1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
|
// Copyright 2019 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tile.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <memory>
#include <new>
#include <numeric>
#include <type_traits>
#include <utility>
#include "src/frame_scratch_buffer.h"
#include "src/motion_vector.h"
#include "src/reconstruction.h"
#include "src/utils/bit_mask_set.h"
#include "src/utils/common.h"
#include "src/utils/constants.h"
#include "src/utils/logging.h"
#include "src/utils/segmentation.h"
#include "src/utils/stack.h"
namespace libgav1 {
namespace {
// Import all the constants in the anonymous namespace.
#include "src/scan_tables.inc"
// Range above kNumQuantizerBaseLevels which the exponential golomb coding
// process is activated.
constexpr int kQuantizerCoefficientBaseRange = 12;
constexpr int kNumQuantizerBaseLevels = 2;
constexpr int kCoeffBaseRangeMaxIterations =
kQuantizerCoefficientBaseRange / (kCoeffBaseRangeSymbolCount - 1);
constexpr int kEntropyContextLeft = 0;
constexpr int kEntropyContextTop = 1;
constexpr uint8_t kAllZeroContextsByTopLeft[5][5] = {{1, 2, 2, 2, 3},
{2, 4, 4, 4, 5},
{2, 4, 4, 4, 5},
{2, 4, 4, 4, 5},
{3, 5, 5, 5, 6}};
// The space complexity of DFS is O(branching_factor * max_depth). For the
// parameter tree, branching_factor = 4 (there could be up to 4 children for
// every node) and max_depth (excluding the root) = 5 (to go from a 128x128
// block all the way to a 4x4 block). The worse-case stack size is 16, by
// counting the number of 'o' nodes in the diagram:
//
// | 128x128 The highest level (corresponding to the
// | root of the tree) has no node in the stack.
// |-----------------+
// | | | |
// | o o o 64x64
// |
// |-----------------+
// | | | |
// | o o o 32x32 Higher levels have three nodes in the stack,
// | because we pop one node off the stack before
// |-----------------+ pushing its four children onto the stack.
// | | | |
// | o o o 16x16
// |
// |-----------------+
// | | | |
// | o o o 8x8
// |
// |-----------------+
// | | | |
// o o o o 4x4 Only the lowest level has four nodes in the
// stack.
constexpr int kDfsStackSize = 16;
// Mask indicating whether the transform sets contain a particular transform
// type. If |tx_type| is present in |tx_set|, then the |tx_type|th LSB is set.
constexpr BitMaskSet kTransformTypeInSetMask[kNumTransformSets] = {
BitMaskSet(0x1), BitMaskSet(0xE0F), BitMaskSet(0x20F),
BitMaskSet(0xFFFF), BitMaskSet(0xFFF), BitMaskSet(0x201)};
constexpr PredictionMode
kFilterIntraModeToIntraPredictor[kNumFilterIntraPredictors] = {
kPredictionModeDc, kPredictionModeVertical, kPredictionModeHorizontal,
kPredictionModeD157, kPredictionModeDc};
// Mask used to determine the index for mode_deltas lookup.
constexpr BitMaskSet kPredictionModeDeltasMask(
kPredictionModeNearestMv, kPredictionModeNearMv, kPredictionModeNewMv,
kPredictionModeNearestNearestMv, kPredictionModeNearNearMv,
kPredictionModeNearestNewMv, kPredictionModeNewNearestMv,
kPredictionModeNearNewMv, kPredictionModeNewNearMv,
kPredictionModeNewNewMv);
// This is computed as:
// min(transform_width_log2, 5) + min(transform_height_log2, 5) - 4.
constexpr uint8_t kEobMultiSizeLookup[kNumTransformSizes] = {
0, 1, 2, 1, 2, 3, 4, 2, 3, 4, 5, 5, 4, 5, 6, 6, 5, 6, 6};
/* clang-format off */
constexpr uint8_t kCoeffBaseContextOffset[kNumTransformSizes][5][5] = {
{{0, 1, 6, 6, 0}, {1, 6, 6, 21, 0}, {6, 6, 21, 21, 0}, {6, 21, 21, 21, 0},
{0, 0, 0, 0, 0}},
{{0, 11, 11, 11, 0}, {11, 11, 11, 11, 0}, {6, 6, 21, 21, 0},
{6, 21, 21, 21, 0}, {21, 21, 21, 21, 0}},
{{0, 11, 11, 11, 0}, {11, 11, 11, 11, 0}, {6, 6, 21, 21, 0},
{6, 21, 21, 21, 0}, {21, 21, 21, 21, 0}},
{{0, 16, 6, 6, 21}, {16, 16, 6, 21, 21}, {16, 16, 21, 21, 21},
{16, 16, 21, 21, 21}, {0, 0, 0, 0, 0}},
{{0, 1, 6, 6, 21}, {1, 6, 6, 21, 21}, {6, 6, 21, 21, 21},
{6, 21, 21, 21, 21}, {21, 21, 21, 21, 21}},
{{0, 11, 11, 11, 11}, {11, 11, 11, 11, 11}, {6, 6, 21, 21, 21},
{6, 21, 21, 21, 21}, {21, 21, 21, 21, 21}},
{{0, 11, 11, 11, 11}, {11, 11, 11, 11, 11}, {6, 6, 21, 21, 21},
{6, 21, 21, 21, 21}, {21, 21, 21, 21, 21}},
{{0, 16, 6, 6, 21}, {16, 16, 6, 21, 21}, {16, 16, 21, 21, 21},
{16, 16, 21, 21, 21}, {0, 0, 0, 0, 0}},
{{0, 16, 6, 6, 21}, {16, 16, 6, 21, 21}, {16, 16, 21, 21, 21},
{16, 16, 21, 21, 21}, {16, 16, 21, 21, 21}},
{{0, 1, 6, 6, 21}, {1, 6, 6, 21, 21}, {6, 6, 21, 21, 21},
{6, 21, 21, 21, 21}, {21, 21, 21, 21, 21}},
{{0, 11, 11, 11, 11}, {11, 11, 11, 11, 11}, {6, 6, 21, 21, 21},
{6, 21, 21, 21, 21}, {21, 21, 21, 21, 21}},
{{0, 11, 11, 11, 11}, {11, 11, 11, 11, 11}, {6, 6, 21, 21, 21},
{6, 21, 21, 21, 21}, {21, 21, 21, 21, 21}},
{{0, 16, 6, 6, 21}, {16, 16, 6, 21, 21}, {16, 16, 21, 21, 21},
{16, 16, 21, 21, 21}, {16, 16, 21, 21, 21}},
{{0, 16, 6, 6, 21}, {16, 16, 6, 21, 21}, {16, 16, 21, 21, 21},
{16, 16, 21, 21, 21}, {16, 16, 21, 21, 21}},
{{0, 1, 6, 6, 21}, {1, 6, 6, 21, 21}, {6, 6, 21, 21, 21},
{6, 21, 21, 21, 21}, {21, 21, 21, 21, 21}},
{{0, 11, 11, 11, 11}, {11, 11, 11, 11, 11}, {6, 6, 21, 21, 21},
{6, 21, 21, 21, 21}, {21, 21, 21, 21, 21}},
{{0, 16, 6, 6, 21}, {16, 16, 6, 21, 21}, {16, 16, 21, 21, 21},
{16, 16, 21, 21, 21}, {16, 16, 21, 21, 21}},
{{0, 16, 6, 6, 21}, {16, 16, 6, 21, 21}, {16, 16, 21, 21, 21},
{16, 16, 21, 21, 21}, {16, 16, 21, 21, 21}},
{{0, 1, 6, 6, 21}, {1, 6, 6, 21, 21}, {6, 6, 21, 21, 21},
{6, 21, 21, 21, 21}, {21, 21, 21, 21, 21}}};
/* clang-format on */
// Extended the table size from 3 to 16 by repeating the last element to avoid
// the clips to row or column indices.
constexpr uint8_t kCoeffBasePositionContextOffset[16] = {
26, 31, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36};
constexpr PredictionMode kInterIntraToIntraMode[kNumInterIntraModes] = {
kPredictionModeDc, kPredictionModeVertical, kPredictionModeHorizontal,
kPredictionModeSmooth};
// Number of horizontal luma samples before intra block copy can be used.
constexpr int kIntraBlockCopyDelayPixels = 256;
// Number of 64 by 64 blocks before intra block copy can be used.
constexpr int kIntraBlockCopyDelay64x64Blocks = kIntraBlockCopyDelayPixels / 64;
// Index [i][j] corresponds to the transform size of width 1 << (i + 2) and
// height 1 << (j + 2).
constexpr TransformSize k4x4SizeToTransformSize[5][5] = {
{kTransformSize4x4, kTransformSize4x8, kTransformSize4x16,
kNumTransformSizes, kNumTransformSizes},
{kTransformSize8x4, kTransformSize8x8, kTransformSize8x16,
kTransformSize8x32, kNumTransformSizes},
{kTransformSize16x4, kTransformSize16x8, kTransformSize16x16,
kTransformSize16x32, kTransformSize16x64},
{kNumTransformSizes, kTransformSize32x8, kTransformSize32x16,
kTransformSize32x32, kTransformSize32x64},
{kNumTransformSizes, kNumTransformSizes, kTransformSize64x16,
kTransformSize64x32, kTransformSize64x64}};
// Defined in section 9.3 of the spec.
constexpr TransformType kModeToTransformType[kIntraPredictionModesUV] = {
kTransformTypeDctDct, kTransformTypeDctAdst, kTransformTypeAdstDct,
kTransformTypeDctDct, kTransformTypeAdstAdst, kTransformTypeDctAdst,
kTransformTypeAdstDct, kTransformTypeAdstDct, kTransformTypeDctAdst,
kTransformTypeAdstAdst, kTransformTypeDctAdst, kTransformTypeAdstDct,
kTransformTypeAdstAdst, kTransformTypeDctDct};
// Defined in section 5.11.47 of the spec. This array does not contain an entry
// for kTransformSetDctOnly, so the first dimension needs to be
// |kNumTransformSets| - 1.
constexpr TransformType kInverseTransformTypeBySet[kNumTransformSets - 1][16] =
{{kTransformTypeIdentityIdentity, kTransformTypeDctDct,
kTransformTypeIdentityDct, kTransformTypeDctIdentity,
kTransformTypeAdstAdst, kTransformTypeDctAdst, kTransformTypeAdstDct},
{kTransformTypeIdentityIdentity, kTransformTypeDctDct,
kTransformTypeAdstAdst, kTransformTypeDctAdst, kTransformTypeAdstDct},
{kTransformTypeIdentityIdentity, kTransformTypeIdentityDct,
kTransformTypeDctIdentity, kTransformTypeIdentityAdst,
kTransformTypeAdstIdentity, kTransformTypeIdentityFlipadst,
kTransformTypeFlipadstIdentity, kTransformTypeDctDct,
kTransformTypeDctAdst, kTransformTypeAdstDct, kTransformTypeDctFlipadst,
kTransformTypeFlipadstDct, kTransformTypeAdstAdst,
kTransformTypeFlipadstFlipadst, kTransformTypeFlipadstAdst,
kTransformTypeAdstFlipadst},
{kTransformTypeIdentityIdentity, kTransformTypeIdentityDct,
kTransformTypeDctIdentity, kTransformTypeDctDct, kTransformTypeDctAdst,
kTransformTypeAdstDct, kTransformTypeDctFlipadst,
kTransformTypeFlipadstDct, kTransformTypeAdstAdst,
kTransformTypeFlipadstFlipadst, kTransformTypeFlipadstAdst,
kTransformTypeAdstFlipadst},
{kTransformTypeIdentityIdentity, kTransformTypeDctDct}};
// Replaces all occurrences of 64x* and *x64 with 32x* and *x32 respectively.
constexpr TransformSize kAdjustedTransformSize[kNumTransformSizes] = {
kTransformSize4x4, kTransformSize4x8, kTransformSize4x16,
kTransformSize8x4, kTransformSize8x8, kTransformSize8x16,
kTransformSize8x32, kTransformSize16x4, kTransformSize16x8,
kTransformSize16x16, kTransformSize16x32, kTransformSize16x32,
kTransformSize32x8, kTransformSize32x16, kTransformSize32x32,
kTransformSize32x32, kTransformSize32x16, kTransformSize32x32,
kTransformSize32x32};
// This is the same as Max_Tx_Size_Rect array in the spec but with *x64 and 64*x
// transforms replaced with *x32 and 32x* respectively.
constexpr TransformSize kUVTransformSize[kMaxBlockSizes] = {
kTransformSize4x4, kTransformSize4x8, kTransformSize4x16,
kTransformSize8x4, kTransformSize8x8, kTransformSize8x16,
kTransformSize8x32, kTransformSize16x4, kTransformSize16x8,
kTransformSize16x16, kTransformSize16x32, kTransformSize16x32,
kTransformSize32x8, kTransformSize32x16, kTransformSize32x32,
kTransformSize32x32, kTransformSize32x16, kTransformSize32x32,
kTransformSize32x32, kTransformSize32x32, kTransformSize32x32,
kTransformSize32x32};
// ith entry of this array is computed as:
// DivideBy2(TransformSizeToSquareTransformIndex(kTransformSizeSquareMin[i]) +
// TransformSizeToSquareTransformIndex(kTransformSizeSquareMax[i]) +
// 1)
constexpr uint8_t kTransformSizeContext[kNumTransformSizes] = {
0, 1, 1, 1, 1, 2, 2, 1, 2, 2, 3, 3, 2, 3, 3, 4, 3, 4, 4};
constexpr int8_t kSgrProjDefaultMultiplier[2] = {-32, 31};
constexpr int8_t kWienerDefaultFilter[kNumWienerCoefficients] = {3, -7, 15};
// Maps compound prediction modes into single modes. For e.g.
// kPredictionModeNearestNewMv will map to kPredictionModeNearestMv for index 0
// and kPredictionModeNewMv for index 1. It is used to simplify the logic in
// AssignMv (and avoid duplicate code). This is section 5.11.30. in the spec.
constexpr PredictionMode
kCompoundToSinglePredictionMode[kNumCompoundInterPredictionModes][2] = {
{kPredictionModeNearestMv, kPredictionModeNearestMv},
{kPredictionModeNearMv, kPredictionModeNearMv},
{kPredictionModeNearestMv, kPredictionModeNewMv},
{kPredictionModeNewMv, kPredictionModeNearestMv},
{kPredictionModeNearMv, kPredictionModeNewMv},
{kPredictionModeNewMv, kPredictionModeNearMv},
{kPredictionModeGlobalMv, kPredictionModeGlobalMv},
{kPredictionModeNewMv, kPredictionModeNewMv},
};
PredictionMode GetSinglePredictionMode(int index, PredictionMode y_mode) {
if (y_mode < kPredictionModeNearestNearestMv) {
return y_mode;
}
const int lookup_index = y_mode - kPredictionModeNearestNearestMv;
assert(lookup_index >= 0);
return kCompoundToSinglePredictionMode[lookup_index][index];
}
// log2(dqDenom) in section 7.12.3 of the spec. We use the log2 value because
// dqDenom is always a power of two and hence right shift can be used instead of
// division.
constexpr uint8_t kQuantizationShift[kNumTransformSizes] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 2, 1, 2, 2};
// Returns the minimum of |length| or |max|-|start|. This is used to clamp array
// indices when accessing arrays whose bound is equal to |max|.
int GetNumElements(int length, int start, int max) {
return std::min(length, max - start);
}
template <typename T>
void SetBlockValues(int rows, int columns, T value, T* dst, ptrdiff_t stride) {
// Specialize all columns cases (values in kTransformWidth4x4[]) for better
// performance.
switch (columns) {
case 1:
MemSetBlock<T>(rows, 1, value, dst, stride);
break;
case 2:
MemSetBlock<T>(rows, 2, value, dst, stride);
break;
case 4:
MemSetBlock<T>(rows, 4, value, dst, stride);
break;
case 8:
MemSetBlock<T>(rows, 8, value, dst, stride);
break;
default:
assert(columns == 16);
MemSetBlock<T>(rows, 16, value, dst, stride);
break;
}
}
void SetTransformType(const Tile::Block& block, int x4, int y4, int w4, int h4,
TransformType tx_type,
TransformType transform_types[32][32]) {
const int y_offset = y4 - block.row4x4;
const int x_offset = x4 - block.column4x4;
TransformType* const dst = &transform_types[y_offset][x_offset];
SetBlockValues<TransformType>(h4, w4, tx_type, dst, 32);
}
void StoreMotionFieldMvs(ReferenceFrameType reference_frame_to_store,
const MotionVector& mv_to_store, ptrdiff_t stride,
int rows, int columns,
ReferenceFrameType* reference_frame_row_start,
MotionVector* mv) {
static_assert(sizeof(*reference_frame_row_start) == sizeof(int8_t), "");
do {
// Don't switch the following two memory setting functions.
// Some ARM CPUs are quite sensitive to the order.
memset(reference_frame_row_start, reference_frame_to_store, columns);
std::fill(mv, mv + columns, mv_to_store);
reference_frame_row_start += stride;
mv += stride;
} while (--rows != 0);
}
// Inverse transform process assumes that the quantized coefficients are stored
// as a virtual 2d array of size |tx_width| x tx_height. If transform width is
// 64, then this assumption is broken because the scan order used for populating
// the coefficients for such transforms is the same as the one used for
// corresponding transform with width 32 (e.g. the scan order used for 64x16 is
// the same as the one used for 32x16). So we must restore the coefficients to
// their correct positions and clean the positions they occupied.
template <typename ResidualType>
void MoveCoefficientsForTxWidth64(int clamped_tx_height, int tx_width,
ResidualType* residual) {
if (tx_width != 64) return;
const int rows = clamped_tx_height - 2;
auto* src = residual + 32 * rows;
residual += 64 * rows;
// Process 2 rows in each loop in reverse order to avoid overwrite.
int x = rows >> 1;
do {
// The 2 rows can be processed in order.
memcpy(residual, src, 32 * sizeof(src[0]));
memcpy(residual + 64, src + 32, 32 * sizeof(src[0]));
memset(src + 32, 0, 32 * sizeof(src[0]));
src -= 64;
residual -= 128;
} while (--x);
// Process the second row. The first row is already correct.
memcpy(residual + 64, src + 32, 32 * sizeof(src[0]));
memset(src + 32, 0, 32 * sizeof(src[0]));
}
void GetClampParameters(const Tile::Block& block, int min[2], int max[2]) {
// 7.10.2.14 (part 1). (also contains implementations of 5.11.53
// and 5.11.54).
constexpr int kMvBorder4x4 = 4;
const int row_border = kMvBorder4x4 + block.height4x4;
const int column_border = kMvBorder4x4 + block.width4x4;
const int macroblocks_to_top_edge = -block.row4x4;
const int macroblocks_to_bottom_edge =
block.tile.frame_header().rows4x4 - block.height4x4 - block.row4x4;
const int macroblocks_to_left_edge = -block.column4x4;
const int macroblocks_to_right_edge =
block.tile.frame_header().columns4x4 - block.width4x4 - block.column4x4;
min[0] = MultiplyBy32(macroblocks_to_top_edge - row_border);
min[1] = MultiplyBy32(macroblocks_to_left_edge - column_border);
max[0] = MultiplyBy32(macroblocks_to_bottom_edge + row_border);
max[1] = MultiplyBy32(macroblocks_to_right_edge + column_border);
}
// Section 8.3.2 in the spec, under coeff_base_eob.
int GetCoeffBaseContextEob(TransformSize tx_size, int index) {
if (index == 0) return 0;
const TransformSize adjusted_tx_size = kAdjustedTransformSize[tx_size];
const int tx_width_log2 = kTransformWidthLog2[adjusted_tx_size];
const int tx_height = kTransformHeight[adjusted_tx_size];
if (index <= DivideBy8(tx_height << tx_width_log2)) return 1;
if (index <= DivideBy4(tx_height << tx_width_log2)) return 2;
return 3;
}
// Section 8.3.2 in the spec, under coeff_br. Optimized for end of block based
// on the fact that {0, 1}, {1, 0}, {1, 1}, {0, 2} and {2, 0} will all be 0 in
// the end of block case.
int GetCoeffBaseRangeContextEob(int adjusted_tx_width_log2, int pos,
TransformClass tx_class) {
if (pos == 0) return 0;
const int tx_width = 1 << adjusted_tx_width_log2;
const int row = pos >> adjusted_tx_width_log2;
const int column = pos & (tx_width - 1);
// This return statement is equivalent to:
// return ((tx_class == kTransformClass2D && (row | column) < 2) ||
// (tx_class == kTransformClassHorizontal && column == 0) ||
// (tx_class == kTransformClassVertical && row == 0))
// ? 7
// : 14;
return 14 >> ((static_cast<int>(tx_class == kTransformClass2D) &
static_cast<int>((row | column) < 2)) |
(tx_class & static_cast<int>(column == 0)) |
((tx_class >> 1) & static_cast<int>(row == 0)));
}
} // namespace
Tile::Tile(int tile_number, const uint8_t* const data, size_t size,
const ObuSequenceHeader& sequence_header,
const ObuFrameHeader& frame_header,
RefCountedBuffer* const current_frame, const DecoderState& state,
FrameScratchBuffer* const frame_scratch_buffer,
const WedgeMaskArray& wedge_masks,
const QuantizerMatrix& quantizer_matrix,
SymbolDecoderContext* const saved_symbol_decoder_context,
const SegmentationMap* prev_segment_ids,
PostFilter* const post_filter, const dsp::Dsp* const dsp,
ThreadPool* const thread_pool,
BlockingCounterWithStatus* const pending_tiles, bool frame_parallel,
bool use_intra_prediction_buffer)
: number_(tile_number),
row_(number_ / frame_header.tile_info.tile_columns),
column_(number_ % frame_header.tile_info.tile_columns),
data_(data),
size_(size),
read_deltas_(false),
subsampling_x_{0, sequence_header.color_config.subsampling_x,
sequence_header.color_config.subsampling_x},
subsampling_y_{0, sequence_header.color_config.subsampling_y,
sequence_header.color_config.subsampling_y},
current_quantizer_index_(frame_header.quantizer.base_index),
sequence_header_(sequence_header),
frame_header_(frame_header),
reference_frame_sign_bias_(state.reference_frame_sign_bias),
reference_frames_(state.reference_frame),
motion_field_(frame_scratch_buffer->motion_field),
reference_order_hint_(state.reference_order_hint),
wedge_masks_(wedge_masks),
quantizer_matrix_(quantizer_matrix),
reader_(data_, size_, frame_header_.enable_cdf_update),
symbol_decoder_context_(frame_scratch_buffer->symbol_decoder_context),
saved_symbol_decoder_context_(saved_symbol_decoder_context),
prev_segment_ids_(prev_segment_ids),
dsp_(*dsp),
post_filter_(*post_filter),
block_parameters_holder_(frame_scratch_buffer->block_parameters_holder),
quantizer_(sequence_header_.color_config.bitdepth,
&frame_header_.quantizer),
residual_size_((sequence_header_.color_config.bitdepth == 8)
? sizeof(int16_t)
: sizeof(int32_t)),
intra_block_copy_lag_(
frame_header_.allow_intrabc
? (sequence_header_.use_128x128_superblock ? 3 : 5)
: 1),
current_frame_(*current_frame),
cdef_index_(frame_scratch_buffer->cdef_index),
inter_transform_sizes_(frame_scratch_buffer->inter_transform_sizes),
thread_pool_(thread_pool),
residual_buffer_pool_(frame_scratch_buffer->residual_buffer_pool.get()),
tile_scratch_buffer_pool_(
&frame_scratch_buffer->tile_scratch_buffer_pool),
pending_tiles_(pending_tiles),
frame_parallel_(frame_parallel),
use_intra_prediction_buffer_(use_intra_prediction_buffer),
intra_prediction_buffer_(
use_intra_prediction_buffer_
? &frame_scratch_buffer->intra_prediction_buffers.get()[row_]
: nullptr) {
row4x4_start_ = frame_header.tile_info.tile_row_start[row_];
row4x4_end_ = frame_header.tile_info.tile_row_start[row_ + 1];
column4x4_start_ = frame_header.tile_info.tile_column_start[column_];
column4x4_end_ = frame_header.tile_info.tile_column_start[column_ + 1];
const int block_width4x4 = kNum4x4BlocksWide[SuperBlockSize()];
const int block_width4x4_log2 = k4x4HeightLog2[SuperBlockSize()];
superblock_rows_ =
(row4x4_end_ - row4x4_start_ + block_width4x4 - 1) >> block_width4x4_log2;
superblock_columns_ =
(column4x4_end_ - column4x4_start_ + block_width4x4 - 1) >>
block_width4x4_log2;
// If |split_parse_and_decode_| is true, we do the necessary setup for
// splitting the parsing and the decoding steps. This is done in the following
// two cases:
// 1) If there is multi-threading within a tile (this is done if
// |thread_pool_| is not nullptr and if there are at least as many
// superblock columns as |intra_block_copy_lag_|).
// 2) If |frame_parallel| is true.
split_parse_and_decode_ = (thread_pool_ != nullptr &&
superblock_columns_ > intra_block_copy_lag_) ||
frame_parallel;
if (frame_parallel_) {
reference_frame_progress_cache_.fill(INT_MIN);
}
memset(delta_lf_, 0, sizeof(delta_lf_));
delta_lf_all_zero_ = true;
const YuvBuffer& buffer = post_filter_.frame_buffer();
for (int plane = kPlaneY; plane < PlaneCount(); ++plane) {
// Verify that the borders are big enough for Reconstruct(). max_tx_length
// is the maximum value of tx_width and tx_height for the plane.
const int max_tx_length = (plane == kPlaneY) ? 64 : 32;
// Reconstruct() may overwrite on the right. Since the right border of a
// row is followed in memory by the left border of the next row, the
// number of extra pixels to the right of a row is at least the sum of the
// left and right borders.
//
// Note: This assertion actually checks the sum of the left and right
// borders of post_filter_.GetUnfilteredBuffer(), which is a horizontally
// and vertically shifted version of |buffer|. Since the sum of the left and
// right borders is not changed by the shift, we can just check the sum of
// the left and right borders of |buffer|.
assert(buffer.left_border(plane) + buffer.right_border(plane) >=
max_tx_length - 1);
// Reconstruct() may overwrite on the bottom. We need an extra border row
// on the bottom because we need the left border of that row.
//
// Note: This assertion checks the bottom border of
// post_filter_.GetUnfilteredBuffer(). So we need to calculate the vertical
// shift that the PostFilter constructor applied to |buffer| and reduce the
// bottom border by that amount.
#ifndef NDEBUG
const int vertical_shift = static_cast<int>(
(post_filter_.GetUnfilteredBuffer(plane) - buffer.data(plane)) /
buffer.stride(plane));
const int bottom_border = buffer.bottom_border(plane) - vertical_shift;
assert(bottom_border >= max_tx_length);
#endif
// In AV1, a transform block of height H starts at a y coordinate that is
// a multiple of H. If a transform block at the bottom of the frame has
// height H, then Reconstruct() will write up to the row with index
// Align(buffer.height(plane), H) - 1. Therefore the maximum number of
// rows Reconstruct() may write to is
// Align(buffer.height(plane), max_tx_length).
buffer_[plane].Reset(Align(buffer.height(plane), max_tx_length),
buffer.stride(plane),
post_filter_.GetUnfilteredBuffer(plane));
const int plane_height =
SubsampledValue(frame_header_.height, subsampling_y_[plane]);
deblock_row_limit_[plane] =
std::min(frame_header_.rows4x4, DivideBy4(plane_height + 3)
<< subsampling_y_[plane]);
const int plane_width =
SubsampledValue(frame_header_.width, subsampling_x_[plane]);
deblock_column_limit_[plane] =
std::min(frame_header_.columns4x4, DivideBy4(plane_width + 3)
<< subsampling_x_[plane]);
}
}
bool Tile::Init() {
assert(coefficient_levels_.size() == dc_categories_.size());
for (size_t i = 0; i < coefficient_levels_.size(); ++i) {
const int contexts_per_plane = (i == kEntropyContextLeft)
? frame_header_.rows4x4
: frame_header_.columns4x4;
if (!coefficient_levels_[i].Reset(PlaneCount(), contexts_per_plane)) {
LIBGAV1_DLOG(ERROR, "coefficient_levels_[%zu].Reset() failed.", i);
return false;
}
if (!dc_categories_[i].Reset(PlaneCount(), contexts_per_plane)) {
LIBGAV1_DLOG(ERROR, "dc_categories_[%zu].Reset() failed.", i);
return false;
}
}
if (split_parse_and_decode_) {
assert(residual_buffer_pool_ != nullptr);
if (!residual_buffer_threaded_.Reset(superblock_rows_, superblock_columns_,
/*zero_initialize=*/false)) {
LIBGAV1_DLOG(ERROR, "residual_buffer_threaded_.Reset() failed.");
return false;
}
} else {
// Add 32 * |kResidualPaddingVertical| padding to avoid bottom boundary
// checks when parsing quantized coefficients.
residual_buffer_ = MakeAlignedUniquePtr<uint8_t>(
32, (4096 + 32 * kResidualPaddingVertical) * residual_size_);
if (residual_buffer_ == nullptr) {
LIBGAV1_DLOG(ERROR, "Allocation of residual_buffer_ failed.");
return false;
}
prediction_parameters_.reset(new (std::nothrow) PredictionParameters());
if (prediction_parameters_ == nullptr) {
LIBGAV1_DLOG(ERROR, "Allocation of prediction_parameters_ failed.");
return false;
}
}
if (frame_header_.use_ref_frame_mvs) {
assert(sequence_header_.enable_order_hint);
SetupMotionField(frame_header_, current_frame_, reference_frames_,
row4x4_start_, row4x4_end_, column4x4_start_,
column4x4_end_, &motion_field_);
}
ResetLoopRestorationParams();
return true;
}
template <ProcessingMode processing_mode, bool save_symbol_decoder_context>
bool Tile::ProcessSuperBlockRow(int row4x4,
TileScratchBuffer* const scratch_buffer) {
if (row4x4 < row4x4_start_ || row4x4 >= row4x4_end_) return true;
assert(scratch_buffer != nullptr);
const int block_width4x4 = kNum4x4BlocksWide[SuperBlockSize()];
for (int column4x4 = column4x4_start_; column4x4 < column4x4_end_;
column4x4 += block_width4x4) {
if (!ProcessSuperBlock(row4x4, column4x4, block_width4x4, scratch_buffer,
processing_mode)) {
LIBGAV1_DLOG(ERROR, "Error decoding super block row: %d column: %d",
row4x4, column4x4);
return false;
}
}
if (save_symbol_decoder_context && row4x4 + block_width4x4 >= row4x4_end_) {
SaveSymbolDecoderContext();
}
if (processing_mode == kProcessingModeDecodeOnly ||
processing_mode == kProcessingModeParseAndDecode) {
PopulateIntraPredictionBuffer(row4x4);
}
return true;
}
// Used in frame parallel mode. The symbol decoder context need not be saved in
// this case since it was done when parsing was complete.
template bool Tile::ProcessSuperBlockRow<kProcessingModeDecodeOnly, false>(
int row4x4, TileScratchBuffer* scratch_buffer);
// Used in non frame parallel mode.
template bool Tile::ProcessSuperBlockRow<kProcessingModeParseAndDecode, true>(
int row4x4, TileScratchBuffer* scratch_buffer);
void Tile::SaveSymbolDecoderContext() {
if (frame_header_.enable_frame_end_update_cdf &&
number_ == frame_header_.tile_info.context_update_id) {
*saved_symbol_decoder_context_ = symbol_decoder_context_;
}
}
bool Tile::ParseAndDecode() {
// If this is the main thread, we build the loop filter bit masks when parsing
// so that it happens in the current thread. This ensures that the main thread
// does as much work as possible.
if (split_parse_and_decode_) {
if (!ThreadedParseAndDecode()) return false;
SaveSymbolDecoderContext();
return true;
}
std::unique_ptr<TileScratchBuffer> scratch_buffer =
tile_scratch_buffer_pool_->Get();
if (scratch_buffer == nullptr) {
pending_tiles_->Decrement(false);
LIBGAV1_DLOG(ERROR, "Failed to get scratch buffer.");
return false;
}
const int block_width4x4 = kNum4x4BlocksWide[SuperBlockSize()];
for (int row4x4 = row4x4_start_; row4x4 < row4x4_end_;
row4x4 += block_width4x4) {
if (!ProcessSuperBlockRow<kProcessingModeParseAndDecode, true>(
row4x4, scratch_buffer.get())) {
pending_tiles_->Decrement(false);
return false;
}
}
tile_scratch_buffer_pool_->Release(std::move(scratch_buffer));
pending_tiles_->Decrement(true);
return true;
}
bool Tile::Parse() {
const int block_width4x4 = kNum4x4BlocksWide[SuperBlockSize()];
std::unique_ptr<TileScratchBuffer> scratch_buffer =
tile_scratch_buffer_pool_->Get();
if (scratch_buffer == nullptr) {
LIBGAV1_DLOG(ERROR, "Failed to get scratch buffer.");
return false;
}
for (int row4x4 = row4x4_start_; row4x4 < row4x4_end_;
row4x4 += block_width4x4) {
if (!ProcessSuperBlockRow<kProcessingModeParseOnly, false>(
row4x4, scratch_buffer.get())) {
return false;
}
}
tile_scratch_buffer_pool_->Release(std::move(scratch_buffer));
SaveSymbolDecoderContext();
return true;
}
bool Tile::Decode(
std::mutex* const mutex, int* const superblock_row_progress,
std::condition_variable* const superblock_row_progress_condvar) {
const int block_width4x4 = sequence_header_.use_128x128_superblock ? 32 : 16;
const int block_width4x4_log2 =
sequence_header_.use_128x128_superblock ? 5 : 4;
std::unique_ptr<TileScratchBuffer> scratch_buffer =
tile_scratch_buffer_pool_->Get();
if (scratch_buffer == nullptr) {
LIBGAV1_DLOG(ERROR, "Failed to get scratch buffer.");
return false;
}
for (int row4x4 = row4x4_start_, index = row4x4_start_ >> block_width4x4_log2;
row4x4 < row4x4_end_; row4x4 += block_width4x4, ++index) {
if (!ProcessSuperBlockRow<kProcessingModeDecodeOnly, false>(
row4x4, scratch_buffer.get())) {
return false;
}
if (post_filter_.DoDeblock()) {
// Apply vertical deblock filtering for all the columns in this tile
// except for the first 64 columns.
post_filter_.ApplyDeblockFilter(
kLoopFilterTypeVertical, row4x4,
column4x4_start_ + kNum4x4InLoopFilterUnit, column4x4_end_,
block_width4x4);
// If this is the first superblock row of the tile, then we cannot apply
// horizontal deblocking here since we don't know if the top row is
// available. So it will be done by the calling thread in that case.
if (row4x4 != row4x4_start_) {
// Apply horizontal deblock filtering for all the columns in this tile
// except for the first and the last 64 columns.
// Note about the last tile of each row: For the last tile,
// column4x4_end may not be a multiple of 16. In that case it is still
// okay to simply subtract 16 since ApplyDeblockFilter() will only do
// the filters in increments of 64 columns (or 32 columns for chroma
// with subsampling).
post_filter_.ApplyDeblockFilter(
kLoopFilterTypeHorizontal, row4x4,
column4x4_start_ + kNum4x4InLoopFilterUnit,
column4x4_end_ - kNum4x4InLoopFilterUnit, block_width4x4);
}
}
bool notify;
{
std::unique_lock<std::mutex> lock(*mutex);
notify = ++superblock_row_progress[index] ==
frame_header_.tile_info.tile_columns;
}
if (notify) {
// We are done decoding this superblock row. Notify the post filtering
// thread.
superblock_row_progress_condvar[index].notify_one();
}
}
tile_scratch_buffer_pool_->Release(std::move(scratch_buffer));
return true;
}
bool Tile::ThreadedParseAndDecode() {
{
std::lock_guard<std::mutex> lock(threading_.mutex);
if (!threading_.sb_state.Reset(superblock_rows_, superblock_columns_)) {
pending_tiles_->Decrement(false);
LIBGAV1_DLOG(ERROR, "threading.sb_state.Reset() failed.");
return false;
}
// Account for the parsing job.
++threading_.pending_jobs;
}
const int block_width4x4 = kNum4x4BlocksWide[SuperBlockSize()];
// Begin parsing.
std::unique_ptr<TileScratchBuffer> scratch_buffer =
tile_scratch_buffer_pool_->Get();
if (scratch_buffer == nullptr) {
pending_tiles_->Decrement(false);
LIBGAV1_DLOG(ERROR, "Failed to get scratch buffer.");
return false;
}
for (int row4x4 = row4x4_start_, row_index = 0; row4x4 < row4x4_end_;
row4x4 += block_width4x4, ++row_index) {
for (int column4x4 = column4x4_start_, column_index = 0;
column4x4 < column4x4_end_;
column4x4 += block_width4x4, ++column_index) {
if (!ProcessSuperBlock(row4x4, column4x4, block_width4x4,
scratch_buffer.get(), kProcessingModeParseOnly)) {
std::lock_guard<std::mutex> lock(threading_.mutex);
threading_.abort = true;
break;
}
std::unique_lock<std::mutex> lock(threading_.mutex);
if (threading_.abort) break;
threading_.sb_state[row_index][column_index] = kSuperBlockStateParsed;
// Schedule the decoding of this superblock if it is allowed.
if (CanDecode(row_index, column_index)) {
++threading_.pending_jobs;
threading_.sb_state[row_index][column_index] =
kSuperBlockStateScheduled;
lock.unlock();
thread_pool_->Schedule(
[this, row_index, column_index, block_width4x4]() {
DecodeSuperBlock(row_index, column_index, block_width4x4);
});
}
}
std::lock_guard<std::mutex> lock(threading_.mutex);
if (threading_.abort) break;
}
tile_scratch_buffer_pool_->Release(std::move(scratch_buffer));
// We are done parsing. We can return here since the calling thread will make
// sure that it waits for all the superblocks to be decoded.
//
// Finish using |threading_| before |pending_tiles_->Decrement()| because the
// Tile object could go out of scope as soon as |pending_tiles_->Decrement()|
// is called.
threading_.mutex.lock();
const bool no_pending_jobs = (--threading_.pending_jobs == 0);
const bool job_succeeded = !threading_.abort;
threading_.mutex.unlock();
if (no_pending_jobs) {
// We are done parsing and decoding this tile.
pending_tiles_->Decrement(job_succeeded);
}
return job_succeeded;
}
bool Tile::CanDecode(int row_index, int column_index) const {
assert(row_index >= 0);
assert(column_index >= 0);
// If |threading_.sb_state[row_index][column_index]| is not equal to
// kSuperBlockStateParsed, then return false. This is ok because if
// |threading_.sb_state[row_index][column_index]| is equal to:
// kSuperBlockStateNone - then the superblock is not yet parsed.
// kSuperBlockStateScheduled - then the superblock is already scheduled for
// decode.
// kSuperBlockStateDecoded - then the superblock has already been decoded.
if (row_index >= superblock_rows_ || column_index >= superblock_columns_ ||
threading_.sb_state[row_index][column_index] != kSuperBlockStateParsed) {
return false;
}
// First superblock has no dependencies.
if (row_index == 0 && column_index == 0) {
return true;
}
// Superblocks in the first row only depend on the superblock to the left of
// it.
if (row_index == 0) {
return threading_.sb_state[0][column_index - 1] == kSuperBlockStateDecoded;
}
// All other superblocks depend on superblock to the left of it (if one
// exists) and superblock to the top right with a lag of
// |intra_block_copy_lag_| (if one exists).
const int top_right_column_index =
std::min(column_index + intra_block_copy_lag_, superblock_columns_ - 1);
return threading_.sb_state[row_index - 1][top_right_column_index] ==
kSuperBlockStateDecoded &&
(column_index == 0 ||
threading_.sb_state[row_index][column_index - 1] ==
kSuperBlockStateDecoded);
}
void Tile::DecodeSuperBlock(int row_index, int column_index,
int block_width4x4) {
const int row4x4 = row4x4_start_ + (row_index * block_width4x4);
const int column4x4 = column4x4_start_ + (column_index * block_width4x4);
std::unique_ptr<TileScratchBuffer> scratch_buffer =
tile_scratch_buffer_pool_->Get();
bool ok = scratch_buffer != nullptr;
if (ok) {
ok = ProcessSuperBlock(row4x4, column4x4, block_width4x4,
scratch_buffer.get(), kProcessingModeDecodeOnly);
tile_scratch_buffer_pool_->Release(std::move(scratch_buffer));
}
std::unique_lock<std::mutex> lock(threading_.mutex);
if (ok) {
threading_.sb_state[row_index][column_index] = kSuperBlockStateDecoded;
// Candidate rows and columns that we could potentially begin the decoding
// (if it is allowed to do so). The candidates are:
// 1) The superblock to the bottom-left of the current superblock with a
// lag of |intra_block_copy_lag_| (or the beginning of the next superblock
// row in case there are less than |intra_block_copy_lag_| superblock
// columns in the Tile).
// 2) The superblock to the right of the current superblock.
const int candidate_row_indices[] = {row_index + 1, row_index};
const int candidate_column_indices[] = {
std::max(0, column_index - intra_block_copy_lag_), column_index + 1};
for (size_t i = 0; i < std::extent<decltype(candidate_row_indices)>::value;
++i) {
const int candidate_row_index = candidate_row_indices[i];
const int candidate_column_index = candidate_column_indices[i];
if (!CanDecode(candidate_row_index, candidate_column_index)) {
continue;
}
++threading_.pending_jobs;
threading_.sb_state[candidate_row_index][candidate_column_index] =
kSuperBlockStateScheduled;
lock.unlock();
thread_pool_->Schedule([this, candidate_row_index, candidate_column_index,
block_width4x4]() {
DecodeSuperBlock(candidate_row_index, candidate_column_index,
block_width4x4);
});
lock.lock();
}
} else {
threading_.abort = true;
}
// Finish using |threading_| before |pending_tiles_->Decrement()| because the
// Tile object could go out of scope as soon as |pending_tiles_->Decrement()|
// is called.
const bool no_pending_jobs = (--threading_.pending_jobs == 0);
const bool job_succeeded = !threading_.abort;
lock.unlock();
if (no_pending_jobs) {
// We are done parsing and decoding this tile.
pending_tiles_->Decrement(job_succeeded);
}
}
void Tile::PopulateIntraPredictionBuffer(int row4x4) {
const int block_width4x4 = kNum4x4BlocksWide[SuperBlockSize()];
if (!use_intra_prediction_buffer_ || row4x4 + block_width4x4 >= row4x4_end_) {
return;
}
const size_t pixel_size =
(sequence_header_.color_config.bitdepth == 8 ? sizeof(uint8_t)
: sizeof(uint16_t));
for (int plane = kPlaneY; plane < PlaneCount(); ++plane) {
const int row_to_copy =
(MultiplyBy4(row4x4 + block_width4x4) >> subsampling_y_[plane]) - 1;
const size_t pixels_to_copy =
(MultiplyBy4(column4x4_end_ - column4x4_start_) >>
subsampling_x_[plane]) *
pixel_size;
const size_t column_start =
MultiplyBy4(column4x4_start_) >> subsampling_x_[plane];
void* start;
#if LIBGAV1_MAX_BITDEPTH >= 10
if (sequence_header_.color_config.bitdepth > 8) {
Array2DView<uint16_t> buffer(
buffer_[plane].rows(), buffer_[plane].columns() / sizeof(uint16_t),
reinterpret_cast<uint16_t*>(&buffer_[plane][0][0]));
start = &buffer[row_to_copy][column_start];
} else // NOLINT
#endif
{
start = &buffer_[plane][row_to_copy][column_start];
}
memcpy((*intra_prediction_buffer_)[plane].get() + column_start * pixel_size,
start, pixels_to_copy);
}
}
int Tile::GetTransformAllZeroContext(const Block& block, Plane plane,
TransformSize tx_size, int x4, int y4,
int w4, int h4) {
const int max_x4x4 = frame_header_.columns4x4 >> subsampling_x_[plane];
const int max_y4x4 = frame_header_.rows4x4 >> subsampling_y_[plane];
const int tx_width = kTransformWidth[tx_size];
const int tx_height = kTransformHeight[tx_size];
const BlockSize plane_size = block.residual_size[plane];
const int block_width = kBlockWidthPixels[plane_size];
const int block_height = kBlockHeightPixels[plane_size];
int top = 0;
int left = 0;
const int num_top_elements = GetNumElements(w4, x4, max_x4x4);
const int num_left_elements = GetNumElements(h4, y4, max_y4x4);
if (plane == kPlaneY) {
if (block_width == tx_width && block_height == tx_height) return 0;
const uint8_t* coefficient_levels =
&coefficient_levels_[kEntropyContextTop][plane][x4];
for (int i = 0; i < num_top_elements; ++i) {
top = std::max(top, static_cast<int>(coefficient_levels[i]));
}
coefficient_levels = &coefficient_levels_[kEntropyContextLeft][plane][y4];
for (int i = 0; i < num_left_elements; ++i) {
left = std::max(left, static_cast<int>(coefficient_levels[i]));
}
assert(top <= 4);
assert(left <= 4);
// kAllZeroContextsByTopLeft is pre-computed based on the logic in the spec
// for top and left.
return kAllZeroContextsByTopLeft[top][left];
}
const uint8_t* coefficient_levels =
&coefficient_levels_[kEntropyContextTop][plane][x4];
const int8_t* dc_categories = &dc_categories_[kEntropyContextTop][plane][x4];
for (int i = 0; i < num_top_elements; ++i) {
top |= coefficient_levels[i];
top |= dc_categories[i];
}
coefficient_levels = &coefficient_levels_[kEntropyContextLeft][plane][y4];
dc_categories = &dc_categories_[kEntropyContextLeft][plane][y4];
for (int i = 0; i < num_left_elements; ++i) {
left |= coefficient_levels[i];
left |= dc_categories[i];
}
return static_cast<int>(top != 0) + static_cast<int>(left != 0) + 7 +
3 * static_cast<int>(block_width * block_height >
tx_width * tx_height);
}
TransformSet Tile::GetTransformSet(TransformSize tx_size, bool is_inter) const {
const TransformSize tx_size_square_min = kTransformSizeSquareMin[tx_size];
const TransformSize tx_size_square_max = kTransformSizeSquareMax[tx_size];
if (tx_size_square_max == kTransformSize64x64) return kTransformSetDctOnly;
if (is_inter) {
if (frame_header_.reduced_tx_set ||
tx_size_square_max == kTransformSize32x32) {
return kTransformSetInter3;
}
if (tx_size_square_min == kTransformSize16x16) return kTransformSetInter2;
return kTransformSetInter1;
}
if (tx_size_square_max == kTransformSize32x32) return kTransformSetDctOnly;
if (frame_header_.reduced_tx_set ||
tx_size_square_min == kTransformSize16x16) {
return kTransformSetIntra2;
}
return kTransformSetIntra1;
}
TransformType Tile::ComputeTransformType(const Block& block, Plane plane,
TransformSize tx_size, int block_x,
int block_y) {
const BlockParameters& bp = *block.bp;
const TransformSize tx_size_square_max = kTransformSizeSquareMax[tx_size];
if (frame_header_.segmentation.lossless[bp.segment_id] ||
tx_size_square_max == kTransformSize64x64) {
return kTransformTypeDctDct;
}
if (plane == kPlaneY) {
return transform_types_[block_y - block.row4x4][block_x - block.column4x4];
}
const TransformSet tx_set = GetTransformSet(tx_size, bp.is_inter);
TransformType tx_type;
if (bp.is_inter) {
const int x4 =
std::max(block.column4x4, block_x << subsampling_x_[kPlaneU]);
const int y4 = std::max(block.row4x4, block_y << subsampling_y_[kPlaneU]);
tx_type = transform_types_[y4 - block.row4x4][x4 - block.column4x4];
} else {
tx_type = kModeToTransformType[bp.uv_mode];
}
return kTransformTypeInSetMask[tx_set].Contains(tx_type)
? tx_type
: kTransformTypeDctDct;
}
void Tile::ReadTransformType(const Block& block, int x4, int y4,
TransformSize tx_size) {
BlockParameters& bp = *block.bp;
const TransformSet tx_set = GetTransformSet(tx_size, bp.is_inter);
TransformType tx_type = kTransformTypeDctDct;
if (tx_set != kTransformSetDctOnly &&
frame_header_.segmentation.qindex[bp.segment_id] > 0) {
const int cdf_index = SymbolDecoderContext::TxTypeIndex(tx_set);
const int cdf_tx_size_index =
TransformSizeToSquareTransformIndex(kTransformSizeSquareMin[tx_size]);
uint16_t* cdf;
if (bp.is_inter) {
cdf = symbol_decoder_context_
.inter_tx_type_cdf[cdf_index][cdf_tx_size_index];
switch (tx_set) {
case kTransformSetInter1:
tx_type = static_cast<TransformType>(reader_.ReadSymbol<16>(cdf));
break;
case kTransformSetInter2:
tx_type = static_cast<TransformType>(reader_.ReadSymbol<12>(cdf));
break;
default:
assert(tx_set == kTransformSetInter3);
tx_type = static_cast<TransformType>(reader_.ReadSymbol(cdf));
break;
}
} else {
const PredictionMode intra_direction =
block.bp->prediction_parameters->use_filter_intra
? kFilterIntraModeToIntraPredictor[block.bp->prediction_parameters
->filter_intra_mode]
: bp.y_mode;
cdf =
symbol_decoder_context_
.intra_tx_type_cdf[cdf_index][cdf_tx_size_index][intra_direction];
assert(tx_set == kTransformSetIntra1 || tx_set == kTransformSetIntra2);
tx_type = static_cast<TransformType>((tx_set == kTransformSetIntra1)
? reader_.ReadSymbol<7>(cdf)
: reader_.ReadSymbol<5>(cdf));
}
// This array does not contain an entry for kTransformSetDctOnly, so the
// first dimension needs to be offset by 1.
tx_type = kInverseTransformTypeBySet[tx_set - 1][tx_type];
}
SetTransformType(block, x4, y4, kTransformWidth4x4[tx_size],
kTransformHeight4x4[tx_size], tx_type, transform_types_);
}
// Section 8.3.2 in the spec, under coeff_base and coeff_br.
// Bottom boundary checks are avoided by the padded rows.
// For a coefficient near the right boundary, the two right neighbors and the
// one bottom-right neighbor may be out of boundary. We don't check the right
// boundary for them, because the out of boundary neighbors project to positions
// above the diagonal line which goes through the current coefficient and these
// positions are still all 0s according to the diagonal scan order.
template <typename ResidualType>
void Tile::ReadCoeffBase2D(
const uint16_t* scan, TransformSize tx_size, int adjusted_tx_width_log2,
int eob,
uint16_t coeff_base_cdf[kCoeffBaseContexts][kCoeffBaseSymbolCount + 1],
uint16_t coeff_base_range_cdf[kCoeffBaseRangeContexts]
[kCoeffBaseRangeSymbolCount + 1],
ResidualType* const quantized_buffer, uint8_t* const level_buffer) {
const int tx_width = 1 << adjusted_tx_width_log2;
for (int i = eob - 2; i >= 1; --i) {
const uint16_t pos = scan[i];
const int row = pos >> adjusted_tx_width_log2;
const int column = pos & (tx_width - 1);
auto* const quantized = &quantized_buffer[pos];
auto* const levels = &level_buffer[pos];
const int neighbor_sum = 1 + levels[1] + levels[tx_width] +
levels[tx_width + 1] + levels[2] +
levels[MultiplyBy2(tx_width)];
const int context =
((neighbor_sum > 7) ? 4 : DivideBy2(neighbor_sum)) +
kCoeffBaseContextOffset[tx_size][std::min(row, 4)][std::min(column, 4)];
int level =
reader_.ReadSymbol<kCoeffBaseSymbolCount>(coeff_base_cdf[context]);
levels[0] = level;
if (level > kNumQuantizerBaseLevels) {
// No need to clip quantized values to COEFF_BASE_RANGE + NUM_BASE_LEVELS
// + 1, because we clip the overall output to 6 and the unclipped
// quantized values will always result in an output of greater than 6.
int context = std::min(6, DivideBy2(1 + quantized[1] + // {0, 1}
quantized[tx_width] + // {1, 0}
quantized[tx_width + 1])); // {1, 1}
context += 14 >> static_cast<int>((row | column) < 2);
level += ReadCoeffBaseRange(coeff_base_range_cdf[context]);
}
quantized[0] = level;
}
// Read position 0.
{
auto* const quantized = &quantized_buffer[0];
int level = reader_.ReadSymbol<kCoeffBaseSymbolCount>(coeff_base_cdf[0]);
level_buffer[0] = level;
if (level > kNumQuantizerBaseLevels) {
// No need to clip quantized values to COEFF_BASE_RANGE + NUM_BASE_LEVELS
// + 1, because we clip the overall output to 6 and the unclipped
// quantized values will always result in an output of greater than 6.
const int context =
std::min(6, DivideBy2(1 + quantized[1] + // {0, 1}
quantized[tx_width] + // {1, 0}
quantized[tx_width + 1])); // {1, 1}
level += ReadCoeffBaseRange(coeff_base_range_cdf[context]);
}
quantized[0] = level;
}
}
// Section 8.3.2 in the spec, under coeff_base and coeff_br.
// Bottom boundary checks are avoided by the padded rows.
// For a coefficient near the right boundary, the four right neighbors may be
// out of boundary. We don't do the boundary check for the first three right
// neighbors, because even for the transform blocks with smallest width 4, the
// first three out of boundary neighbors project to positions left of the
// current coefficient and these positions are still all 0s according to the
// column scan order. However, when transform block width is 4 and the current
// coefficient is on the right boundary, its fourth right neighbor projects to
// the under position on the same column, which could be nonzero. Therefore, we
// must skip the fourth right neighbor. To make it simple, for any coefficient,
// we always do the boundary check for its fourth right neighbor.
template <typename ResidualType>
void Tile::ReadCoeffBaseHorizontal(
const uint16_t* scan, TransformSize /*tx_size*/, int adjusted_tx_width_log2,
int eob,
uint16_t coeff_base_cdf[kCoeffBaseContexts][kCoeffBaseSymbolCount + 1],
uint16_t coeff_base_range_cdf[kCoeffBaseRangeContexts]
[kCoeffBaseRangeSymbolCount + 1],
ResidualType* const quantized_buffer, uint8_t* const level_buffer) {
const int tx_width = 1 << adjusted_tx_width_log2;
int i = eob - 2;
do {
const uint16_t pos = scan[i];
const int column = pos & (tx_width - 1);
auto* const quantized = &quantized_buffer[pos];
auto* const levels = &level_buffer[pos];
const int neighbor_sum =
1 + (levels[1] + // {0, 1}
levels[tx_width] + // {1, 0}
levels[2] + // {0, 2}
levels[3] + // {0, 3}
((column + 4 < tx_width) ? levels[4] : 0)); // {0, 4}
const int context = ((neighbor_sum > 7) ? 4 : DivideBy2(neighbor_sum)) +
kCoeffBasePositionContextOffset[column];
int level =
reader_.ReadSymbol<kCoeffBaseSymbolCount>(coeff_base_cdf[context]);
levels[0] = level;
if (level > kNumQuantizerBaseLevels) {
// No need to clip quantized values to COEFF_BASE_RANGE + NUM_BASE_LEVELS
// + 1, because we clip the overall output to 6 and the unclipped
// quantized values will always result in an output of greater than 6.
int context = std::min(6, DivideBy2(1 + quantized[1] + // {0, 1}
quantized[tx_width] + // {1, 0}
quantized[2])); // {0, 2}
if (pos != 0) {
context += 14 >> static_cast<int>(column == 0);
}
level += ReadCoeffBaseRange(coeff_base_range_cdf[context]);
}
quantized[0] = level;
} while (--i >= 0);
}
// Section 8.3.2 in the spec, under coeff_base and coeff_br.
// Bottom boundary checks are avoided by the padded rows.
// Right boundary check is performed explicitly.
template <typename ResidualType>
void Tile::ReadCoeffBaseVertical(
const uint16_t* scan, TransformSize /*tx_size*/, int adjusted_tx_width_log2,
int eob,
uint16_t coeff_base_cdf[kCoeffBaseContexts][kCoeffBaseSymbolCount + 1],
uint16_t coeff_base_range_cdf[kCoeffBaseRangeContexts]
[kCoeffBaseRangeSymbolCount + 1],
ResidualType* const quantized_buffer, uint8_t* const level_buffer) {
const int tx_width = 1 << adjusted_tx_width_log2;
int i = eob - 2;
do {
const uint16_t pos = scan[i];
const int row = pos >> adjusted_tx_width_log2;
const int column = pos & (tx_width - 1);
auto* const quantized = &quantized_buffer[pos];
auto* const levels = &level_buffer[pos];
const int neighbor_sum =
1 + (((column + 1 < tx_width) ? levels[1] : 0) + // {0, 1}
levels[tx_width] + // {1, 0}
levels[MultiplyBy2(tx_width)] + // {2, 0}
levels[tx_width * 3] + // {3, 0}
levels[MultiplyBy4(tx_width)]); // {4, 0}
const int context = ((neighbor_sum > 7) ? 4 : DivideBy2(neighbor_sum)) +
kCoeffBasePositionContextOffset[row];
int level =
reader_.ReadSymbol<kCoeffBaseSymbolCount>(coeff_base_cdf[context]);
levels[0] = level;
if (level > kNumQuantizerBaseLevels) {
// No need to clip quantized values to COEFF_BASE_RANGE + NUM_BASE_LEVELS
// + 1, because we clip the overall output to 6 and the unclipped
// quantized values will always result in an output of greater than 6.
const int quantized_column1 = (column + 1 < tx_width) ? quantized[1] : 0;
int context =
std::min(6, DivideBy2(1 + quantized_column1 + // {0, 1}
quantized[tx_width] + // {1, 0}
quantized[MultiplyBy2(tx_width)])); // {2, 0}
if (pos != 0) {
context += 14 >> static_cast<int>(row == 0);
}
level += ReadCoeffBaseRange(coeff_base_range_cdf[context]);
}
quantized[0] = level;
} while (--i >= 0);
}
int Tile::GetDcSignContext(int x4, int y4, int w4, int h4, Plane plane) {
const int max_x4x4 = frame_header_.columns4x4 >> subsampling_x_[plane];
const int8_t* dc_categories = &dc_categories_[kEntropyContextTop][plane][x4];
// Set dc_sign to 8-bit long so that std::accumulate() saves sign extension.
int8_t dc_sign = std::accumulate(
dc_categories, dc_categories + GetNumElements(w4, x4, max_x4x4), 0);
const int max_y4x4 = frame_header_.rows4x4 >> subsampling_y_[plane];
dc_categories = &dc_categories_[kEntropyContextLeft][plane][y4];
dc_sign = std::accumulate(
dc_categories, dc_categories + GetNumElements(h4, y4, max_y4x4), dc_sign);
// This return statement is equivalent to:
// if (dc_sign < 0) return 1;
// if (dc_sign > 0) return 2;
// return 0;
// And it is better than:
// return static_cast<int>(dc_sign != 0) + static_cast<int>(dc_sign > 0);
return static_cast<int>(dc_sign < 0) +
MultiplyBy2(static_cast<int>(dc_sign > 0));
}
void Tile::SetEntropyContexts(int x4, int y4, int w4, int h4, Plane plane,
uint8_t coefficient_level, int8_t dc_category) {
const int max_x4x4 = frame_header_.columns4x4 >> subsampling_x_[plane];
const int num_top_elements = GetNumElements(w4, x4, max_x4x4);
memset(&coefficient_levels_[kEntropyContextTop][plane][x4], coefficient_level,
num_top_elements);
memset(&dc_categories_[kEntropyContextTop][plane][x4], dc_category,
num_top_elements);
const int max_y4x4 = frame_header_.rows4x4 >> subsampling_y_[plane];
const int num_left_elements = GetNumElements(h4, y4, max_y4x4);
memset(&coefficient_levels_[kEntropyContextLeft][plane][y4],
coefficient_level, num_left_elements);
memset(&dc_categories_[kEntropyContextLeft][plane][y4], dc_category,
num_left_elements);
}
template <typename ResidualType, bool is_dc_coefficient>
bool Tile::ReadSignAndApplyDequantization(
const uint16_t* const scan, int i, int q_value,
const uint8_t* const quantizer_matrix, int shift, int max_value,
uint16_t* const dc_sign_cdf, int8_t* const dc_category,
int* const coefficient_level, ResidualType* residual_buffer) {
const int pos = is_dc_coefficient ? 0 : scan[i];
// If residual_buffer[pos] is zero, then the rest of the function has no
// effect.
int level = residual_buffer[pos];
if (level == 0) return true;
const int sign = is_dc_coefficient
? static_cast<int>(reader_.ReadSymbol(dc_sign_cdf))
: reader_.ReadBit();
if (level > kNumQuantizerBaseLevels + kQuantizerCoefficientBaseRange) {
int length = 0;
bool golomb_length_bit = false;
do {
golomb_length_bit = static_cast<bool>(reader_.ReadBit());
++length;
if (length > 20) {
LIBGAV1_DLOG(ERROR, "Invalid golomb_length %d", length);
return false;
}
} while (!golomb_length_bit);
int x = 1;
for (int i = length - 2; i >= 0; --i) {
x = (x << 1) | reader_.ReadBit();
}
level += x - 1;
}
if (is_dc_coefficient) {
*dc_category = (sign != 0) ? -1 : 1;
}
level &= 0xfffff;
*coefficient_level += level;
// Apply dequantization. Step 1 of section 7.12.3 in the spec.
int q = q_value;
if (quantizer_matrix != nullptr) {
q = RightShiftWithRounding(q * quantizer_matrix[pos], 5);
}
// The intermediate multiplication can exceed 32 bits, so it has to be
// performed by promoting one of the values to int64_t.
int32_t dequantized_value = (static_cast<int64_t>(q) * level) & 0xffffff;
dequantized_value >>= shift;
// At this point:
// * |dequantized_value| is always non-negative.
// * |sign| can be either 0 or 1.
// * min_value = -(max_value + 1).
// We need to apply the following:
// dequantized_value = sign ? -dequantized_value : dequantized_value;
// dequantized_value = Clip3(dequantized_value, min_value, max_value);
//
// Note that -x == ~(x - 1).
//
// Now, The above two lines can be done with a std::min and xor as follows:
dequantized_value = std::min(dequantized_value - sign, max_value) ^ -sign;
residual_buffer[pos] = dequantized_value;
return true;
}
int Tile::ReadCoeffBaseRange(uint16_t* cdf) {
int level = 0;
for (int j = 0; j < kCoeffBaseRangeMaxIterations; ++j) {
const int coeff_base_range =
reader_.ReadSymbol<kCoeffBaseRangeSymbolCount>(cdf);
level += coeff_base_range;
if (coeff_base_range < (kCoeffBaseRangeSymbolCount - 1)) break;
}
return level;
}
template <typename ResidualType>
int Tile::ReadTransformCoefficients(const Block& block, Plane plane,
int start_x, int start_y,
TransformSize tx_size,
TransformType* const tx_type) {
const int x4 = DivideBy4(start_x);
const int y4 = DivideBy4(start_y);
const int w4 = kTransformWidth4x4[tx_size];
const int h4 = kTransformHeight4x4[tx_size];
const int tx_size_context = kTransformSizeContext[tx_size];
int context =
GetTransformAllZeroContext(block, plane, tx_size, x4, y4, w4, h4);
const bool all_zero = reader_.ReadSymbol(
symbol_decoder_context_.all_zero_cdf[tx_size_context][context]);
if (all_zero) {
if (plane == kPlaneY) {
SetTransformType(block, x4, y4, w4, h4, kTransformTypeDctDct,
transform_types_);
}
SetEntropyContexts(x4, y4, w4, h4, plane, 0, 0);
// This is not used in this case, so it can be set to any value.
*tx_type = kNumTransformTypes;
return 0;
}
const int tx_width = kTransformWidth[tx_size];
const int tx_height = kTransformHeight[tx_size];
const TransformSize adjusted_tx_size = kAdjustedTransformSize[tx_size];
const int adjusted_tx_width_log2 = kTransformWidthLog2[adjusted_tx_size];
const int tx_padding =
(1 << adjusted_tx_width_log2) * kResidualPaddingVertical;
auto* residual = reinterpret_cast<ResidualType*>(*block.residual);
// Clear padding to avoid bottom boundary checks when parsing quantized
// coefficients.
memset(residual, 0, (tx_width * tx_height + tx_padding) * residual_size_);
uint8_t level_buffer[(32 + kResidualPaddingVertical) * 32];
memset(
level_buffer, 0,
kTransformWidth[adjusted_tx_size] * kTransformHeight[adjusted_tx_size] +
tx_padding);
const int clamped_tx_height = std::min(tx_height, 32);
if (plane == kPlaneY) {
ReadTransformType(block, x4, y4, tx_size);
}
BlockParameters& bp = *block.bp;
*tx_type = ComputeTransformType(block, plane, tx_size, x4, y4);
const int eob_multi_size = kEobMultiSizeLookup[tx_size];
const PlaneType plane_type = GetPlaneType(plane);
const TransformClass tx_class = GetTransformClass(*tx_type);
context = static_cast<int>(tx_class != kTransformClass2D);
int eob_pt = 1;
switch (eob_multi_size) {
case 0:
eob_pt += reader_.ReadSymbol<kEobPt16SymbolCount>(
symbol_decoder_context_.eob_pt_16_cdf[plane_type][context]);
break;
case 1:
eob_pt += reader_.ReadSymbol<kEobPt32SymbolCount>(
symbol_decoder_context_.eob_pt_32_cdf[plane_type][context]);
break;
case 2:
eob_pt += reader_.ReadSymbol<kEobPt64SymbolCount>(
symbol_decoder_context_.eob_pt_64_cdf[plane_type][context]);
break;
case 3:
eob_pt += reader_.ReadSymbol<kEobPt128SymbolCount>(
symbol_decoder_context_.eob_pt_128_cdf[plane_type][context]);
break;
case 4:
eob_pt += reader_.ReadSymbol<kEobPt256SymbolCount>(
symbol_decoder_context_.eob_pt_256_cdf[plane_type][context]);
break;
case 5:
eob_pt += reader_.ReadSymbol<kEobPt512SymbolCount>(
symbol_decoder_context_.eob_pt_512_cdf[plane_type]);
break;
case 6:
default:
eob_pt += reader_.ReadSymbol<kEobPt1024SymbolCount>(
symbol_decoder_context_.eob_pt_1024_cdf[plane_type]);
break;
}
int eob = (eob_pt < 2) ? eob_pt : ((1 << (eob_pt - 2)) + 1);
if (eob_pt >= 3) {
context = eob_pt - 3;
const bool eob_extra = reader_.ReadSymbol(
symbol_decoder_context_
.eob_extra_cdf[tx_size_context][plane_type][context]);
if (eob_extra) eob += 1 << (eob_pt - 3);
for (int i = 1; i < eob_pt - 2; ++i) {
assert(eob_pt - i >= 3);
assert(eob_pt <= kEobPt1024SymbolCount);
if (static_cast<bool>(reader_.ReadBit())) {
eob += 1 << (eob_pt - i - 3);
}
}
}
const uint16_t* scan = kScan[tx_class][tx_size];
const int clamped_tx_size_context = std::min(tx_size_context, 3);
auto coeff_base_range_cdf =
symbol_decoder_context_
.coeff_base_range_cdf[clamped_tx_size_context][plane_type];
// Read the last coefficient.
{
context = GetCoeffBaseContextEob(tx_size, eob - 1);
const uint16_t pos = scan[eob - 1];
int level =
1 + reader_.ReadSymbol<kCoeffBaseEobSymbolCount>(
symbol_decoder_context_
.coeff_base_eob_cdf[tx_size_context][plane_type][context]);
level_buffer[pos] = level;
if (level > kNumQuantizerBaseLevels) {
level +=
ReadCoeffBaseRange(coeff_base_range_cdf[GetCoeffBaseRangeContextEob(
adjusted_tx_width_log2, pos, tx_class)]);
}
residual[pos] = level;
}
if (eob > 1) {
// Read all the other coefficients.
// Lookup used to call the right variant of ReadCoeffBase*() based on the
// transform class.
static constexpr void (Tile::*kGetCoeffBaseFunc[])(
const uint16_t* scan, TransformSize tx_size, int adjusted_tx_width_log2,
int eob,
uint16_t coeff_base_cdf[kCoeffBaseContexts][kCoeffBaseSymbolCount + 1],
uint16_t coeff_base_range_cdf[kCoeffBaseRangeContexts]
[kCoeffBaseRangeSymbolCount + 1],
ResidualType* quantized_buffer,
uint8_t* level_buffer) = {&Tile::ReadCoeffBase2D<ResidualType>,
&Tile::ReadCoeffBaseHorizontal<ResidualType>,
&Tile::ReadCoeffBaseVertical<ResidualType>};
(this->*kGetCoeffBaseFunc[tx_class])(
scan, tx_size, adjusted_tx_width_log2, eob,
symbol_decoder_context_.coeff_base_cdf[tx_size_context][plane_type],
coeff_base_range_cdf, residual, level_buffer);
}
const int max_value = (1 << (7 + sequence_header_.color_config.bitdepth)) - 1;
const int current_quantizer_index = GetQIndex(
frame_header_.segmentation, bp.segment_id, current_quantizer_index_);
const int dc_q_value = quantizer_.GetDcValue(plane, current_quantizer_index);
const int ac_q_value = quantizer_.GetAcValue(plane, current_quantizer_index);
const int shift = kQuantizationShift[tx_size];
const uint8_t* const quantizer_matrix =
(frame_header_.quantizer.use_matrix &&
*tx_type < kTransformTypeIdentityIdentity &&
!frame_header_.segmentation.lossless[bp.segment_id] &&
frame_header_.quantizer.matrix_level[plane] < 15)
? quantizer_matrix_[frame_header_.quantizer.matrix_level[plane]]
[plane_type][adjusted_tx_size]
.get()
: nullptr;
int coefficient_level = 0;
int8_t dc_category = 0;
uint16_t* const dc_sign_cdf =
(residual[0] != 0)
? symbol_decoder_context_.dc_sign_cdf[plane_type][GetDcSignContext(
x4, y4, w4, h4, plane)]
: nullptr;
assert(scan[0] == 0);
if (!ReadSignAndApplyDequantization<ResidualType, /*is_dc_coefficient=*/true>(
scan, 0, dc_q_value, quantizer_matrix, shift, max_value, dc_sign_cdf,
&dc_category, &coefficient_level, residual)) {
return -1;
}
if (eob > 1) {
int i = 1;
do {
if (!ReadSignAndApplyDequantization<ResidualType,
/*is_dc_coefficient=*/false>(
scan, i, ac_q_value, quantizer_matrix, shift, max_value, nullptr,
nullptr, &coefficient_level, residual)) {
return -1;
}
} while (++i < eob);
MoveCoefficientsForTxWidth64(clamped_tx_height, tx_width, residual);
}
SetEntropyContexts(x4, y4, w4, h4, plane, std::min(4, coefficient_level),
dc_category);
if (split_parse_and_decode_) {
*block.residual += tx_width * tx_height * residual_size_;
}
return eob;
}
// CALL_BITDEPTH_FUNCTION is a macro that calls the appropriate template
// |function| depending on the value of |sequence_header_.color_config.bitdepth|
// with the variadic arguments.
#if LIBGAV1_MAX_BITDEPTH >= 10
#define CALL_BITDEPTH_FUNCTION(function, ...) \
do { \
if (sequence_header_.color_config.bitdepth > 8) { \
function<uint16_t>(__VA_ARGS__); \
} else { \
function<uint8_t>(__VA_ARGS__); \
} \
} while (false)
#else
#define CALL_BITDEPTH_FUNCTION(function, ...) \
do { \
function<uint8_t>(__VA_ARGS__); \
} while (false)
#endif
bool Tile::TransformBlock(const Block& block, Plane plane, int base_x,
int base_y, TransformSize tx_size, int x, int y,
ProcessingMode mode) {
BlockParameters& bp = *block.bp;
const int subsampling_x = subsampling_x_[plane];
const int subsampling_y = subsampling_y_[plane];
const int start_x = base_x + MultiplyBy4(x);
const int start_y = base_y + MultiplyBy4(y);
const int max_x = MultiplyBy4(frame_header_.columns4x4) >> subsampling_x;
const int max_y = MultiplyBy4(frame_header_.rows4x4) >> subsampling_y;
if (start_x >= max_x || start_y >= max_y) return true;
const int row = DivideBy4(start_y << subsampling_y);
const int column = DivideBy4(start_x << subsampling_x);
const int mask = sequence_header_.use_128x128_superblock ? 31 : 15;
const int sub_block_row4x4 = row & mask;
const int sub_block_column4x4 = column & mask;
const int step_x = kTransformWidth4x4[tx_size];
const int step_y = kTransformHeight4x4[tx_size];
const bool do_decode = mode == kProcessingModeDecodeOnly ||
mode == kProcessingModeParseAndDecode;
if (do_decode && !bp.is_inter) {
if (bp.palette_mode_info.size[GetPlaneType(plane)] > 0) {
CALL_BITDEPTH_FUNCTION(PalettePrediction, block, plane, start_x, start_y,
x, y, tx_size);
} else {
const PredictionMode mode =
(plane == kPlaneY)
? bp.y_mode
: (bp.uv_mode == kPredictionModeChromaFromLuma ? kPredictionModeDc
: bp.uv_mode);
const int tr_row4x4 = (sub_block_row4x4 >> subsampling_y);
const int tr_column4x4 =
(sub_block_column4x4 >> subsampling_x) + step_x + 1;
const int bl_row4x4 = (sub_block_row4x4 >> subsampling_y) + step_y + 1;
const int bl_column4x4 = (sub_block_column4x4 >> subsampling_x);
const bool has_left = x > 0 || block.left_available[plane];
const bool has_top = y > 0 || block.top_available[plane];
CALL_BITDEPTH_FUNCTION(
IntraPrediction, block, plane, start_x, start_y, has_left, has_top,
block.scratch_buffer->block_decoded[plane][tr_row4x4][tr_column4x4],
block.scratch_buffer->block_decoded[plane][bl_row4x4][bl_column4x4],
mode, tx_size);
if (plane != kPlaneY && bp.uv_mode == kPredictionModeChromaFromLuma) {
CALL_BITDEPTH_FUNCTION(ChromaFromLumaPrediction, block, plane, start_x,
start_y, tx_size);
}
}
if (plane == kPlaneY) {
block.bp->prediction_parameters->max_luma_width =
start_x + MultiplyBy4(step_x);
block.bp->prediction_parameters->max_luma_height =
start_y + MultiplyBy4(step_y);
block.scratch_buffer->cfl_luma_buffer_valid = false;
}
}
if (!bp.skip) {
const int sb_row_index = SuperBlockRowIndex(block.row4x4);
const int sb_column_index = SuperBlockColumnIndex(block.column4x4);
if (mode == kProcessingModeDecodeOnly) {
TransformParameterQueue& tx_params =
*residual_buffer_threaded_[sb_row_index][sb_column_index]
->transform_parameters();
ReconstructBlock(block, plane, start_x, start_y, tx_size,
tx_params.Type(), tx_params.NonZeroCoeffCount());
tx_params.Pop();
} else {
TransformType tx_type;
int non_zero_coeff_count;
#if LIBGAV1_MAX_BITDEPTH >= 10
if (sequence_header_.color_config.bitdepth > 8) {
non_zero_coeff_count = ReadTransformCoefficients<int32_t>(
block, plane, start_x, start_y, tx_size, &tx_type);
} else // NOLINT
#endif
{
non_zero_coeff_count = ReadTransformCoefficients<int16_t>(
block, plane, start_x, start_y, tx_size, &tx_type);
}
if (non_zero_coeff_count < 0) return false;
if (mode == kProcessingModeParseAndDecode) {
ReconstructBlock(block, plane, start_x, start_y, tx_size, tx_type,
non_zero_coeff_count);
} else {
assert(mode == kProcessingModeParseOnly);
residual_buffer_threaded_[sb_row_index][sb_column_index]
->transform_parameters()
->Push(non_zero_coeff_count, tx_type);
}
}
}
if (do_decode) {
bool* block_decoded =
&block.scratch_buffer
->block_decoded[plane][(sub_block_row4x4 >> subsampling_y) + 1]
[(sub_block_column4x4 >> subsampling_x) + 1];
SetBlockValues<bool>(step_y, step_x, true, block_decoded,
TileScratchBuffer::kBlockDecodedStride);
}
return true;
}
bool Tile::TransformTree(const Block& block, int start_x, int start_y,
BlockSize plane_size, ProcessingMode mode) {
assert(plane_size <= kBlock64x64);
// Branching factor is 4; Maximum Depth is 4; So the maximum stack size
// required is (4 - 1) * 4 + 1 = 13.
Stack<TransformTreeNode, 13> stack;
// It is okay to cast BlockSize to TransformSize here since the enum are
// equivalent for all BlockSize values <= kBlock64x64.
stack.Push(TransformTreeNode(start_x, start_y,
static_cast<TransformSize>(plane_size)));
do {
TransformTreeNode node = stack.Pop();
const int row = DivideBy4(node.y);
const int column = DivideBy4(node.x);
if (row >= frame_header_.rows4x4 || column >= frame_header_.columns4x4) {
continue;
}
const TransformSize inter_tx_size = inter_transform_sizes_[row][column];
const int width = kTransformWidth[node.tx_size];
const int height = kTransformHeight[node.tx_size];
if (width <= kTransformWidth[inter_tx_size] &&
height <= kTransformHeight[inter_tx_size]) {
if (!TransformBlock(block, kPlaneY, node.x, node.y, node.tx_size, 0, 0,
mode)) {
return false;
}
continue;
}
// The split transform size look up gives the right transform size that we
// should push in the stack.
// if (width > height) => transform size whose width is half.
// if (width < height) => transform size whose height is half.
// if (width == height) => transform size whose width and height are half.
const TransformSize split_tx_size = kSplitTransformSize[node.tx_size];
const int half_width = DivideBy2(width);
if (width > height) {
stack.Push(TransformTreeNode(node.x + half_width, node.y, split_tx_size));
stack.Push(TransformTreeNode(node.x, node.y, split_tx_size));
continue;
}
const int half_height = DivideBy2(height);
if (width < height) {
stack.Push(
TransformTreeNode(node.x, node.y + half_height, split_tx_size));
stack.Push(TransformTreeNode(node.x, node.y, split_tx_size));
continue;
}
stack.Push(TransformTreeNode(node.x + half_width, node.y + half_height,
split_tx_size));
stack.Push(TransformTreeNode(node.x, node.y + half_height, split_tx_size));
stack.Push(TransformTreeNode(node.x + half_width, node.y, split_tx_size));
stack.Push(TransformTreeNode(node.x, node.y, split_tx_size));
} while (!stack.Empty());
return true;
}
void Tile::ReconstructBlock(const Block& block, Plane plane, int start_x,
int start_y, TransformSize tx_size,
TransformType tx_type, int non_zero_coeff_count) {
// Reconstruction process. Steps 2 and 3 of Section 7.12.3 in the spec.
assert(non_zero_coeff_count >= 0);
if (non_zero_coeff_count == 0) return;
#if LIBGAV1_MAX_BITDEPTH >= 10
if (sequence_header_.color_config.bitdepth > 8) {
Array2DView<uint16_t> buffer(
buffer_[plane].rows(), buffer_[plane].columns() / sizeof(uint16_t),
reinterpret_cast<uint16_t*>(&buffer_[plane][0][0]));
Reconstruct(dsp_, tx_type, tx_size,
frame_header_.segmentation.lossless[block.bp->segment_id],
reinterpret_cast<int32_t*>(*block.residual), start_x, start_y,
&buffer, non_zero_coeff_count);
} else // NOLINT
#endif
{
Reconstruct(dsp_, tx_type, tx_size,
frame_header_.segmentation.lossless[block.bp->segment_id],
reinterpret_cast<int16_t*>(*block.residual), start_x, start_y,
&buffer_[plane], non_zero_coeff_count);
}
if (split_parse_and_decode_) {
*block.residual +=
kTransformWidth[tx_size] * kTransformHeight[tx_size] * residual_size_;
}
}
bool Tile::Residual(const Block& block, ProcessingMode mode) {
const int width_chunks = std::max(1, block.width >> 6);
const int height_chunks = std::max(1, block.height >> 6);
const BlockSize size_chunk4x4 =
(width_chunks > 1 || height_chunks > 1) ? kBlock64x64 : block.size;
const BlockParameters& bp = *block.bp;
for (int chunk_y = 0; chunk_y < height_chunks; ++chunk_y) {
for (int chunk_x = 0; chunk_x < width_chunks; ++chunk_x) {
const int num_planes = block.HasChroma() ? PlaneCount() : 1;
int plane = kPlaneY;
do {
const int subsampling_x = subsampling_x_[plane];
const int subsampling_y = subsampling_y_[plane];
// For Y Plane, when lossless is true |bp.transform_size| is always
// kTransformSize4x4. So we can simply use |bp.transform_size| here as
// the Y plane's transform size (part of Section 5.11.37 in the spec).
const TransformSize tx_size =
(plane == kPlaneY) ? bp.transform_size : bp.uv_transform_size;
const BlockSize plane_size =
kPlaneResidualSize[size_chunk4x4][subsampling_x][subsampling_y];
assert(plane_size != kBlockInvalid);
if (bp.is_inter &&
!frame_header_.segmentation.lossless[bp.segment_id] &&
plane == kPlaneY) {
const int row_chunk4x4 = block.row4x4 + MultiplyBy16(chunk_y);
const int column_chunk4x4 = block.column4x4 + MultiplyBy16(chunk_x);
const int base_x = MultiplyBy4(column_chunk4x4 >> subsampling_x);
const int base_y = MultiplyBy4(row_chunk4x4 >> subsampling_y);
if (!TransformTree(block, base_x, base_y, plane_size, mode)) {
return false;
}
} else {
const int base_x = MultiplyBy4(block.column4x4 >> subsampling_x);
const int base_y = MultiplyBy4(block.row4x4 >> subsampling_y);
const int step_x = kTransformWidth4x4[tx_size];
const int step_y = kTransformHeight4x4[tx_size];
const int num4x4_wide = kNum4x4BlocksWide[plane_size];
const int num4x4_high = kNum4x4BlocksHigh[plane_size];
for (int y = 0; y < num4x4_high; y += step_y) {
for (int x = 0; x < num4x4_wide; x += step_x) {
if (!TransformBlock(
block, static_cast<Plane>(plane), base_x, base_y, tx_size,
x + (MultiplyBy16(chunk_x) >> subsampling_x),
y + (MultiplyBy16(chunk_y) >> subsampling_y), mode)) {
return false;
}
}
}
}
} while (++plane < num_planes);
}
}
return true;
}
// The purpose of this function is to limit the maximum size of motion vectors
// and also, if use_intra_block_copy is true, to additionally constrain the
// motion vector so that the data is fetched from parts of the tile that have
// already been decoded and are not too close to the current block (in order to
// make a pipelined decoder implementation feasible).
bool Tile::IsMvValid(const Block& block, bool is_compound) const {
const BlockParameters& bp = *block.bp;
for (int i = 0; i < 1 + static_cast<int>(is_compound); ++i) {
for (int mv_component : bp.mv.mv[i].mv) {
if (std::abs(mv_component) >= (1 << 14)) {
return false;
}
}
}
if (!block.bp->prediction_parameters->use_intra_block_copy) {
return true;
}
if ((bp.mv.mv[0].mv32 & 0x00070007) != 0) {
return false;
}
const int delta_row = bp.mv.mv[0].mv[0] >> 3;
const int delta_column = bp.mv.mv[0].mv[1] >> 3;
int src_top_edge = MultiplyBy4(block.row4x4) + delta_row;
int src_left_edge = MultiplyBy4(block.column4x4) + delta_column;
const int src_bottom_edge = src_top_edge + block.height;
const int src_right_edge = src_left_edge + block.width;
if (block.HasChroma()) {
if (block.width < 8 && subsampling_x_[kPlaneU] != 0) {
src_left_edge -= 4;
}
if (block.height < 8 && subsampling_y_[kPlaneU] != 0) {
src_top_edge -= 4;
}
}
if (src_top_edge < MultiplyBy4(row4x4_start_) ||
src_left_edge < MultiplyBy4(column4x4_start_) ||
src_bottom_edge > MultiplyBy4(row4x4_end_) ||
src_right_edge > MultiplyBy4(column4x4_end_)) {
return false;
}
// sb_height_log2 = use_128x128_superblock ? log2(128) : log2(64)
const int sb_height_log2 =
6 + static_cast<int>(sequence_header_.use_128x128_superblock);
const int active_sb_row = MultiplyBy4(block.row4x4) >> sb_height_log2;
const int active_64x64_block_column = MultiplyBy4(block.column4x4) >> 6;
const int src_sb_row = (src_bottom_edge - 1) >> sb_height_log2;
const int src_64x64_block_column = (src_right_edge - 1) >> 6;
const int total_64x64_blocks_per_row =
((column4x4_end_ - column4x4_start_ - 1) >> 4) + 1;
const int active_64x64_block =
active_sb_row * total_64x64_blocks_per_row + active_64x64_block_column;
const int src_64x64_block =
src_sb_row * total_64x64_blocks_per_row + src_64x64_block_column;
if (src_64x64_block >= active_64x64_block - kIntraBlockCopyDelay64x64Blocks) {
return false;
}
// Wavefront constraint: use only top left area of frame for reference.
if (src_sb_row > active_sb_row) return false;
const int gradient =
1 + kIntraBlockCopyDelay64x64Blocks +
static_cast<int>(sequence_header_.use_128x128_superblock);
const int wavefront_offset = gradient * (active_sb_row - src_sb_row);
return src_64x64_block_column < active_64x64_block_column -
kIntraBlockCopyDelay64x64Blocks +
wavefront_offset;
}
bool Tile::AssignInterMv(const Block& block, bool is_compound) {
int min[2];
int max[2];
GetClampParameters(block, min, max);
BlockParameters& bp = *block.bp;
const PredictionParameters& prediction_parameters = *bp.prediction_parameters;
if (is_compound) {
for (int i = 0; i < 2; ++i) {
const PredictionMode mode = GetSinglePredictionMode(i, bp.y_mode);
MotionVector predicted_mv;
if (mode == kPredictionModeGlobalMv) {
predicted_mv = prediction_parameters.global_mv[i];
} else {
const int ref_mv_index = (mode == kPredictionModeNearestMv ||
(mode == kPredictionModeNewMv &&
prediction_parameters.ref_mv_count <= 1))
? 0
: prediction_parameters.ref_mv_index;
predicted_mv = prediction_parameters.reference_mv(ref_mv_index, i);
if (ref_mv_index < prediction_parameters.ref_mv_count) {
predicted_mv.mv[0] = Clip3(predicted_mv.mv[0], min[0], max[0]);
predicted_mv.mv[1] = Clip3(predicted_mv.mv[1], min[1], max[1]);
}
}
if (mode == kPredictionModeNewMv) {
ReadMotionVector(block, i);
bp.mv.mv[i].mv[0] += predicted_mv.mv[0];
bp.mv.mv[i].mv[1] += predicted_mv.mv[1];
} else {
bp.mv.mv[i] = predicted_mv;
}
}
} else {
const PredictionMode mode = GetSinglePredictionMode(0, bp.y_mode);
MotionVector predicted_mv;
if (mode == kPredictionModeGlobalMv) {
predicted_mv = prediction_parameters.global_mv[0];
} else {
const int ref_mv_index = (mode == kPredictionModeNearestMv ||
(mode == kPredictionModeNewMv &&
prediction_parameters.ref_mv_count <= 1))
? 0
: prediction_parameters.ref_mv_index;
predicted_mv = prediction_parameters.reference_mv(ref_mv_index);
if (ref_mv_index < prediction_parameters.ref_mv_count) {
predicted_mv.mv[0] = Clip3(predicted_mv.mv[0], min[0], max[0]);
predicted_mv.mv[1] = Clip3(predicted_mv.mv[1], min[1], max[1]);
}
}
if (mode == kPredictionModeNewMv) {
ReadMotionVector(block, 0);
bp.mv.mv[0].mv[0] += predicted_mv.mv[0];
bp.mv.mv[0].mv[1] += predicted_mv.mv[1];
} else {
bp.mv.mv[0] = predicted_mv;
}
}
return IsMvValid(block, is_compound);
}
bool Tile::AssignIntraMv(const Block& block) {
// TODO(linfengz): Check if the clamping process is necessary.
int min[2];
int max[2];
GetClampParameters(block, min, max);
BlockParameters& bp = *block.bp;
const PredictionParameters& prediction_parameters = *bp.prediction_parameters;
const MotionVector& ref_mv_0 = prediction_parameters.reference_mv(0);
ReadMotionVector(block, 0);
if (ref_mv_0.mv32 == 0) {
const MotionVector& ref_mv_1 = prediction_parameters.reference_mv(1);
if (ref_mv_1.mv32 == 0) {
const int super_block_size4x4 = kNum4x4BlocksHigh[SuperBlockSize()];
if (block.row4x4 - super_block_size4x4 < row4x4_start_) {
bp.mv.mv[0].mv[1] -= MultiplyBy32(super_block_size4x4);
bp.mv.mv[0].mv[1] -= MultiplyBy8(kIntraBlockCopyDelayPixels);
} else {
bp.mv.mv[0].mv[0] -= MultiplyBy32(super_block_size4x4);
}
} else {
bp.mv.mv[0].mv[0] += Clip3(ref_mv_1.mv[0], min[0], max[0]);
bp.mv.mv[0].mv[1] += Clip3(ref_mv_1.mv[1], min[0], max[0]);
}
} else {
bp.mv.mv[0].mv[0] += Clip3(ref_mv_0.mv[0], min[0], max[0]);
bp.mv.mv[0].mv[1] += Clip3(ref_mv_0.mv[1], min[1], max[1]);
}
return IsMvValid(block, /*is_compound=*/false);
}
void Tile::ResetEntropyContext(const Block& block) {
const int num_planes = block.HasChroma() ? PlaneCount() : 1;
int plane = kPlaneY;
do {
const int subsampling_x = subsampling_x_[plane];
const int start_x = block.column4x4 >> subsampling_x;
const int end_x =
std::min((block.column4x4 + block.width4x4) >> subsampling_x,
frame_header_.columns4x4);
memset(&coefficient_levels_[kEntropyContextTop][plane][start_x], 0,
end_x - start_x);
memset(&dc_categories_[kEntropyContextTop][plane][start_x], 0,
end_x - start_x);
const int subsampling_y = subsampling_y_[plane];
const int start_y = block.row4x4 >> subsampling_y;
const int end_y =
std::min((block.row4x4 + block.height4x4) >> subsampling_y,
frame_header_.rows4x4);
memset(&coefficient_levels_[kEntropyContextLeft][plane][start_y], 0,
end_y - start_y);
memset(&dc_categories_[kEntropyContextLeft][plane][start_y], 0,
end_y - start_y);
} while (++plane < num_planes);
}
bool Tile::ComputePrediction(const Block& block) {
const BlockParameters& bp = *block.bp;
if (!bp.is_inter) return true;
const int mask =
(1 << (4 + static_cast<int>(sequence_header_.use_128x128_superblock))) -
1;
const int sub_block_row4x4 = block.row4x4 & mask;
const int sub_block_column4x4 = block.column4x4 & mask;
const int plane_count = block.HasChroma() ? PlaneCount() : 1;
// Returns true if this block applies local warping. The state is determined
// in the Y plane and carried for use in the U/V planes.
// But the U/V planes will not apply warping when the block size is smaller
// than 8x8, even if this variable is true.
bool is_local_valid = false;
// Local warping parameters, similar usage as is_local_valid.
GlobalMotion local_warp_params;
int plane = kPlaneY;
do {
const int8_t subsampling_x = subsampling_x_[plane];
const int8_t subsampling_y = subsampling_y_[plane];
const BlockSize plane_size = block.residual_size[plane];
const int block_width4x4 = kNum4x4BlocksWide[plane_size];
const int block_height4x4 = kNum4x4BlocksHigh[plane_size];
const int block_width = MultiplyBy4(block_width4x4);
const int block_height = MultiplyBy4(block_height4x4);
const int base_x = MultiplyBy4(block.column4x4 >> subsampling_x);
const int base_y = MultiplyBy4(block.row4x4 >> subsampling_y);
if (bp.reference_frame[1] == kReferenceFrameIntra) {
const int tr_row4x4 = sub_block_row4x4 >> subsampling_y;
const int tr_column4x4 =
(sub_block_column4x4 >> subsampling_x) + block_width4x4 + 1;
const int bl_row4x4 =
(sub_block_row4x4 >> subsampling_y) + block_height4x4;
const int bl_column4x4 = (sub_block_column4x4 >> subsampling_x) + 1;
const TransformSize tx_size =
k4x4SizeToTransformSize[k4x4WidthLog2[plane_size]]
[k4x4HeightLog2[plane_size]];
const bool has_left = block.left_available[plane];
const bool has_top = block.top_available[plane];
CALL_BITDEPTH_FUNCTION(
IntraPrediction, block, static_cast<Plane>(plane), base_x, base_y,
has_left, has_top,
block.scratch_buffer->block_decoded[plane][tr_row4x4][tr_column4x4],
block.scratch_buffer->block_decoded[plane][bl_row4x4][bl_column4x4],
kInterIntraToIntraMode[block.bp->prediction_parameters
->inter_intra_mode],
tx_size);
}
int candidate_row = block.row4x4;
int candidate_column = block.column4x4;
bool some_use_intra = bp.reference_frame[0] == kReferenceFrameIntra;
if (!some_use_intra && plane != 0) {
candidate_row = (candidate_row >> subsampling_y) << subsampling_y;
candidate_column = (candidate_column >> subsampling_x) << subsampling_x;
if (candidate_row != block.row4x4) {
// Top block.
const BlockParameters& bp_top =
*block_parameters_holder_.Find(candidate_row, block.column4x4);
some_use_intra = bp_top.reference_frame[0] == kReferenceFrameIntra;
if (!some_use_intra && candidate_column != block.column4x4) {
// Top-left block.
const BlockParameters& bp_top_left =
*block_parameters_holder_.Find(candidate_row, candidate_column);
some_use_intra =
bp_top_left.reference_frame[0] == kReferenceFrameIntra;
}
}
if (!some_use_intra && candidate_column != block.column4x4) {
// Left block.
const BlockParameters& bp_left =
*block_parameters_holder_.Find(block.row4x4, candidate_column);
some_use_intra = bp_left.reference_frame[0] == kReferenceFrameIntra;
}
}
int prediction_width;
int prediction_height;
if (some_use_intra) {
candidate_row = block.row4x4;
candidate_column = block.column4x4;
prediction_width = block_width;
prediction_height = block_height;
} else {
prediction_width = block.width >> subsampling_x;
prediction_height = block.height >> subsampling_y;
}
int r = 0;
int y = 0;
do {
int c = 0;
int x = 0;
do {
if (!InterPrediction(block, static_cast<Plane>(plane), base_x + x,
base_y + y, prediction_width, prediction_height,
candidate_row + r, candidate_column + c,
&is_local_valid, &local_warp_params)) {
return false;
}
++c;
x += prediction_width;
} while (x < block_width);
++r;
y += prediction_height;
} while (y < block_height);
} while (++plane < plane_count);
return true;
}
#undef CALL_BITDEPTH_FUNCTION
void Tile::PopulateDeblockFilterLevel(const Block& block) {
if (!post_filter_.DoDeblock()) return;
BlockParameters& bp = *block.bp;
const int mode_id =
static_cast<int>(kPredictionModeDeltasMask.Contains(bp.y_mode));
for (int i = 0; i < kFrameLfCount; ++i) {
if (delta_lf_all_zero_) {
bp.deblock_filter_level[i] = post_filter_.GetZeroDeltaDeblockFilterLevel(
bp.segment_id, i, bp.reference_frame[0], mode_id);
} else {
bp.deblock_filter_level[i] =
deblock_filter_levels_[bp.segment_id][i][bp.reference_frame[0]]
[mode_id];
}
}
}
bool Tile::ProcessBlock(int row4x4, int column4x4, BlockSize block_size,
ParameterTree* const tree,
TileScratchBuffer* const scratch_buffer,
ResidualPtr* residual) {
// Do not process the block if the starting point is beyond the visible frame.
// This is equivalent to the has_row/has_column check in the
// decode_partition() section of the spec when partition equals
// kPartitionHorizontal or kPartitionVertical.
if (row4x4 >= frame_header_.rows4x4 ||
column4x4 >= frame_header_.columns4x4) {
return true;
}
BlockParameters& bp = *tree->parameters();
block_parameters_holder_.FillCache(row4x4, column4x4, block_size, &bp);
Block block(*this, block_size, row4x4, column4x4, scratch_buffer, residual);
bp.size = block_size;
bp.prediction_parameters =
split_parse_and_decode_ ? std::unique_ptr<PredictionParameters>(
new (std::nothrow) PredictionParameters())
: std::move(prediction_parameters_);
if (bp.prediction_parameters == nullptr) return false;
if (!DecodeModeInfo(block)) return false;
bp.is_global_mv_block = (bp.y_mode == kPredictionModeGlobalMv ||
bp.y_mode == kPredictionModeGlobalGlobalMv) &&
!IsBlockDimension4(bp.size);
PopulateDeblockFilterLevel(block);
if (!ReadPaletteTokens(block)) return false;
DecodeTransformSize(block);
// Part of Section 5.11.37 in the spec (implemented as a simple lookup).
bp.uv_transform_size = frame_header_.segmentation.lossless[bp.segment_id]
? kTransformSize4x4
: kUVTransformSize[block.residual_size[kPlaneU]];
if (bp.skip) ResetEntropyContext(block);
if (split_parse_and_decode_) {
if (!Residual(block, kProcessingModeParseOnly)) return false;
} else {
if (!ComputePrediction(block) ||
!Residual(block, kProcessingModeParseAndDecode)) {
return false;
}
}
// If frame_header_.segmentation.enabled is false, bp.segment_id is 0 for all
// blocks. We don't need to call save bp.segment_id in the current frame
// because the current frame's segmentation map will be cleared to all 0s.
//
// If frame_header_.segmentation.enabled is true and
// frame_header_.segmentation.update_map is false, we will copy the previous
// frame's segmentation map to the current frame. So we don't need to call
// save bp.segment_id in the current frame.
if (frame_header_.segmentation.enabled &&
frame_header_.segmentation.update_map) {
const int x_limit = std::min(frame_header_.columns4x4 - column4x4,
static_cast<int>(block.width4x4));
const int y_limit = std::min(frame_header_.rows4x4 - row4x4,
static_cast<int>(block.height4x4));
current_frame_.segmentation_map()->FillBlock(row4x4, column4x4, x_limit,
y_limit, bp.segment_id);
}
StoreMotionFieldMvsIntoCurrentFrame(block);
if (!split_parse_and_decode_) {
prediction_parameters_ = std::move(bp.prediction_parameters);
}
return true;
}
bool Tile::DecodeBlock(ParameterTree* const tree,
TileScratchBuffer* const scratch_buffer,
ResidualPtr* residual) {
const int row4x4 = tree->row4x4();
const int column4x4 = tree->column4x4();
if (row4x4 >= frame_header_.rows4x4 ||
column4x4 >= frame_header_.columns4x4) {
return true;
}
const BlockSize block_size = tree->block_size();
Block block(*this, block_size, row4x4, column4x4, scratch_buffer, residual);
if (!ComputePrediction(block) ||
!Residual(block, kProcessingModeDecodeOnly)) {
return false;
}
block.bp->prediction_parameters.reset(nullptr);
return true;
}
bool Tile::ProcessPartition(int row4x4_start, int column4x4_start,
ParameterTree* const root,
TileScratchBuffer* const scratch_buffer,
ResidualPtr* residual) {
Stack<ParameterTree*, kDfsStackSize> stack;
// Set up the first iteration.
ParameterTree* node = root;
int row4x4 = row4x4_start;
int column4x4 = column4x4_start;
BlockSize block_size = SuperBlockSize();
// DFS loop. If it sees a terminal node (leaf node), ProcessBlock is invoked.
// Otherwise, the children are pushed into the stack for future processing.
do {
if (!stack.Empty()) {
// Set up subsequent iterations.
node = stack.Pop();
row4x4 = node->row4x4();
column4x4 = node->column4x4();
block_size = node->block_size();
}
if (row4x4 >= frame_header_.rows4x4 ||
column4x4 >= frame_header_.columns4x4) {
continue;
}
const int block_width4x4 = kNum4x4BlocksWide[block_size];
assert(block_width4x4 == kNum4x4BlocksHigh[block_size]);
const int half_block4x4 = block_width4x4 >> 1;
const bool has_rows = (row4x4 + half_block4x4) < frame_header_.rows4x4;
const bool has_columns =
(column4x4 + half_block4x4) < frame_header_.columns4x4;
Partition partition;
if (!ReadPartition(row4x4, column4x4, block_size, has_rows, has_columns,
&partition)) {
LIBGAV1_DLOG(ERROR, "Failed to read partition for row: %d column: %d",
row4x4, column4x4);
return false;
}
const BlockSize sub_size = kSubSize[partition][block_size];
// Section 6.10.4: It is a requirement of bitstream conformance that
// get_plane_residual_size( subSize, 1 ) is not equal to BLOCK_INVALID
// every time subSize is computed.
if (sub_size == kBlockInvalid ||
kPlaneResidualSize[sub_size]
[sequence_header_.color_config.subsampling_x]
[sequence_header_.color_config.subsampling_y] ==
kBlockInvalid) {
LIBGAV1_DLOG(
ERROR,
"Invalid sub-block/plane size for row: %d column: %d partition: "
"%d block_size: %d sub_size: %d subsampling_x/y: %d, %d",
row4x4, column4x4, partition, block_size, sub_size,
sequence_header_.color_config.subsampling_x,
sequence_header_.color_config.subsampling_y);
return false;
}
if (!node->SetPartitionType(partition)) {
LIBGAV1_DLOG(ERROR, "node->SetPartitionType() failed.");
return false;
}
switch (partition) {
case kPartitionNone:
if (!ProcessBlock(row4x4, column4x4, sub_size, node, scratch_buffer,
residual)) {
return false;
}
break;
case kPartitionSplit:
// The children must be added in reverse order since a stack is being
// used.
for (int i = 3; i >= 0; --i) {
ParameterTree* const child = node->children(i);
assert(child != nullptr);
stack.Push(child);
}
break;
case kPartitionHorizontal:
case kPartitionVertical:
case kPartitionHorizontalWithTopSplit:
case kPartitionHorizontalWithBottomSplit:
case kPartitionVerticalWithLeftSplit:
case kPartitionVerticalWithRightSplit:
case kPartitionHorizontal4:
case kPartitionVertical4:
for (int i = 0; i < 4; ++i) {
ParameterTree* const child = node->children(i);
// Once a null child is seen, all the subsequent children will also be
// null.
if (child == nullptr) break;
if (!ProcessBlock(child->row4x4(), child->column4x4(),
child->block_size(), child, scratch_buffer,
residual)) {
return false;
}
}
break;
}
} while (!stack.Empty());
return true;
}
void Tile::ResetLoopRestorationParams() {
for (int plane = kPlaneY; plane < kMaxPlanes; ++plane) {
for (int i = WienerInfo::kVertical; i <= WienerInfo::kHorizontal; ++i) {
reference_unit_info_[plane].sgr_proj_info.multiplier[i] =
kSgrProjDefaultMultiplier[i];
for (int j = 0; j < kNumWienerCoefficients; ++j) {
reference_unit_info_[plane].wiener_info.filter[i][j] =
kWienerDefaultFilter[j];
}
}
}
}
void Tile::ResetCdef(const int row4x4, const int column4x4) {
if (!sequence_header_.enable_cdef) return;
const int row = DivideBy16(row4x4);
const int column = DivideBy16(column4x4);
cdef_index_[row][column] = -1;
if (sequence_header_.use_128x128_superblock) {
const int cdef_size4x4 = kNum4x4BlocksWide[kBlock64x64];
const int border_row = DivideBy16(row4x4 + cdef_size4x4);
const int border_column = DivideBy16(column4x4 + cdef_size4x4);
cdef_index_[row][border_column] = -1;
cdef_index_[border_row][column] = -1;
cdef_index_[border_row][border_column] = -1;
}
}
void Tile::ClearBlockDecoded(TileScratchBuffer* const scratch_buffer,
int row4x4, int column4x4) {
// Set everything to false.
memset(scratch_buffer->block_decoded, 0,
sizeof(scratch_buffer->block_decoded));
// Set specific edge cases to true.
const int sb_size4 = sequence_header_.use_128x128_superblock ? 32 : 16;
for (int plane = kPlaneY; plane < PlaneCount(); ++plane) {
const int subsampling_x = subsampling_x_[plane];
const int subsampling_y = subsampling_y_[plane];
const int sb_width4 = (column4x4_end_ - column4x4) >> subsampling_x;
const int sb_height4 = (row4x4_end_ - row4x4) >> subsampling_y;
// The memset is equivalent to the following lines in the spec:
// for ( x = -1; x <= ( sbSize4 >> subX ); x++ ) {
// if ( y < 0 && x < sbWidth4 ) {
// BlockDecoded[plane][y][x] = 1
// }
// }
const int num_elements =
std::min((sb_size4 >> subsampling_x_[plane]) + 1, sb_width4) + 1;
memset(&scratch_buffer->block_decoded[plane][0][0], 1, num_elements);
// The for loop is equivalent to the following lines in the spec:
// for ( y = -1; y <= ( sbSize4 >> subY ); y++ )
// if ( x < 0 && y < sbHeight4 )
// BlockDecoded[plane][y][x] = 1
// }
// }
// BlockDecoded[plane][sbSize4 >> subY][-1] = 0
for (int y = -1; y < std::min((sb_size4 >> subsampling_y), sb_height4);
++y) {
scratch_buffer->block_decoded[plane][y + 1][0] = true;
}
}
}
bool Tile::ProcessSuperBlock(int row4x4, int column4x4, int block_width4x4,
TileScratchBuffer* const scratch_buffer,
ProcessingMode mode) {
const bool parsing =
mode == kProcessingModeParseOnly || mode == kProcessingModeParseAndDecode;
const bool decoding = mode == kProcessingModeDecodeOnly ||
mode == kProcessingModeParseAndDecode;
if (parsing) {
read_deltas_ = frame_header_.delta_q.present;
ResetCdef(row4x4, column4x4);
}
if (decoding) {
ClearBlockDecoded(scratch_buffer, row4x4, column4x4);
}
const BlockSize block_size = SuperBlockSize();
if (parsing) {
ReadLoopRestorationCoefficients(row4x4, column4x4, block_size);
}
const int row = row4x4 / block_width4x4;
const int column = column4x4 / block_width4x4;
if (parsing && decoding) {
uint8_t* residual_buffer = residual_buffer_.get();
if (!ProcessPartition(row4x4, column4x4,
block_parameters_holder_.Tree(row, column),
scratch_buffer, &residual_buffer)) {
LIBGAV1_DLOG(ERROR, "Error decoding partition row: %d column: %d", row4x4,
column4x4);
return false;
}
return true;
}
const int sb_row_index = SuperBlockRowIndex(row4x4);
const int sb_column_index = SuperBlockColumnIndex(column4x4);
if (parsing) {
residual_buffer_threaded_[sb_row_index][sb_column_index] =
residual_buffer_pool_->Get();
if (residual_buffer_threaded_[sb_row_index][sb_column_index] == nullptr) {
LIBGAV1_DLOG(ERROR, "Failed to get residual buffer.");
return false;
}
uint8_t* residual_buffer =
residual_buffer_threaded_[sb_row_index][sb_column_index]->buffer();
if (!ProcessPartition(row4x4, column4x4,
block_parameters_holder_.Tree(row, column),
scratch_buffer, &residual_buffer)) {
LIBGAV1_DLOG(ERROR, "Error parsing partition row: %d column: %d", row4x4,
column4x4);
return false;
}
} else {
uint8_t* residual_buffer =
residual_buffer_threaded_[sb_row_index][sb_column_index]->buffer();
if (!DecodeSuperBlock(block_parameters_holder_.Tree(row, column),
scratch_buffer, &residual_buffer)) {
LIBGAV1_DLOG(ERROR, "Error decoding superblock row: %d column: %d",
row4x4, column4x4);
return false;
}
residual_buffer_pool_->Release(
std::move(residual_buffer_threaded_[sb_row_index][sb_column_index]));
}
return true;
}
bool Tile::DecodeSuperBlock(ParameterTree* const tree,
TileScratchBuffer* const scratch_buffer,
ResidualPtr* residual) {
Stack<ParameterTree*, kDfsStackSize> stack;
stack.Push(tree);
do {
ParameterTree* const node = stack.Pop();
if (node->partition() != kPartitionNone) {
for (int i = 3; i >= 0; --i) {
if (node->children(i) == nullptr) continue;
stack.Push(node->children(i));
}
continue;
}
if (!DecodeBlock(node, scratch_buffer, residual)) {
LIBGAV1_DLOG(ERROR, "Error decoding block row: %d column: %d",
node->row4x4(), node->column4x4());
return false;
}
} while (!stack.Empty());
return true;
}
void Tile::ReadLoopRestorationCoefficients(int row4x4, int column4x4,
BlockSize block_size) {
if (frame_header_.allow_intrabc) return;
LoopRestorationInfo* const restoration_info = post_filter_.restoration_info();
const bool is_superres_scaled =
frame_header_.width != frame_header_.upscaled_width;
for (int plane = kPlaneY; plane < PlaneCount(); ++plane) {
LoopRestorationUnitInfo unit_info;
if (restoration_info->PopulateUnitInfoForSuperBlock(
static_cast<Plane>(plane), block_size, is_superres_scaled,
frame_header_.superres_scale_denominator, row4x4, column4x4,
&unit_info)) {
for (int unit_row = unit_info.row_start; unit_row < unit_info.row_end;
++unit_row) {
for (int unit_column = unit_info.column_start;
unit_column < unit_info.column_end; ++unit_column) {
const int unit_id = unit_row * restoration_info->num_horizontal_units(
static_cast<Plane>(plane)) +
unit_column;
restoration_info->ReadUnitCoefficients(
&reader_, &symbol_decoder_context_, static_cast<Plane>(plane),
unit_id, &reference_unit_info_);
}
}
}
}
}
void Tile::StoreMotionFieldMvsIntoCurrentFrame(const Block& block) {
if (frame_header_.refresh_frame_flags == 0 ||
IsIntraFrame(frame_header_.frame_type)) {
return;
}
// Iterate over odd rows/columns beginning at the first odd row/column for the
// block. It is done this way because motion field mvs are only needed at a
// 8x8 granularity.
const int row_start4x4 = block.row4x4 | 1;
const int row_limit4x4 =
std::min(block.row4x4 + block.height4x4, frame_header_.rows4x4);
if (row_start4x4 >= row_limit4x4) return;
const int column_start4x4 = block.column4x4 | 1;
const int column_limit4x4 =
std::min(block.column4x4 + block.width4x4, frame_header_.columns4x4);
if (column_start4x4 >= column_limit4x4) return;
// The largest reference MV component that can be saved.
constexpr int kRefMvsLimit = (1 << 12) - 1;
const BlockParameters& bp = *block.bp;
ReferenceInfo* reference_info = current_frame_.reference_info();
for (int i = 1; i >= 0; --i) {
const ReferenceFrameType reference_frame_to_store = bp.reference_frame[i];
// Must make a local copy so that StoreMotionFieldMvs() knows there is no
// overlap between load and store.
const MotionVector mv_to_store = bp.mv.mv[i];
const int mv_row = std::abs(mv_to_store.mv[MotionVector::kRow]);
const int mv_column = std::abs(mv_to_store.mv[MotionVector::kColumn]);
if (reference_frame_to_store > kReferenceFrameIntra &&
// kRefMvsLimit equals 0x07FF, so we can first bitwise OR the two
// absolute values and then compare with kRefMvsLimit to save a branch.
// The next line is equivalent to:
// mv_row <= kRefMvsLimit && mv_column <= kRefMvsLimit
(mv_row | mv_column) <= kRefMvsLimit &&
reference_info->relative_distance_from[reference_frame_to_store] < 0) {
const int row_start8x8 = DivideBy2(row_start4x4);
const int row_limit8x8 = DivideBy2(row_limit4x4);
const int column_start8x8 = DivideBy2(column_start4x4);
const int column_limit8x8 = DivideBy2(column_limit4x4);
const int rows = row_limit8x8 - row_start8x8;
const int columns = column_limit8x8 - column_start8x8;
const ptrdiff_t stride = DivideBy2(current_frame_.columns4x4());
ReferenceFrameType* const reference_frame_row_start =
&reference_info
->motion_field_reference_frame[row_start8x8][column_start8x8];
MotionVector* const mv =
&reference_info->motion_field_mv[row_start8x8][column_start8x8];
// Specialize columns cases 1, 2, 4, 8 and 16. This makes memset() inlined
// and simplifies std::fill() for these cases.
if (columns <= 1) {
// Don't change the above condition to (columns == 1).
// Condition (columns <= 1) may help the compiler simplify the inlining
// of the general case of StoreMotionFieldMvs() by eliminating the
// (columns == 0) case.
assert(columns == 1);
StoreMotionFieldMvs(reference_frame_to_store, mv_to_store, stride, rows,
1, reference_frame_row_start, mv);
} else if (columns == 2) {
StoreMotionFieldMvs(reference_frame_to_store, mv_to_store, stride, rows,
2, reference_frame_row_start, mv);
} else if (columns == 4) {
StoreMotionFieldMvs(reference_frame_to_store, mv_to_store, stride, rows,
4, reference_frame_row_start, mv);
} else if (columns == 8) {
StoreMotionFieldMvs(reference_frame_to_store, mv_to_store, stride, rows,
8, reference_frame_row_start, mv);
} else if (columns == 16) {
StoreMotionFieldMvs(reference_frame_to_store, mv_to_store, stride, rows,
16, reference_frame_row_start, mv);
} else if (columns < 16) {
// This always true condition (columns < 16) may help the compiler
// simplify the inlining of the following function.
// This general case is rare and usually only happens to the blocks
// which contain the right boundary of the frame.
StoreMotionFieldMvs(reference_frame_to_store, mv_to_store, stride, rows,
columns, reference_frame_row_start, mv);
} else {
assert(false);
}
return;
}
}
}
} // namespace libgav1
|