1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
|
// Copyright 2019 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <array>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <memory>
#include "src/buffer_pool.h"
#include "src/dsp/constants.h"
#include "src/dsp/dsp.h"
#include "src/motion_vector.h"
#include "src/obu_parser.h"
#include "src/prediction_mask.h"
#include "src/tile.h"
#include "src/utils/array_2d.h"
#include "src/utils/bit_mask_set.h"
#include "src/utils/block_parameters_holder.h"
#include "src/utils/common.h"
#include "src/utils/constants.h"
#include "src/utils/logging.h"
#include "src/utils/memory.h"
#include "src/utils/types.h"
#include "src/warp_prediction.h"
#include "src/yuv_buffer.h"
namespace libgav1 {
namespace {
// Import all the constants in the anonymous namespace.
#include "src/inter_intra_masks.inc"
// Precision bits when scaling reference frames.
constexpr int kReferenceScaleShift = 14;
constexpr int kAngleStep = 3;
constexpr int kPredictionModeToAngle[kIntraPredictionModesUV] = {
0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0};
// The following modes need both the left_column and top_row for intra
// prediction. For directional modes left/top requirement is inferred based on
// the prediction angle. For Dc modes, left/top requirement is inferred based on
// whether or not left/top is available.
constexpr BitMaskSet kNeedsLeftAndTop(kPredictionModeSmooth,
kPredictionModeSmoothHorizontal,
kPredictionModeSmoothVertical,
kPredictionModePaeth);
int16_t GetDirectionalIntraPredictorDerivative(const int angle) {
assert(angle >= 3);
assert(angle <= 87);
return kDirectionalIntraPredictorDerivative[DivideBy2(angle) - 1];
}
// Maps the block_size to an index as follows:
// kBlock8x8 => 0.
// kBlock8x16 => 1.
// kBlock8x32 => 2.
// kBlock16x8 => 3.
// kBlock16x16 => 4.
// kBlock16x32 => 5.
// kBlock32x8 => 6.
// kBlock32x16 => 7.
// kBlock32x32 => 8.
int GetWedgeBlockSizeIndex(BlockSize block_size) {
assert(block_size >= kBlock8x8);
return block_size - kBlock8x8 - static_cast<int>(block_size >= kBlock16x8) -
static_cast<int>(block_size >= kBlock32x8);
}
// Maps a dimension of 4, 8, 16 and 32 to indices 0, 1, 2 and 3 respectively.
int GetInterIntraMaskLookupIndex(int dimension) {
assert(dimension == 4 || dimension == 8 || dimension == 16 ||
dimension == 32);
return FloorLog2(dimension) - 2;
}
// 7.11.2.9.
int GetIntraEdgeFilterStrength(int width, int height, int filter_type,
int delta) {
const int sum = width + height;
delta = std::abs(delta);
if (filter_type == 0) {
if (sum <= 8) {
if (delta >= 56) return 1;
} else if (sum <= 16) {
if (delta >= 40) return 1;
} else if (sum <= 24) {
if (delta >= 32) return 3;
if (delta >= 16) return 2;
if (delta >= 8) return 1;
} else if (sum <= 32) {
if (delta >= 32) return 3;
if (delta >= 4) return 2;
return 1;
} else {
return 3;
}
} else {
if (sum <= 8) {
if (delta >= 64) return 2;
if (delta >= 40) return 1;
} else if (sum <= 16) {
if (delta >= 48) return 2;
if (delta >= 20) return 1;
} else if (sum <= 24) {
if (delta >= 4) return 3;
} else {
return 3;
}
}
return 0;
}
// 7.11.2.10.
bool DoIntraEdgeUpsampling(int width, int height, int filter_type, int delta) {
const int sum = width + height;
delta = std::abs(delta);
// This function should not be called when the prediction angle is 90 or 180.
assert(delta != 0);
if (delta >= 40) return false;
return (filter_type == 1) ? sum <= 8 : sum <= 16;
}
constexpr uint8_t kQuantizedDistanceWeight[4][2] = {
{2, 3}, {2, 5}, {2, 7}, {1, kMaxFrameDistance}};
constexpr uint8_t kQuantizedDistanceLookup[4][2] = {
{9, 7}, {11, 5}, {12, 4}, {13, 3}};
void GetDistanceWeights(const int distance[2], int weight[2]) {
// Note: distance[0] and distance[1] correspond to relative distance
// between current frame and reference frame [1] and [0], respectively.
const int order = static_cast<int>(distance[0] <= distance[1]);
if (distance[0] == 0 || distance[1] == 0) {
weight[0] = kQuantizedDistanceLookup[3][order];
weight[1] = kQuantizedDistanceLookup[3][1 - order];
} else {
int i;
for (i = 0; i < 3; ++i) {
const int weight_0 = kQuantizedDistanceWeight[i][order];
const int weight_1 = kQuantizedDistanceWeight[i][1 - order];
if (order == 0) {
if (distance[0] * weight_0 < distance[1] * weight_1) break;
} else {
if (distance[0] * weight_0 > distance[1] * weight_1) break;
}
}
weight[0] = kQuantizedDistanceLookup[i][order];
weight[1] = kQuantizedDistanceLookup[i][1 - order];
}
}
dsp::IntraPredictor GetIntraPredictor(PredictionMode mode, bool has_left,
bool has_top) {
if (mode == kPredictionModeDc) {
if (has_left && has_top) {
return dsp::kIntraPredictorDc;
}
if (has_left) {
return dsp::kIntraPredictorDcLeft;
}
if (has_top) {
return dsp::kIntraPredictorDcTop;
}
return dsp::kIntraPredictorDcFill;
}
switch (mode) {
case kPredictionModePaeth:
return dsp::kIntraPredictorPaeth;
case kPredictionModeSmooth:
return dsp::kIntraPredictorSmooth;
case kPredictionModeSmoothVertical:
return dsp::kIntraPredictorSmoothVertical;
case kPredictionModeSmoothHorizontal:
return dsp::kIntraPredictorSmoothHorizontal;
default:
return dsp::kNumIntraPredictors;
}
}
uint8_t* GetStartPoint(Array2DView<uint8_t>* const buffer, const int plane,
const int x, const int y, const int bitdepth) {
#if LIBGAV1_MAX_BITDEPTH >= 10
if (bitdepth > 8) {
Array2DView<uint16_t> buffer16(
buffer[plane].rows(), buffer[plane].columns() / sizeof(uint16_t),
reinterpret_cast<uint16_t*>(&buffer[plane][0][0]));
return reinterpret_cast<uint8_t*>(&buffer16[y][x]);
}
#endif // LIBGAV1_MAX_BITDEPTH >= 10
static_cast<void>(bitdepth);
return &buffer[plane][y][x];
}
int GetPixelPositionFromHighScale(int start, int step, int offset) {
return (start + step * offset) >> kScaleSubPixelBits;
}
dsp::MaskBlendFunc GetMaskBlendFunc(const dsp::Dsp& dsp, bool is_inter_intra,
bool is_wedge_inter_intra,
int subsampling_x, int subsampling_y) {
return (is_inter_intra && !is_wedge_inter_intra)
? dsp.mask_blend[0][/*is_inter_intra=*/true]
: dsp.mask_blend[subsampling_x + subsampling_y][is_inter_intra];
}
} // namespace
template <typename Pixel>
void Tile::IntraPrediction(const Block& block, Plane plane, int x, int y,
bool has_left, bool has_top, bool has_top_right,
bool has_bottom_left, PredictionMode mode,
TransformSize tx_size) {
const int width = kTransformWidth[tx_size];
const int height = kTransformHeight[tx_size];
const int x_shift = subsampling_x_[plane];
const int y_shift = subsampling_y_[plane];
const int max_x = (MultiplyBy4(frame_header_.columns4x4) >> x_shift) - 1;
const int max_y = (MultiplyBy4(frame_header_.rows4x4) >> y_shift) - 1;
// For performance reasons, do not initialize the following two buffers.
alignas(kMaxAlignment) Pixel top_row_data[160];
alignas(kMaxAlignment) Pixel left_column_data[160];
#if LIBGAV1_MSAN
if (IsDirectionalMode(mode)) {
memset(top_row_data, 0, sizeof(top_row_data));
memset(left_column_data, 0, sizeof(left_column_data));
}
#endif
// Some predictors use |top_row_data| and |left_column_data| with a negative
// offset to access pixels to the top-left of the current block. So have some
// space before the arrays to allow populating those without having to move
// the rest of the array.
Pixel* const top_row = top_row_data + 16;
Pixel* const left_column = left_column_data + 16;
const int bitdepth = sequence_header_.color_config.bitdepth;
const int top_and_left_size = width + height;
const bool is_directional_mode = IsDirectionalMode(mode);
const PredictionParameters& prediction_parameters =
*block.bp->prediction_parameters;
const bool use_filter_intra =
(plane == kPlaneY && prediction_parameters.use_filter_intra);
const int prediction_angle =
is_directional_mode
? kPredictionModeToAngle[mode] +
prediction_parameters.angle_delta[GetPlaneType(plane)] *
kAngleStep
: 0;
// Directional prediction requires buffers larger than the width or height.
const int top_size = is_directional_mode ? top_and_left_size : width;
const int left_size = is_directional_mode ? top_and_left_size : height;
const int top_right_size =
is_directional_mode ? (has_top_right ? 2 : 1) * width : width;
const int bottom_left_size =
is_directional_mode ? (has_bottom_left ? 2 : 1) * height : height;
Array2DView<Pixel> buffer(buffer_[plane].rows(),
buffer_[plane].columns() / sizeof(Pixel),
reinterpret_cast<Pixel*>(&buffer_[plane][0][0]));
const bool needs_top = use_filter_intra || kNeedsLeftAndTop.Contains(mode) ||
(is_directional_mode && prediction_angle < 180) ||
(mode == kPredictionModeDc && has_top);
const bool needs_left = use_filter_intra || kNeedsLeftAndTop.Contains(mode) ||
(is_directional_mode && prediction_angle > 90) ||
(mode == kPredictionModeDc && has_left);
const Pixel* top_row_src = buffer[y - 1];
// Determine if we need to retrieve the top row from
// |intra_prediction_buffer_|.
if ((needs_top || needs_left) && use_intra_prediction_buffer_) {
// Superblock index of block.row4x4. block.row4x4 is always in luma
// dimension (no subsampling).
const int current_superblock_index =
block.row4x4 >> (sequence_header_.use_128x128_superblock ? 5 : 4);
// Superblock index of y - 1. y is in the plane dimension (chroma planes
// could be subsampled).
const int plane_shift = (sequence_header_.use_128x128_superblock ? 7 : 6) -
subsampling_y_[plane];
const int top_row_superblock_index = (y - 1) >> plane_shift;
// If the superblock index of y - 1 is not that of the current superblock,
// then we will have to retrieve the top row from the
// |intra_prediction_buffer_|.
if (current_superblock_index != top_row_superblock_index) {
top_row_src = reinterpret_cast<const Pixel*>(
(*intra_prediction_buffer_)[plane].get());
}
}
if (needs_top) {
// Compute top_row.
if (has_top || has_left) {
const int left_index = has_left ? x - 1 : x;
top_row[-1] = has_top ? top_row_src[left_index] : buffer[y][left_index];
} else {
top_row[-1] = 1 << (bitdepth - 1);
}
if (!has_top && has_left) {
Memset(top_row, buffer[y][x - 1], top_size);
} else if (!has_top && !has_left) {
Memset(top_row, (1 << (bitdepth - 1)) - 1, top_size);
} else {
const int top_limit = std::min(max_x - x + 1, top_right_size);
memcpy(top_row, &top_row_src[x], top_limit * sizeof(Pixel));
// Even though it is safe to call Memset with a size of 0, accessing
// top_row_src[top_limit - x + 1] is not allowed when this condition is
// false.
if (top_size - top_limit > 0) {
Memset(top_row + top_limit, top_row_src[top_limit + x - 1],
top_size - top_limit);
}
}
}
if (needs_left) {
// Compute left_column.
if (has_top || has_left) {
const int left_index = has_left ? x - 1 : x;
left_column[-1] =
has_top ? top_row_src[left_index] : buffer[y][left_index];
} else {
left_column[-1] = 1 << (bitdepth - 1);
}
if (!has_left && has_top) {
Memset(left_column, top_row_src[x], left_size);
} else if (!has_left && !has_top) {
Memset(left_column, (1 << (bitdepth - 1)) + 1, left_size);
} else {
const int left_limit = std::min(max_y - y + 1, bottom_left_size);
for (int i = 0; i < left_limit; ++i) {
left_column[i] = buffer[y + i][x - 1];
}
// Even though it is safe to call Memset with a size of 0, accessing
// buffer[left_limit - y + 1][x - 1] is not allowed when this condition is
// false.
if (left_size - left_limit > 0) {
Memset(left_column + left_limit, buffer[left_limit + y - 1][x - 1],
left_size - left_limit);
}
}
}
Pixel* const dest = &buffer[y][x];
const ptrdiff_t dest_stride = buffer_[plane].columns();
if (use_filter_intra) {
dsp_.filter_intra_predictor(dest, dest_stride, top_row, left_column,
prediction_parameters.filter_intra_mode, width,
height);
} else if (is_directional_mode) {
DirectionalPrediction(block, plane, x, y, has_left, has_top, needs_left,
needs_top, prediction_angle, width, height, max_x,
max_y, tx_size, top_row, left_column);
} else {
const dsp::IntraPredictor predictor =
GetIntraPredictor(mode, has_left, has_top);
assert(predictor != dsp::kNumIntraPredictors);
dsp_.intra_predictors[tx_size][predictor](dest, dest_stride, top_row,
left_column);
}
}
template void Tile::IntraPrediction<uint8_t>(const Block& block, Plane plane,
int x, int y, bool has_left,
bool has_top, bool has_top_right,
bool has_bottom_left,
PredictionMode mode,
TransformSize tx_size);
#if LIBGAV1_MAX_BITDEPTH >= 10
template void Tile::IntraPrediction<uint16_t>(const Block& block, Plane plane,
int x, int y, bool has_left,
bool has_top, bool has_top_right,
bool has_bottom_left,
PredictionMode mode,
TransformSize tx_size);
#endif
int Tile::GetIntraEdgeFilterType(const Block& block, Plane plane) const {
bool top;
bool left;
if (plane == kPlaneY) {
top = block.top_available[kPlaneY] &&
kPredictionModeSmoothMask.Contains(block.bp_top->y_mode);
left = block.left_available[kPlaneY] &&
kPredictionModeSmoothMask.Contains(block.bp_left->y_mode);
} else {
top = block.top_available[plane] &&
block.bp->prediction_parameters->chroma_top_uses_smooth_prediction;
left = block.left_available[plane] &&
block.bp->prediction_parameters->chroma_left_uses_smooth_prediction;
}
return static_cast<int>(top || left);
}
template <typename Pixel>
void Tile::DirectionalPrediction(const Block& block, Plane plane, int x, int y,
bool has_left, bool has_top, bool needs_left,
bool needs_top, int prediction_angle,
int width, int height, int max_x, int max_y,
TransformSize tx_size, Pixel* const top_row,
Pixel* const left_column) {
Array2DView<Pixel> buffer(buffer_[plane].rows(),
buffer_[plane].columns() / sizeof(Pixel),
reinterpret_cast<Pixel*>(&buffer_[plane][0][0]));
Pixel* const dest = &buffer[y][x];
const ptrdiff_t stride = buffer_[plane].columns();
if (prediction_angle == 90) {
dsp_.intra_predictors[tx_size][dsp::kIntraPredictorVertical](
dest, stride, top_row, left_column);
return;
}
if (prediction_angle == 180) {
dsp_.intra_predictors[tx_size][dsp::kIntraPredictorHorizontal](
dest, stride, top_row, left_column);
return;
}
bool upsampled_top = false;
bool upsampled_left = false;
if (sequence_header_.enable_intra_edge_filter) {
const int filter_type = GetIntraEdgeFilterType(block, plane);
if (prediction_angle > 90 && prediction_angle < 180 &&
(width + height) >= 24) {
// 7.11.2.7.
left_column[-1] = top_row[-1] = RightShiftWithRounding(
left_column[0] * 5 + top_row[-1] * 6 + top_row[0] * 5, 4);
}
if (has_top && needs_top) {
const int strength = GetIntraEdgeFilterStrength(
width, height, filter_type, prediction_angle - 90);
if (strength > 0) {
const int num_pixels = std::min(width, max_x - x + 1) +
((prediction_angle < 90) ? height : 0) + 1;
dsp_.intra_edge_filter(top_row - 1, num_pixels, strength);
}
}
if (has_left && needs_left) {
const int strength = GetIntraEdgeFilterStrength(
width, height, filter_type, prediction_angle - 180);
if (strength > 0) {
const int num_pixels = std::min(height, max_y - y + 1) +
((prediction_angle > 180) ? width : 0) + 1;
dsp_.intra_edge_filter(left_column - 1, num_pixels, strength);
}
}
upsampled_top = DoIntraEdgeUpsampling(width, height, filter_type,
prediction_angle - 90);
if (upsampled_top && needs_top) {
const int num_pixels = width + ((prediction_angle < 90) ? height : 0);
dsp_.intra_edge_upsampler(top_row, num_pixels);
}
upsampled_left = DoIntraEdgeUpsampling(width, height, filter_type,
prediction_angle - 180);
if (upsampled_left && needs_left) {
const int num_pixels = height + ((prediction_angle > 180) ? width : 0);
dsp_.intra_edge_upsampler(left_column, num_pixels);
}
}
if (prediction_angle < 90) {
const int dx = GetDirectionalIntraPredictorDerivative(prediction_angle);
dsp_.directional_intra_predictor_zone1(dest, stride, top_row, width, height,
dx, upsampled_top);
} else if (prediction_angle < 180) {
const int dx =
GetDirectionalIntraPredictorDerivative(180 - prediction_angle);
const int dy =
GetDirectionalIntraPredictorDerivative(prediction_angle - 90);
dsp_.directional_intra_predictor_zone2(dest, stride, top_row, left_column,
width, height, dx, dy, upsampled_top,
upsampled_left);
} else {
assert(prediction_angle < 270);
const int dy =
GetDirectionalIntraPredictorDerivative(270 - prediction_angle);
dsp_.directional_intra_predictor_zone3(dest, stride, left_column, width,
height, dy, upsampled_left);
}
}
template <typename Pixel>
void Tile::PalettePrediction(const Block& block, const Plane plane,
const int start_x, const int start_y, const int x,
const int y, const TransformSize tx_size) {
const int tx_width = kTransformWidth[tx_size];
const int tx_height = kTransformHeight[tx_size];
const uint16_t* const palette =
block.bp->prediction_parameters->palette_mode_info.color[plane];
const PlaneType plane_type = GetPlaneType(plane);
const int x4 = MultiplyBy4(x);
const int y4 = MultiplyBy4(y);
Array2DView<Pixel> buffer(buffer_[plane].rows(),
buffer_[plane].columns() / sizeof(Pixel),
reinterpret_cast<Pixel*>(&buffer_[plane][0][0]));
for (int row = 0; row < tx_height; ++row) {
assert(block.bp->prediction_parameters
->color_index_map[plane_type][y4 + row] != nullptr);
for (int column = 0; column < tx_width; ++column) {
buffer[start_y + row][start_x + column] =
palette[block.bp->prediction_parameters
->color_index_map[plane_type][y4 + row][x4 + column]];
}
}
}
template void Tile::PalettePrediction<uint8_t>(
const Block& block, const Plane plane, const int start_x, const int start_y,
const int x, const int y, const TransformSize tx_size);
#if LIBGAV1_MAX_BITDEPTH >= 10
template void Tile::PalettePrediction<uint16_t>(
const Block& block, const Plane plane, const int start_x, const int start_y,
const int x, const int y, const TransformSize tx_size);
#endif
template <typename Pixel>
void Tile::ChromaFromLumaPrediction(const Block& block, const Plane plane,
const int start_x, const int start_y,
const TransformSize tx_size) {
const int subsampling_x = subsampling_x_[plane];
const int subsampling_y = subsampling_y_[plane];
const PredictionParameters& prediction_parameters =
*block.bp->prediction_parameters;
Array2DView<Pixel> y_buffer(
buffer_[kPlaneY].rows(), buffer_[kPlaneY].columns() / sizeof(Pixel),
reinterpret_cast<Pixel*>(&buffer_[kPlaneY][0][0]));
if (!block.scratch_buffer->cfl_luma_buffer_valid) {
const int luma_x = start_x << subsampling_x;
const int luma_y = start_y << subsampling_y;
dsp_.cfl_subsamplers[tx_size][subsampling_x + subsampling_y](
block.scratch_buffer->cfl_luma_buffer,
prediction_parameters.max_luma_width - luma_x,
prediction_parameters.max_luma_height - luma_y,
reinterpret_cast<uint8_t*>(&y_buffer[luma_y][luma_x]),
buffer_[kPlaneY].columns());
block.scratch_buffer->cfl_luma_buffer_valid = true;
}
Array2DView<Pixel> buffer(buffer_[plane].rows(),
buffer_[plane].columns() / sizeof(Pixel),
reinterpret_cast<Pixel*>(&buffer_[plane][0][0]));
dsp_.cfl_intra_predictors[tx_size](
reinterpret_cast<uint8_t*>(&buffer[start_y][start_x]),
buffer_[plane].columns(), block.scratch_buffer->cfl_luma_buffer,
(plane == kPlaneU) ? prediction_parameters.cfl_alpha_u
: prediction_parameters.cfl_alpha_v);
}
template void Tile::ChromaFromLumaPrediction<uint8_t>(
const Block& block, const Plane plane, const int start_x, const int start_y,
const TransformSize tx_size);
#if LIBGAV1_MAX_BITDEPTH >= 10
template void Tile::ChromaFromLumaPrediction<uint16_t>(
const Block& block, const Plane plane, const int start_x, const int start_y,
const TransformSize tx_size);
#endif
void Tile::InterIntraPrediction(
uint16_t* const prediction_0, const uint8_t* const prediction_mask,
const ptrdiff_t prediction_mask_stride,
const PredictionParameters& prediction_parameters,
const int prediction_width, const int prediction_height,
const int subsampling_x, const int subsampling_y, uint8_t* const dest,
const ptrdiff_t dest_stride) {
assert(prediction_mask != nullptr);
assert(prediction_parameters.compound_prediction_type ==
kCompoundPredictionTypeIntra ||
prediction_parameters.compound_prediction_type ==
kCompoundPredictionTypeWedge);
// The first buffer of InterIntra is from inter prediction.
// The second buffer is from intra prediction.
#if LIBGAV1_MAX_BITDEPTH >= 10
if (sequence_header_.color_config.bitdepth > 8) {
GetMaskBlendFunc(dsp_, /*is_inter_intra=*/true,
prediction_parameters.is_wedge_inter_intra, subsampling_x,
subsampling_y)(
prediction_0, reinterpret_cast<uint16_t*>(dest),
dest_stride / sizeof(uint16_t), prediction_mask, prediction_mask_stride,
prediction_width, prediction_height, dest, dest_stride);
return;
}
#endif
const int function_index = prediction_parameters.is_wedge_inter_intra
? subsampling_x + subsampling_y
: 0;
// |is_inter_intra| prediction values are stored in a Pixel buffer but it is
// currently declared as a uint16_t buffer.
// TODO(johannkoenig): convert the prediction buffer to a uint8_t buffer and
// remove the reinterpret_cast.
dsp_.inter_intra_mask_blend_8bpp[function_index](
reinterpret_cast<uint8_t*>(prediction_0), dest, dest_stride,
prediction_mask, prediction_mask_stride, prediction_width,
prediction_height);
}
void Tile::CompoundInterPrediction(
const Block& block, const uint8_t* const prediction_mask,
const ptrdiff_t prediction_mask_stride, const int prediction_width,
const int prediction_height, const int subsampling_x,
const int subsampling_y, const int candidate_row,
const int candidate_column, uint8_t* dest, const ptrdiff_t dest_stride) {
const PredictionParameters& prediction_parameters =
*block.bp->prediction_parameters;
void* prediction[2];
#if LIBGAV1_MAX_BITDEPTH >= 10
const int bitdepth = sequence_header_.color_config.bitdepth;
if (bitdepth > 8) {
prediction[0] = block.scratch_buffer->prediction_buffer[0];
prediction[1] = block.scratch_buffer->prediction_buffer[1];
} else {
#endif
prediction[0] = block.scratch_buffer->compound_prediction_buffer_8bpp[0];
prediction[1] = block.scratch_buffer->compound_prediction_buffer_8bpp[1];
#if LIBGAV1_MAX_BITDEPTH >= 10
}
#endif
switch (prediction_parameters.compound_prediction_type) {
case kCompoundPredictionTypeWedge:
case kCompoundPredictionTypeDiffWeighted:
GetMaskBlendFunc(dsp_, /*is_inter_intra=*/false,
prediction_parameters.is_wedge_inter_intra,
subsampling_x, subsampling_y)(
prediction[0], prediction[1],
/*prediction_stride=*/prediction_width, prediction_mask,
prediction_mask_stride, prediction_width, prediction_height, dest,
dest_stride);
break;
case kCompoundPredictionTypeDistance:
DistanceWeightedPrediction(prediction[0], prediction[1], prediction_width,
prediction_height, candidate_row,
candidate_column, dest, dest_stride);
break;
default:
assert(prediction_parameters.compound_prediction_type ==
kCompoundPredictionTypeAverage);
dsp_.average_blend(prediction[0], prediction[1], prediction_width,
prediction_height, dest, dest_stride);
break;
}
}
GlobalMotion* Tile::GetWarpParams(
const Block& block, const Plane plane, const int prediction_width,
const int prediction_height,
const PredictionParameters& prediction_parameters,
const ReferenceFrameType reference_type, bool* const is_local_valid,
GlobalMotion* const global_motion_params,
GlobalMotion* const local_warp_params) const {
if (prediction_width < 8 || prediction_height < 8 ||
frame_header_.force_integer_mv == 1) {
return nullptr;
}
if (plane == kPlaneY) {
*is_local_valid =
prediction_parameters.motion_mode == kMotionModeLocalWarp &&
WarpEstimation(
prediction_parameters.num_warp_samples, DivideBy4(prediction_width),
DivideBy4(prediction_height), block.row4x4, block.column4x4,
block.bp->mv.mv[0], prediction_parameters.warp_estimate_candidates,
local_warp_params) &&
SetupShear(local_warp_params);
}
if (prediction_parameters.motion_mode == kMotionModeLocalWarp &&
*is_local_valid) {
return local_warp_params;
}
if (!IsScaled(reference_type)) {
GlobalMotionTransformationType global_motion_type =
(reference_type != kReferenceFrameIntra)
? global_motion_params->type
: kNumGlobalMotionTransformationTypes;
const bool is_global_valid =
IsGlobalMvBlock(*block.bp, global_motion_type) &&
SetupShear(global_motion_params);
// Valid global motion type implies reference type can't be intra.
assert(!is_global_valid || reference_type != kReferenceFrameIntra);
if (is_global_valid) return global_motion_params;
}
return nullptr;
}
bool Tile::InterPrediction(const Block& block, const Plane plane, const int x,
const int y, const int prediction_width,
const int prediction_height, int candidate_row,
int candidate_column, bool* const is_local_valid,
GlobalMotion* const local_warp_params) {
const int bitdepth = sequence_header_.color_config.bitdepth;
const BlockParameters& bp = *block.bp;
const BlockParameters& bp_reference =
*block_parameters_holder_.Find(candidate_row, candidate_column);
const bool is_compound =
bp_reference.reference_frame[1] > kReferenceFrameIntra;
assert(bp.is_inter);
const bool is_inter_intra = bp.reference_frame[1] == kReferenceFrameIntra;
const PredictionParameters& prediction_parameters =
*block.bp->prediction_parameters;
uint8_t* const dest = GetStartPoint(buffer_, plane, x, y, bitdepth);
const ptrdiff_t dest_stride = buffer_[plane].columns(); // In bytes.
for (int index = 0; index < 1 + static_cast<int>(is_compound); ++index) {
const ReferenceFrameType reference_type =
bp_reference.reference_frame[index];
GlobalMotion global_motion_params =
frame_header_.global_motion[reference_type];
GlobalMotion* warp_params =
GetWarpParams(block, plane, prediction_width, prediction_height,
prediction_parameters, reference_type, is_local_valid,
&global_motion_params, local_warp_params);
if (warp_params != nullptr) {
if (!BlockWarpProcess(block, plane, index, x, y, prediction_width,
prediction_height, warp_params, is_compound,
is_inter_intra, dest, dest_stride)) {
return false;
}
} else {
const int reference_index =
prediction_parameters.use_intra_block_copy
? -1
: frame_header_.reference_frame_index[reference_type -
kReferenceFrameLast];
if (!BlockInterPrediction(
block, plane, reference_index, bp_reference.mv.mv[index], x, y,
prediction_width, prediction_height, candidate_row,
candidate_column, block.scratch_buffer->prediction_buffer[index],
is_compound, is_inter_intra, dest, dest_stride)) {
return false;
}
}
}
const int subsampling_x = subsampling_x_[plane];
const int subsampling_y = subsampling_y_[plane];
ptrdiff_t prediction_mask_stride = 0;
const uint8_t* prediction_mask = nullptr;
if (prediction_parameters.compound_prediction_type ==
kCompoundPredictionTypeWedge) {
const Array2D<uint8_t>& wedge_mask =
wedge_masks_[GetWedgeBlockSizeIndex(block.size)]
[prediction_parameters.wedge_sign]
[prediction_parameters.wedge_index];
prediction_mask = wedge_mask[0];
prediction_mask_stride = wedge_mask.columns();
} else if (prediction_parameters.compound_prediction_type ==
kCompoundPredictionTypeIntra) {
// 7.11.3.13. The inter intra masks are precomputed and stored as a set of
// look up tables.
assert(prediction_parameters.inter_intra_mode < kNumInterIntraModes);
prediction_mask =
kInterIntraMasks[prediction_parameters.inter_intra_mode]
[GetInterIntraMaskLookupIndex(prediction_width)]
[GetInterIntraMaskLookupIndex(prediction_height)];
prediction_mask_stride = prediction_width;
} else if (prediction_parameters.compound_prediction_type ==
kCompoundPredictionTypeDiffWeighted) {
if (plane == kPlaneY) {
assert(prediction_width >= 8);
assert(prediction_height >= 8);
dsp_.weight_mask[FloorLog2(prediction_width) - 3]
[FloorLog2(prediction_height) - 3]
[static_cast<int>(prediction_parameters.mask_is_inverse)](
block.scratch_buffer->prediction_buffer[0],
block.scratch_buffer->prediction_buffer[1],
block.scratch_buffer->weight_mask, block.width);
}
prediction_mask = block.scratch_buffer->weight_mask;
prediction_mask_stride = block.width;
}
if (is_compound) {
CompoundInterPrediction(block, prediction_mask, prediction_mask_stride,
prediction_width, prediction_height, subsampling_x,
subsampling_y, candidate_row, candidate_column,
dest, dest_stride);
} else if (prediction_parameters.motion_mode == kMotionModeObmc) {
// Obmc mode is allowed only for single reference (!is_compound).
return ObmcPrediction(block, plane, prediction_width, prediction_height);
} else if (is_inter_intra) {
// InterIntra and obmc must be mutually exclusive.
InterIntraPrediction(
block.scratch_buffer->prediction_buffer[0], prediction_mask,
prediction_mask_stride, prediction_parameters, prediction_width,
prediction_height, subsampling_x, subsampling_y, dest, dest_stride);
}
return true;
}
bool Tile::ObmcBlockPrediction(const Block& block, const MotionVector& mv,
const Plane plane,
const int reference_frame_index, const int width,
const int height, const int x, const int y,
const int candidate_row,
const int candidate_column,
const ObmcDirection blending_direction) {
const int bitdepth = sequence_header_.color_config.bitdepth;
// Obmc's prediction needs to be clipped before blending with above/left
// prediction blocks.
// Obmc prediction is used only when is_compound is false. So it is safe to
// use prediction_buffer[1] as a temporary buffer for the Obmc prediction.
static_assert(sizeof(block.scratch_buffer->prediction_buffer[1]) >=
64 * 64 * sizeof(uint16_t),
"");
auto* const obmc_buffer =
reinterpret_cast<uint8_t*>(block.scratch_buffer->prediction_buffer[1]);
const ptrdiff_t obmc_buffer_stride =
(bitdepth == 8) ? width : width * sizeof(uint16_t);
if (!BlockInterPrediction(block, plane, reference_frame_index, mv, x, y,
width, height, candidate_row, candidate_column,
nullptr, false, false, obmc_buffer,
obmc_buffer_stride)) {
return false;
}
uint8_t* const prediction = GetStartPoint(buffer_, plane, x, y, bitdepth);
const ptrdiff_t prediction_stride = buffer_[plane].columns();
dsp_.obmc_blend[blending_direction](prediction, prediction_stride, width,
height, obmc_buffer, obmc_buffer_stride);
return true;
}
bool Tile::ObmcPrediction(const Block& block, const Plane plane,
const int width, const int height) {
const int subsampling_x = subsampling_x_[plane];
const int subsampling_y = subsampling_y_[plane];
if (block.top_available[kPlaneY] &&
!IsBlockSmallerThan8x8(block.residual_size[plane])) {
const int num_limit = std::min(uint8_t{4}, k4x4WidthLog2[block.size]);
const int column4x4_max =
std::min(block.column4x4 + block.width4x4, frame_header_.columns4x4);
const int candidate_row = block.row4x4 - 1;
const int block_start_y = MultiplyBy4(block.row4x4) >> subsampling_y;
int column4x4 = block.column4x4;
const int prediction_height = std::min(height >> 1, 32 >> subsampling_y);
for (int i = 0, step; i < num_limit && column4x4 < column4x4_max;
column4x4 += step) {
const int candidate_column = column4x4 | 1;
const BlockParameters& bp_top =
*block_parameters_holder_.Find(candidate_row, candidate_column);
const int candidate_block_size = bp_top.size;
step = Clip3(kNum4x4BlocksWide[candidate_block_size], 2, 16);
if (bp_top.reference_frame[0] > kReferenceFrameIntra) {
i++;
const int candidate_reference_frame_index =
frame_header_.reference_frame_index[bp_top.reference_frame[0] -
kReferenceFrameLast];
const int prediction_width =
std::min(width, MultiplyBy4(step) >> subsampling_x);
if (!ObmcBlockPrediction(
block, bp_top.mv.mv[0], plane, candidate_reference_frame_index,
prediction_width, prediction_height,
MultiplyBy4(column4x4) >> subsampling_x, block_start_y,
candidate_row, candidate_column, kObmcDirectionVertical)) {
return false;
}
}
}
}
if (block.left_available[kPlaneY]) {
const int num_limit = std::min(uint8_t{4}, k4x4HeightLog2[block.size]);
const int row4x4_max =
std::min(block.row4x4 + block.height4x4, frame_header_.rows4x4);
const int candidate_column = block.column4x4 - 1;
int row4x4 = block.row4x4;
const int block_start_x = MultiplyBy4(block.column4x4) >> subsampling_x;
const int prediction_width = std::min(width >> 1, 32 >> subsampling_x);
for (int i = 0, step; i < num_limit && row4x4 < row4x4_max;
row4x4 += step) {
const int candidate_row = row4x4 | 1;
const BlockParameters& bp_left =
*block_parameters_holder_.Find(candidate_row, candidate_column);
const int candidate_block_size = bp_left.size;
step = Clip3(kNum4x4BlocksHigh[candidate_block_size], 2, 16);
if (bp_left.reference_frame[0] > kReferenceFrameIntra) {
i++;
const int candidate_reference_frame_index =
frame_header_.reference_frame_index[bp_left.reference_frame[0] -
kReferenceFrameLast];
const int prediction_height =
std::min(height, MultiplyBy4(step) >> subsampling_y);
if (!ObmcBlockPrediction(
block, bp_left.mv.mv[0], plane, candidate_reference_frame_index,
prediction_width, prediction_height, block_start_x,
MultiplyBy4(row4x4) >> subsampling_y, candidate_row,
candidate_column, kObmcDirectionHorizontal)) {
return false;
}
}
}
}
return true;
}
void Tile::DistanceWeightedPrediction(void* prediction_0, void* prediction_1,
const int width, const int height,
const int candidate_row,
const int candidate_column, uint8_t* dest,
ptrdiff_t dest_stride) {
int distance[2];
int weight[2];
for (int reference = 0; reference < 2; ++reference) {
const BlockParameters& bp =
*block_parameters_holder_.Find(candidate_row, candidate_column);
// Note: distance[0] and distance[1] correspond to relative distance
// between current frame and reference frame [1] and [0], respectively.
distance[1 - reference] = std::min(
std::abs(static_cast<int>(
current_frame_.reference_info()
->relative_distance_from[bp.reference_frame[reference]])),
static_cast<int>(kMaxFrameDistance));
}
GetDistanceWeights(distance, weight);
dsp_.distance_weighted_blend(prediction_0, prediction_1, weight[0], weight[1],
width, height, dest, dest_stride);
}
void Tile::ScaleMotionVector(const MotionVector& mv, const Plane plane,
const int reference_frame_index, const int x,
const int y, int* const start_x,
int* const start_y, int* const step_x,
int* const step_y) {
const int reference_upscaled_width =
(reference_frame_index == -1)
? frame_header_.upscaled_width
: reference_frames_[reference_frame_index]->upscaled_width();
const int reference_height =
(reference_frame_index == -1)
? frame_header_.height
: reference_frames_[reference_frame_index]->frame_height();
assert(2 * frame_header_.width >= reference_upscaled_width &&
2 * frame_header_.height >= reference_height &&
frame_header_.width <= 16 * reference_upscaled_width &&
frame_header_.height <= 16 * reference_height);
const bool is_scaled_x = reference_upscaled_width != frame_header_.width;
const bool is_scaled_y = reference_height != frame_header_.height;
const int half_sample = 1 << (kSubPixelBits - 1);
int orig_x = (x << kSubPixelBits) + ((2 * mv.mv[1]) >> subsampling_x_[plane]);
int orig_y = (y << kSubPixelBits) + ((2 * mv.mv[0]) >> subsampling_y_[plane]);
const int rounding_offset =
DivideBy2(1 << (kScaleSubPixelBits - kSubPixelBits));
if (is_scaled_x) {
const int scale_x = ((reference_upscaled_width << kReferenceScaleShift) +
DivideBy2(frame_header_.width)) /
frame_header_.width;
*step_x = RightShiftWithRoundingSigned(
scale_x, kReferenceScaleShift - kScaleSubPixelBits);
orig_x += half_sample;
// When frame size is 4k and above, orig_x can be above 16 bits, scale_x can
// be up to 15 bits. So we use int64_t to hold base_x.
const int64_t base_x = static_cast<int64_t>(orig_x) * scale_x -
(half_sample << kReferenceScaleShift);
*start_x =
RightShiftWithRoundingSigned(
base_x, kReferenceScaleShift + kSubPixelBits - kScaleSubPixelBits) +
rounding_offset;
} else {
*step_x = 1 << kScaleSubPixelBits;
*start_x = LeftShift(orig_x, 6) + rounding_offset;
}
if (is_scaled_y) {
const int scale_y = ((reference_height << kReferenceScaleShift) +
DivideBy2(frame_header_.height)) /
frame_header_.height;
*step_y = RightShiftWithRoundingSigned(
scale_y, kReferenceScaleShift - kScaleSubPixelBits);
orig_y += half_sample;
const int64_t base_y = static_cast<int64_t>(orig_y) * scale_y -
(half_sample << kReferenceScaleShift);
*start_y =
RightShiftWithRoundingSigned(
base_y, kReferenceScaleShift + kSubPixelBits - kScaleSubPixelBits) +
rounding_offset;
} else {
*step_y = 1 << kScaleSubPixelBits;
*start_y = LeftShift(orig_y, 6) + rounding_offset;
}
}
// static.
bool Tile::GetReferenceBlockPosition(
const int reference_frame_index, const bool is_scaled, const int width,
const int height, const int ref_start_x, const int ref_last_x,
const int ref_start_y, const int ref_last_y, const int start_x,
const int start_y, const int step_x, const int step_y,
const int left_border, const int right_border, const int top_border,
const int bottom_border, int* ref_block_start_x, int* ref_block_start_y,
int* ref_block_end_x, int* ref_block_end_y) {
*ref_block_start_x = GetPixelPositionFromHighScale(start_x, 0, 0);
*ref_block_start_y = GetPixelPositionFromHighScale(start_y, 0, 0);
if (reference_frame_index == -1) {
return false;
}
*ref_block_start_x -= kConvolveBorderLeftTop;
*ref_block_start_y -= kConvolveBorderLeftTop;
*ref_block_end_x = GetPixelPositionFromHighScale(start_x, step_x, width - 1) +
kConvolveBorderRight;
*ref_block_end_y =
GetPixelPositionFromHighScale(start_y, step_y, height - 1) +
kConvolveBorderBottom;
if (is_scaled) {
const int block_height =
(((height - 1) * step_y + (1 << kScaleSubPixelBits) - 1) >>
kScaleSubPixelBits) +
kSubPixelTaps;
*ref_block_end_x += kConvolveScaleBorderRight - kConvolveBorderRight;
*ref_block_end_y = *ref_block_start_y + block_height - 1;
}
// Determines if we need to extend beyond the left/right/top/bottom border.
return *ref_block_start_x < (ref_start_x - left_border) ||
*ref_block_end_x > (ref_last_x + right_border) ||
*ref_block_start_y < (ref_start_y - top_border) ||
*ref_block_end_y > (ref_last_y + bottom_border);
}
// Builds a block as the input for convolve, by copying the content of
// reference frame (either a decoded reference frame, or current frame).
// |block_extended_width| is the combined width of the block and its borders.
template <typename Pixel>
void Tile::BuildConvolveBlock(
const Plane plane, const int reference_frame_index, const bool is_scaled,
const int height, const int ref_start_x, const int ref_last_x,
const int ref_start_y, const int ref_last_y, const int step_y,
const int ref_block_start_x, const int ref_block_end_x,
const int ref_block_start_y, uint8_t* block_buffer,
ptrdiff_t convolve_buffer_stride, ptrdiff_t block_extended_width) {
const YuvBuffer* const reference_buffer =
(reference_frame_index == -1)
? current_frame_.buffer()
: reference_frames_[reference_frame_index]->buffer();
Array2DView<const Pixel> reference_block(
reference_buffer->height(plane),
reference_buffer->stride(plane) / sizeof(Pixel),
reinterpret_cast<const Pixel*>(reference_buffer->data(plane)));
auto* const block_head = reinterpret_cast<Pixel*>(block_buffer);
convolve_buffer_stride /= sizeof(Pixel);
int block_height = height + kConvolveBorderLeftTop + kConvolveBorderBottom;
if (is_scaled) {
block_height = (((height - 1) * step_y + (1 << kScaleSubPixelBits) - 1) >>
kScaleSubPixelBits) +
kSubPixelTaps;
}
const int copy_start_x = Clip3(ref_block_start_x, ref_start_x, ref_last_x);
const int copy_start_y = Clip3(ref_block_start_y, ref_start_y, ref_last_y);
const int copy_end_x = Clip3(ref_block_end_x, copy_start_x, ref_last_x);
const int block_width = copy_end_x - copy_start_x + 1;
const bool extend_left = ref_block_start_x < ref_start_x;
const bool extend_right = ref_block_end_x > ref_last_x;
const bool out_of_left = copy_start_x > ref_block_end_x;
const bool out_of_right = copy_end_x < ref_block_start_x;
if (out_of_left || out_of_right) {
const int ref_x = out_of_left ? copy_start_x : copy_end_x;
Pixel* buf_ptr = block_head;
for (int y = 0, ref_y = copy_start_y; y < block_height; ++y) {
Memset(buf_ptr, reference_block[ref_y][ref_x], block_extended_width);
if (ref_block_start_y + y >= ref_start_y &&
ref_block_start_y + y < ref_last_y) {
++ref_y;
}
buf_ptr += convolve_buffer_stride;
}
} else {
Pixel* buf_ptr = block_head;
const int left_width = copy_start_x - ref_block_start_x;
for (int y = 0, ref_y = copy_start_y; y < block_height; ++y) {
if (extend_left) {
Memset(buf_ptr, reference_block[ref_y][copy_start_x], left_width);
}
memcpy(buf_ptr + left_width, &reference_block[ref_y][copy_start_x],
block_width * sizeof(Pixel));
if (extend_right) {
Memset(buf_ptr + left_width + block_width,
reference_block[ref_y][copy_end_x],
block_extended_width - left_width - block_width);
}
if (ref_block_start_y + y >= ref_start_y &&
ref_block_start_y + y < ref_last_y) {
++ref_y;
}
buf_ptr += convolve_buffer_stride;
}
}
}
bool Tile::BlockInterPrediction(
const Block& block, const Plane plane, const int reference_frame_index,
const MotionVector& mv, const int x, const int y, const int width,
const int height, const int candidate_row, const int candidate_column,
uint16_t* const prediction, const bool is_compound,
const bool is_inter_intra, uint8_t* const dest,
const ptrdiff_t dest_stride) {
const BlockParameters& bp =
*block_parameters_holder_.Find(candidate_row, candidate_column);
int start_x;
int start_y;
int step_x;
int step_y;
ScaleMotionVector(mv, plane, reference_frame_index, x, y, &start_x, &start_y,
&step_x, &step_y);
const int horizontal_filter_index = bp.interpolation_filter[1];
const int vertical_filter_index = bp.interpolation_filter[0];
const int subsampling_x = subsampling_x_[plane];
const int subsampling_y = subsampling_y_[plane];
// reference_frame_index equal to -1 indicates using current frame as
// reference.
const YuvBuffer* const reference_buffer =
(reference_frame_index == -1)
? current_frame_.buffer()
: reference_frames_[reference_frame_index]->buffer();
const int reference_upscaled_width =
(reference_frame_index == -1)
? MultiplyBy4(frame_header_.columns4x4)
: reference_frames_[reference_frame_index]->upscaled_width();
const int reference_height =
(reference_frame_index == -1)
? MultiplyBy4(frame_header_.rows4x4)
: reference_frames_[reference_frame_index]->frame_height();
const int ref_start_x = 0;
const int ref_last_x =
SubsampledValue(reference_upscaled_width, subsampling_x) - 1;
const int ref_start_y = 0;
const int ref_last_y = SubsampledValue(reference_height, subsampling_y) - 1;
const bool is_scaled = (reference_frame_index != -1) &&
(frame_header_.width != reference_upscaled_width ||
frame_header_.height != reference_height);
const int bitdepth = sequence_header_.color_config.bitdepth;
const int pixel_size = (bitdepth == 8) ? sizeof(uint8_t) : sizeof(uint16_t);
int ref_block_start_x;
int ref_block_start_y;
int ref_block_end_x;
int ref_block_end_y;
const bool extend_block = GetReferenceBlockPosition(
reference_frame_index, is_scaled, width, height, ref_start_x, ref_last_x,
ref_start_y, ref_last_y, start_x, start_y, step_x, step_y,
reference_buffer->left_border(plane),
reference_buffer->right_border(plane),
reference_buffer->top_border(plane),
reference_buffer->bottom_border(plane), &ref_block_start_x,
&ref_block_start_y, &ref_block_end_x, &ref_block_end_y);
// In frame parallel mode, ensure that the reference block has been decoded
// and available for referencing.
if (reference_frame_index != -1 && frame_parallel_) {
// For U and V planes with subsampling, we need to multiply the value of
// ref_block_end_y by 2 since we only track the progress of the Y planes.
const int reference_y_max = LeftShift(
std::min(ref_block_end_y + kSubPixelTaps, ref_last_y), subsampling_y);
if (reference_frame_progress_cache_[reference_frame_index] <
reference_y_max &&
!reference_frames_[reference_frame_index]->WaitUntil(
reference_y_max,
&reference_frame_progress_cache_[reference_frame_index])) {
return false;
}
}
const uint8_t* block_start = nullptr;
ptrdiff_t convolve_buffer_stride;
if (!extend_block) {
const YuvBuffer* const reference_buffer =
(reference_frame_index == -1)
? current_frame_.buffer()
: reference_frames_[reference_frame_index]->buffer();
convolve_buffer_stride = reference_buffer->stride(plane);
if (reference_frame_index == -1 || is_scaled) {
block_start = reference_buffer->data(plane) +
ref_block_start_y * reference_buffer->stride(plane) +
ref_block_start_x * pixel_size;
} else {
block_start = reference_buffer->data(plane) +
(ref_block_start_y + kConvolveBorderLeftTop) *
reference_buffer->stride(plane) +
(ref_block_start_x + kConvolveBorderLeftTop) * pixel_size;
}
} else {
const int border_right =
is_scaled ? kConvolveScaleBorderRight : kConvolveBorderRight;
// The block width can be at most 2 times as much as current
// block's width because of scaling.
auto block_extended_width = Align<ptrdiff_t>(
(2 * width + kConvolveBorderLeftTop + border_right) * pixel_size,
kMaxAlignment);
convolve_buffer_stride = block.scratch_buffer->convolve_block_buffer_stride;
#if LIBGAV1_MAX_BITDEPTH >= 10
if (bitdepth > 8) {
BuildConvolveBlock<uint16_t>(
plane, reference_frame_index, is_scaled, height, ref_start_x,
ref_last_x, ref_start_y, ref_last_y, step_y, ref_block_start_x,
ref_block_end_x, ref_block_start_y,
block.scratch_buffer->convolve_block_buffer.get(),
convolve_buffer_stride, block_extended_width);
} else {
#endif
BuildConvolveBlock<uint8_t>(
plane, reference_frame_index, is_scaled, height, ref_start_x,
ref_last_x, ref_start_y, ref_last_y, step_y, ref_block_start_x,
ref_block_end_x, ref_block_start_y,
block.scratch_buffer->convolve_block_buffer.get(),
convolve_buffer_stride, block_extended_width);
#if LIBGAV1_MAX_BITDEPTH >= 10
}
#endif
block_start = block.scratch_buffer->convolve_block_buffer.get() +
(is_scaled ? 0
: kConvolveBorderLeftTop * convolve_buffer_stride +
kConvolveBorderLeftTop * pixel_size);
}
void* const output =
(is_compound || is_inter_intra) ? prediction : static_cast<void*>(dest);
ptrdiff_t output_stride = (is_compound || is_inter_intra)
? /*prediction_stride=*/width
: dest_stride;
#if LIBGAV1_MAX_BITDEPTH >= 10
// |is_inter_intra| calculations are written to the |prediction| buffer.
// Unlike the |is_compound| calculations the output is Pixel and not uint16_t.
// convolve_func() expects |output_stride| to be in bytes and not Pixels.
// |prediction_stride| is in units of uint16_t. Adjust |output_stride| to
// account for this.
if (is_inter_intra && sequence_header_.color_config.bitdepth > 8) {
output_stride *= 2;
}
#endif
assert(output != nullptr);
if (is_scaled) {
dsp::ConvolveScaleFunc convolve_func = dsp_.convolve_scale[is_compound];
assert(convolve_func != nullptr);
convolve_func(block_start, convolve_buffer_stride, horizontal_filter_index,
vertical_filter_index, start_x, start_y, step_x, step_y,
width, height, output, output_stride);
} else {
const int horizontal_filter_id = (start_x >> 6) & kSubPixelMask;
const int vertical_filter_id = (start_y >> 6) & kSubPixelMask;
dsp::ConvolveFunc convolve_func =
dsp_.convolve[reference_frame_index == -1][is_compound]
[vertical_filter_id != 0][horizontal_filter_id != 0];
assert(convolve_func != nullptr);
convolve_func(block_start, convolve_buffer_stride, horizontal_filter_index,
vertical_filter_index, horizontal_filter_id,
vertical_filter_id, width, height, output, output_stride);
}
return true;
}
bool Tile::BlockWarpProcess(const Block& block, const Plane plane,
const int index, const int block_start_x,
const int block_start_y, const int width,
const int height, GlobalMotion* const warp_params,
const bool is_compound, const bool is_inter_intra,
uint8_t* const dest, const ptrdiff_t dest_stride) {
assert(width >= 8 && height >= 8);
const BlockParameters& bp = *block.bp;
const int reference_frame_index =
frame_header_.reference_frame_index[bp.reference_frame[index] -
kReferenceFrameLast];
const uint8_t* const source =
reference_frames_[reference_frame_index]->buffer()->data(plane);
ptrdiff_t source_stride =
reference_frames_[reference_frame_index]->buffer()->stride(plane);
const int source_width =
reference_frames_[reference_frame_index]->buffer()->width(plane);
const int source_height =
reference_frames_[reference_frame_index]->buffer()->height(plane);
uint16_t* const prediction = block.scratch_buffer->prediction_buffer[index];
// In frame parallel mode, ensure that the reference block has been decoded
// and available for referencing.
if (frame_parallel_) {
int reference_y_max = -1;
// Find out the maximum y-coordinate for warping.
for (int start_y = block_start_y; start_y < block_start_y + height;
start_y += 8) {
for (int start_x = block_start_x; start_x < block_start_x + width;
start_x += 8) {
const int src_x = (start_x + 4) << subsampling_x_[plane];
const int src_y = (start_y + 4) << subsampling_y_[plane];
const int64_t dst_y =
src_x * warp_params->params[4] +
static_cast<int64_t>(src_y) * warp_params->params[5] +
warp_params->params[1];
const int64_t y4 = dst_y >> subsampling_y_[plane];
const int iy4 = static_cast<int>(y4 >> kWarpedModelPrecisionBits);
reference_y_max = std::max(iy4 + 8, reference_y_max);
}
}
// For U and V planes with subsampling, we need to multiply reference_y_max
// by 2 since we only track the progress of Y planes.
reference_y_max = LeftShift(reference_y_max, subsampling_y_[plane]);
if (reference_frame_progress_cache_[reference_frame_index] <
reference_y_max &&
!reference_frames_[reference_frame_index]->WaitUntil(
reference_y_max,
&reference_frame_progress_cache_[reference_frame_index])) {
return false;
}
}
if (is_compound) {
dsp_.warp_compound(source, source_stride, source_width, source_height,
warp_params->params, subsampling_x_[plane],
subsampling_y_[plane], block_start_x, block_start_y,
width, height, warp_params->alpha, warp_params->beta,
warp_params->gamma, warp_params->delta, prediction,
/*prediction_stride=*/width);
} else {
void* const output = is_inter_intra ? static_cast<void*>(prediction) : dest;
ptrdiff_t output_stride =
is_inter_intra ? /*prediction_stride=*/width : dest_stride;
#if LIBGAV1_MAX_BITDEPTH >= 10
// |is_inter_intra| calculations are written to the |prediction| buffer.
// Unlike the |is_compound| calculations the output is Pixel and not
// uint16_t. warp_clip() expects |output_stride| to be in bytes and not
// Pixels. |prediction_stride| is in units of uint16_t. Adjust
// |output_stride| to account for this.
if (is_inter_intra && sequence_header_.color_config.bitdepth > 8) {
output_stride *= 2;
}
#endif
dsp_.warp(source, source_stride, source_width, source_height,
warp_params->params, subsampling_x_[plane], subsampling_y_[plane],
block_start_x, block_start_y, width, height, warp_params->alpha,
warp_params->beta, warp_params->gamma, warp_params->delta, output,
output_stride);
}
return true;
}
} // namespace libgav1
|