1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
// Copyright 2021 The libgav1 Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/utils/array_2d.h"
#include <cstdint>
#include <memory>
#include <new>
#include <type_traits>
#include "gtest/gtest.h"
#include "src/utils/compiler_attributes.h"
#if LIBGAV1_MSAN
#include <sanitizer/msan_interface.h>
#endif
namespace libgav1 {
namespace {
constexpr int kRows = 50;
constexpr int kColumns = 200;
TEST(Array2dViewTest, TestUint8) {
uint8_t data[kRows * kColumns] = {};
Array2DView<uint8_t> data2d(kRows, kColumns, data);
// Verify data.
data[kColumns] = 100;
data[kColumns + 1] = 101;
data[kColumns * 2 + 10] = 210;
data[kColumns * 2 + 40] = 240;
EXPECT_EQ(data2d[1][0], 100);
EXPECT_EQ(data2d[1][1], 101);
EXPECT_EQ(data2d[2][10], 210);
EXPECT_EQ(data2d[2][40], 240);
// Verify pointers.
EXPECT_EQ(data2d[10], data + 10 * kColumns);
}
TEST(Array2dViewTest, TestUint16) {
uint16_t data[kRows * kColumns] = {};
Array2DView<uint16_t> data2d(kRows, kColumns, data);
// Verify data.
data[kColumns] = 100;
data[kColumns + 1] = 101;
data[kColumns * 2 + 10] = 210;
data[kColumns * 2 + 40] = 240;
EXPECT_EQ(data2d[1][0], 100);
EXPECT_EQ(data2d[1][1], 101);
EXPECT_EQ(data2d[2][10], 210);
EXPECT_EQ(data2d[2][40], 240);
// Verify pointers.
EXPECT_EQ(data2d[10], data + 10 * kColumns);
}
TEST(Array2dViewTest, TestUint8Const) {
uint8_t data[kRows * kColumns] = {};
// Declared as const to provide a read-only view of |data|.
const Array2DView<uint8_t> data2d(kRows, kColumns, data);
// Verify data.
data[kColumns] = 100;
data[kColumns + 1] = 101;
data[kColumns * 2 + 10] = 210;
data[kColumns * 2 + 40] = 240;
EXPECT_EQ(data2d[1][0], 100);
EXPECT_EQ(data2d[1][1], 101);
EXPECT_EQ(data2d[2][10], 210);
EXPECT_EQ(data2d[2][40], 240);
// Verify pointers.
EXPECT_EQ(data2d[10], data + 10 * kColumns);
}
TEST(Array2dTest, TestUint8) {
Array2D<uint8_t> data2d;
ASSERT_TRUE(data2d.Reset(kRows, kColumns, true));
EXPECT_EQ(data2d.rows(), kRows);
EXPECT_EQ(data2d.columns(), kColumns);
// Verify pointers.
for (int i = 0; i < kRows; ++i) {
EXPECT_NE(data2d[i], nullptr);
}
// Verify data (must be zero initialized).
for (int i = 0; i < kRows; ++i) {
for (int j = 0; j < kColumns; ++j) {
EXPECT_EQ(data2d[i][j], 0) << "Mismatch in [" << i << "][" << j << "]";
}
}
// Reset to a 2d array of smaller size with zero_initialize == false.
data2d[0][0] = 10;
ASSERT_TRUE(data2d.Reset(kRows - 1, kColumns - 1, false));
EXPECT_EQ(data2d.rows(), kRows - 1);
EXPECT_EQ(data2d.columns(), kColumns - 1);
// Verify pointers.
for (int i = 0; i < kRows - 1; ++i) {
EXPECT_NE(data2d[i], nullptr);
}
// Verify data (must be zero except for 0,0 because it was zero initialized in
// the previous call to Reset).
for (int i = 0; i < kRows - 1; ++i) {
for (int j = 0; j < kColumns - 1; ++j) {
if (i == 0 && j == 0) {
EXPECT_EQ(data2d[i][j], 10) << "Mismatch in [" << i << "][" << j << "]";
} else {
EXPECT_EQ(data2d[i][j], 0) << "Mismatch in [" << i << "][" << j << "]";
}
}
}
// Reset to a 2d array of smaller size with zero_initialize == true.
ASSERT_TRUE(data2d.Reset(kRows - 2, kColumns - 2, true));
EXPECT_EQ(data2d.rows(), kRows - 2);
EXPECT_EQ(data2d.columns(), kColumns - 2);
// Verify pointers.
for (int i = 0; i < kRows - 2; ++i) {
EXPECT_NE(data2d[i], nullptr);
}
// Verify data (must be zero initialized).
for (int i = 0; i < kRows - 2; ++i) {
for (int j = 0; j < kColumns - 2; ++j) {
EXPECT_EQ(data2d[i][j], 0) << "Mismatch in [" << i << "][" << j << "]";
}
}
}
TEST(Array2dTest, TestUniquePtr1) {
// A simple class that sets an int value to 0 in the destructor.
class Cleaner {
public:
explicit Cleaner(int* value) : value_(value) {}
~Cleaner() { *value_ = 0; }
private:
int* value_;
};
int value = 100;
Array2D<std::unique_ptr<Cleaner>> data2d;
ASSERT_TRUE(data2d.Reset(4, 4, true));
data2d[0][0].reset(new (std::nothrow) Cleaner(&value));
EXPECT_EQ(value, 100);
// Reset to a smaller size. Depending on the implementation, the data_ buffer
// may or may not be reused.
ASSERT_TRUE(data2d.Reset(2, 2, true));
// Reset to a much larger size. The data_ buffer will be reallocated.
ASSERT_TRUE(data2d.Reset(32, 32, true));
// The destructors of all elements in the former data_ buffer should have
// been invoked.
EXPECT_EQ(value, 0);
}
TEST(Array2dTest, TestUniquePtr2) {
// A simple class that sets an int value to 0 in the destructor.
class Cleaner {
public:
explicit Cleaner(int* value) : value_(value) {}
~Cleaner() { *value_ = 0; }
private:
int* value_;
};
int value1 = 100;
int value2 = 200;
Array2D<std::unique_ptr<Cleaner>> data2d;
ASSERT_TRUE(data2d.Reset(4, 4, false));
data2d[0][0].reset(new (std::nothrow) Cleaner(&value1));
data2d[3][3].reset(new (std::nothrow) Cleaner(&value2));
EXPECT_EQ(value1, 100);
EXPECT_EQ(value2, 200);
// Reset to a smaller size. Whether or not the data_ buffer is reused, the
// destructors of all existing elements should be invoked.
ASSERT_TRUE(data2d.Reset(2, 2, false));
EXPECT_EQ(value1, 0);
EXPECT_EQ(value2, 0);
}
// Shows that std::is_standard_layout is not relevant to the default
// initialization vs. value initialization issue, but std::is_trivial is.
TEST(Array2dTest, TestStructInit) {
// Make one data member private so that this struct does not have a standard
// layout. This also makes the struct not a POD type.
struct Point {
int x;
int Y() const { return y; }
private:
int y;
};
EXPECT_TRUE(std::is_trivial<Point>::value);
EXPECT_FALSE(std::is_standard_layout<Point>::value);
// The Point structs in this array are default initialized.
Array2D<Point> data2d_default_init;
ASSERT_TRUE(data2d_default_init.Reset(kRows, kColumns, false));
// The Point structs in this array are value initialized (i.e., zero
// initialized).
Array2D<Point> data2d;
ASSERT_TRUE(data2d.Reset(kRows, kColumns, true));
#if LIBGAV1_MSAN
// Use MemorySanitizer to check Reset(rows, columns, false) does not
// initialize the memory while Reset(rows, columns, true) does.
//
// __msan_test_shadow(const void *x, uptr size) returns the offset of the
// first (at least partially) poisoned byte in the range, or -1 if the whole
// range is good.
for (int i = 0; i < kRows; ++i) {
EXPECT_EQ(__msan_test_shadow(data2d_default_init[i],
sizeof(data2d_default_init[0][0]) * kColumns),
0);
EXPECT_EQ(__msan_test_shadow(data2d[i], sizeof(data2d[0][0]) * kColumns),
-1);
for (int j = 0; j < kColumns; ++j) {
EXPECT_EQ(data2d[i][j].x, 0);
EXPECT_EQ(data2d[i][j].Y(), 0);
}
}
#endif
}
} // namespace
} // namespace libgav1
|