1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
|
// Copyright 2019 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/residual_buffer_pool.h"
#include <mutex> // NOLINT (unapproved c++11 header)
#include <utility>
namespace libgav1 {
namespace {
// The maximum queue size is derived using the following formula:
// ((sb_size * sb_size) / 16) + (2 * (((sb_size / x) * (sb_size / y)) / 16)).
// Where:
// sb_size is the superblock size (64 or 128).
// 16 is 4*4 which is kMinTransformWidth * kMinTransformHeight.
// x is subsampling_x + 1.
// y is subsampling_y + 1.
// The first component is for the Y plane and the second component is for the U
// and V planes.
// For example, for 128x128 superblocks with 422 subsampling the size is:
// ((128 * 128) / 16) + (2 * (((128 / 2) * (128 / 1)) / 16)) = 2048.
//
// First dimension: use_128x128_superblock.
// Second dimension: subsampling_x.
// Third dimension: subsampling_y.
constexpr int kMaxQueueSize[2][2][2] = {
// 64x64 superblocks.
{
{768, 512},
{512, 384},
},
// 128x128 superblocks.
{
{3072, 2048},
{2048, 1536},
},
};
} // namespace
ResidualBufferStack::~ResidualBufferStack() {
while (top_ != nullptr) {
ResidualBuffer* top = top_;
top_ = top_->next_;
delete top;
}
}
void ResidualBufferStack::Push(std::unique_ptr<ResidualBuffer> buffer) {
buffer->next_ = top_;
top_ = buffer.release();
++num_buffers_;
}
std::unique_ptr<ResidualBuffer> ResidualBufferStack::Pop() {
std::unique_ptr<ResidualBuffer> top;
if (top_ != nullptr) {
top.reset(top_);
top_ = top_->next_;
top->next_ = nullptr;
--num_buffers_;
}
return top;
}
void ResidualBufferStack::Swap(ResidualBufferStack* other) {
std::swap(top_, other->top_);
std::swap(num_buffers_, other->num_buffers_);
}
ResidualBufferPool::ResidualBufferPool(bool use_128x128_superblock,
int subsampling_x, int subsampling_y,
size_t residual_size)
: buffer_size_(GetResidualBufferSize(
use_128x128_superblock ? 128 : 64, use_128x128_superblock ? 128 : 64,
subsampling_x, subsampling_y, residual_size)),
queue_size_(kMaxQueueSize[static_cast<int>(use_128x128_superblock)]
[subsampling_x][subsampling_y]) {}
void ResidualBufferPool::Reset(bool use_128x128_superblock, int subsampling_x,
int subsampling_y, size_t residual_size) {
const size_t buffer_size = GetResidualBufferSize(
use_128x128_superblock ? 128 : 64, use_128x128_superblock ? 128 : 64,
subsampling_x, subsampling_y, residual_size);
const int queue_size = kMaxQueueSize[static_cast<int>(use_128x128_superblock)]
[subsampling_x][subsampling_y];
if (buffer_size == buffer_size_ && queue_size == queue_size_) {
// The existing buffers (if any) are still valid, so don't do anything.
return;
}
buffer_size_ = buffer_size;
queue_size_ = queue_size;
// The existing buffers (if any) are no longer valid since the buffer size or
// the queue size has changed. Clear the stack.
ResidualBufferStack buffers;
{
std::lock_guard<std::mutex> lock(mutex_);
// Move the buffers in the stack to the local variable |buffers| and clear
// the stack.
buffers.Swap(&buffers_);
// Release mutex_ before freeing the buffers.
}
// As the local variable |buffers| goes out of scope, its destructor frees
// the buffers that were in the stack.
}
std::unique_ptr<ResidualBuffer> ResidualBufferPool::Get() {
std::unique_ptr<ResidualBuffer> buffer = nullptr;
{
std::lock_guard<std::mutex> lock(mutex_);
buffer = buffers_.Pop();
}
if (buffer == nullptr) {
buffer = ResidualBuffer::Create(buffer_size_, queue_size_);
}
return buffer;
}
void ResidualBufferPool::Release(std::unique_ptr<ResidualBuffer> buffer) {
buffer->transform_parameters()->Clear();
buffer->partition_tree_order()->Clear();
std::lock_guard<std::mutex> lock(mutex_);
buffers_.Push(std::move(buffer));
}
size_t ResidualBufferPool::Size() const {
std::lock_guard<std::mutex> lock(mutex_);
return buffers_.Size();
}
} // namespace libgav1
|