kReferenceFrameLast2];
if (std::abs(reference_offset_last2) <= kMaxFrameDistance) {
MotionFieldProjection(frame_header, reference_frames,
kReferenceFrameLast2, reference_offset_last2, -1,
y8_start, y8_end, x8_start, x8_end, motion_field);
}
}
}
} // namespace libgav1
|