aboutsummaryrefslogtreecommitdiff
path: root/src/utils/common.h
blob: ae43c2b7d1108f1266e35376a0078000a004f8dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
/*
 * Copyright 2019 The libgav1 Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef LIBGAV1_SRC_UTILS_COMMON_H_
#define LIBGAV1_SRC_UTILS_COMMON_H_

#if defined(_MSC_VER)
#include <intrin.h>
#pragma intrinsic(_BitScanForward)
#pragma intrinsic(_BitScanReverse)
#if defined(_M_X64) || defined(_M_ARM) || defined(_M_ARM64)
#pragma intrinsic(_BitScanReverse64)
#define HAVE_BITSCANREVERSE64
#endif  // defined(_M_X64) || defined(_M_ARM) || defined(_M_ARM64)
#endif  // defined(_MSC_VER)

#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <type_traits>

#include "src/utils/bit_mask_set.h"
#include "src/utils/constants.h"
#include "src/utils/memory.h"
#include "src/utils/types.h"

namespace libgav1 {

// Aligns |value| to the desired |alignment|. |alignment| must be a power of 2.
template <typename T>
inline T Align(T value, T alignment) {
  assert(alignment != 0);
  const T alignment_mask = alignment - 1;
  return (value + alignment_mask) & ~alignment_mask;
}

// Aligns |addr| to the desired |alignment|. |alignment| must be a power of 2.
inline uint8_t* AlignAddr(uint8_t* const addr, const uintptr_t alignment) {
  const auto value = reinterpret_cast<uintptr_t>(addr);
  return reinterpret_cast<uint8_t*>(Align(value, alignment));
}

inline int32_t Clip3(int32_t value, int32_t low, int32_t high) {
  return value < low ? low : (value > high ? high : value);
}

template <typename Pixel>
void ExtendLine(void* const line_start, const int width, const int left,
                const int right) {
  auto* const start = static_cast<Pixel*>(line_start);
  const Pixel* src = start;
  Pixel* dst = start - left;
  // Copy to left and right borders.
  Memset(dst, src[0], left);
  Memset(dst + left + width, src[width - 1], right);
}

// The following 2 templates set a block of data with uncontiguous memory to
// |value|. The compilers usually generate several branches to handle different
// cases of |columns| when inlining memset() and std::fill(), and these branches
// are unfortunately within the loop of |rows|. So calling these templates
// directly could be inefficient. It is recommended to specialize common cases
// of |columns|, such as 1, 2, 4, 8, 16 and 32, etc. in advance before
// processing the generic case of |columns|. The code size may be larger, but
// there would be big speed gains.
// Call template MemSetBlock<> when sizeof(|T|) is 1.
// Call template SetBlock<> when sizeof(|T|) is larger than 1.
template <typename T>
void MemSetBlock(int rows, int columns, T value, T* dst, ptrdiff_t stride) {
  static_assert(sizeof(T) == 1, "");
  do {
    memset(dst, value, columns);
    dst += stride;
  } while (--rows != 0);
}

template <typename T>
void SetBlock(int rows, int columns, T value, T* dst, ptrdiff_t stride) {
  do {
    std::fill(dst, dst + columns, value);
    dst += stride;
  } while (--rows != 0);
}

#if defined(__GNUC__)

inline int CountLeadingZeros(uint32_t n) {
  assert(n != 0);
  return __builtin_clz(n);
}

inline int CountLeadingZeros(uint64_t n) {
  assert(n != 0);
  return __builtin_clzll(n);
}

inline int CountTrailingZeros(uint32_t n) {
  assert(n != 0);
  return __builtin_ctz(n);
}

#elif defined(_MSC_VER)

inline int CountLeadingZeros(uint32_t n) {
  assert(n != 0);
  unsigned long first_set_bit;  // NOLINT(runtime/int)
  const unsigned char bit_set = _BitScanReverse(&first_set_bit, n);
  assert(bit_set != 0);
  static_cast<void>(bit_set);
  return 31 ^ static_cast<int>(first_set_bit);
}

inline int CountLeadingZeros(uint64_t n) {
  assert(n != 0);
  unsigned long first_set_bit;  // NOLINT(runtime/int)
#if defined(HAVE_BITSCANREVERSE64)
  const unsigned char bit_set =
      _BitScanReverse64(&first_set_bit, static_cast<unsigned __int64>(n));
#else  // !defined(HAVE_BITSCANREVERSE64)
  const auto n_hi = static_cast<unsigned long>(n >> 32);  // NOLINT(runtime/int)
  if (n_hi != 0) {
    const unsigned char bit_set = _BitScanReverse(&first_set_bit, n_hi);
    assert(bit_set != 0);
    static_cast<void>(bit_set);
    return 31 ^ static_cast<int>(first_set_bit);
  }
  const unsigned char bit_set = _BitScanReverse(
      &first_set_bit, static_cast<unsigned long>(n));  // NOLINT(runtime/int)
#endif  // defined(HAVE_BITSCANREVERSE64)
  assert(bit_set != 0);
  static_cast<void>(bit_set);
  return 63 ^ static_cast<int>(first_set_bit);
}

#undef HAVE_BITSCANREVERSE64

inline int CountTrailingZeros(uint32_t n) {
  assert(n != 0);
  unsigned long first_set_bit;  // NOLINT(runtime/int)
  const unsigned char bit_set = _BitScanForward(&first_set_bit, n);
  assert(bit_set != 0);
  static_cast<void>(bit_set);
  return static_cast<int>(first_set_bit);
}

#else  // !defined(__GNUC__) && !defined(_MSC_VER)

template <const int kMSB, typename T>
inline int CountLeadingZeros(T n) {
  assert(n != 0);
  const T msb = T{1} << kMSB;
  int count = 0;
  while ((n & msb) == 0) {
    ++count;
    n <<= 1;
  }
  return count;
}

inline int CountLeadingZeros(uint32_t n) { return CountLeadingZeros<31>(n); }

inline int CountLeadingZeros(uint64_t n) { return CountLeadingZeros<63>(n); }

// This is the algorithm on the left in Figure 5-23, Hacker's Delight, Second
// Edition, page 109. The book says:
//   If the number of trailing 0's is expected to be small or large, then the
//   simple loops shown in Figure 5-23 are quite fast.
inline int CountTrailingZeros(uint32_t n) {
  assert(n != 0);
  // Create a word with 1's at the positions of the trailing 0's in |n|, and
  // 0's elsewhere (e.g., 01011000 => 00000111).
  n = ~n & (n - 1);
  int count = 0;
  while (n != 0) {
    ++count;
    n >>= 1;
  }
  return count;
}

#endif  // defined(__GNUC__)

inline int FloorLog2(int32_t n) {
  assert(n > 0);
  return 31 ^ CountLeadingZeros(static_cast<uint32_t>(n));
}

inline int FloorLog2(uint32_t n) {
  assert(n > 0);
  return 31 ^ CountLeadingZeros(n);
}

inline int FloorLog2(int64_t n) {
  assert(n > 0);
  return 63 ^ CountLeadingZeros(static_cast<uint64_t>(n));
}

inline int FloorLog2(uint64_t n) {
  assert(n > 0);
  return 63 ^ CountLeadingZeros(n);
}

inline int CeilLog2(unsigned int n) {
  // The expression FloorLog2(n - 1) + 1 is undefined not only for n == 0 but
  // also for n == 1, so this expression must be guarded by the n < 2 test. An
  // alternative implementation is:
  // return (n == 0) ? 0 : FloorLog2(n) + static_cast<int>((n & (n - 1)) != 0);
  return (n < 2) ? 0 : FloorLog2(n - 1) + 1;
}

inline int RightShiftWithCeiling(int value, int bits) {
  assert(bits > 0);
  return (value + (1 << bits) - 1) >> bits;
}

inline int32_t RightShiftWithRounding(int32_t value, int bits) {
  assert(bits >= 0);
  return (value + ((1 << bits) >> 1)) >> bits;
}

inline uint32_t RightShiftWithRounding(uint32_t value, int bits) {
  assert(bits >= 0);
  return (value + ((1 << bits) >> 1)) >> bits;
}

// This variant is used when |value| can exceed 32 bits. Although the final
// result must always fit into int32_t.
inline int32_t RightShiftWithRounding(int64_t value, int bits) {
  assert(bits >= 0);
  return static_cast<int32_t>((value + ((int64_t{1} << bits) >> 1)) >> bits);
}

inline int32_t RightShiftWithRoundingSigned(int32_t value, int bits) {
  assert(bits > 0);
  // The next line is equivalent to:
  // return (value >= 0) ? RightShiftWithRounding(value, bits)
  //                     : -RightShiftWithRounding(-value, bits);
  return RightShiftWithRounding(value + (value >> 31), bits);
}

// This variant is used when |value| can exceed 32 bits. Although the final
// result must always fit into int32_t.
inline int32_t RightShiftWithRoundingSigned(int64_t value, int bits) {
  assert(bits > 0);
  // The next line is equivalent to:
  // return (value >= 0) ? RightShiftWithRounding(value, bits)
  //                     : -RightShiftWithRounding(-value, bits);
  return RightShiftWithRounding(value + (value >> 63), bits);
}

constexpr int DivideBy2(int n) { return n >> 1; }
constexpr int DivideBy4(int n) { return n >> 2; }
constexpr int DivideBy8(int n) { return n >> 3; }
constexpr int DivideBy16(int n) { return n >> 4; }
constexpr int DivideBy32(int n) { return n >> 5; }
constexpr int DivideBy64(int n) { return n >> 6; }
constexpr int DivideBy128(int n) { return n >> 7; }

// Convert |value| to unsigned before shifting to avoid undefined behavior with
// negative values.
inline int LeftShift(int value, int bits) {
  assert(bits >= 0);
  assert(value >= -(int64_t{1} << (31 - bits)));
  assert(value <= (int64_t{1} << (31 - bits)) - ((bits == 0) ? 1 : 0));
  return static_cast<int>(static_cast<uint32_t>(value) << bits);
}
inline int MultiplyBy2(int n) { return LeftShift(n, 1); }
inline int MultiplyBy4(int n) { return LeftShift(n, 2); }
inline int MultiplyBy8(int n) { return LeftShift(n, 3); }
inline int MultiplyBy16(int n) { return LeftShift(n, 4); }
inline int MultiplyBy32(int n) { return LeftShift(n, 5); }
inline int MultiplyBy64(int n) { return LeftShift(n, 6); }

constexpr int Mod32(int n) { return n & 0x1f; }
constexpr int Mod64(int n) { return n & 0x3f; }

//------------------------------------------------------------------------------
// Bitstream functions

constexpr bool IsIntraFrame(FrameType type) {
  return type == kFrameKey || type == kFrameIntraOnly;
}

inline TransformClass GetTransformClass(TransformType tx_type) {
  constexpr BitMaskSet kTransformClassVerticalMask(
      kTransformTypeIdentityDct, kTransformTypeIdentityAdst,
      kTransformTypeIdentityFlipadst);
  if (kTransformClassVerticalMask.Contains(tx_type)) {
    return kTransformClassVertical;
  }
  constexpr BitMaskSet kTransformClassHorizontalMask(
      kTransformTypeDctIdentity, kTransformTypeAdstIdentity,
      kTransformTypeFlipadstIdentity);
  if (kTransformClassHorizontalMask.Contains(tx_type)) {
    return kTransformClassHorizontal;
  }
  return kTransformClass2D;
}

inline int RowOrColumn4x4ToPixel(int row_or_column4x4, Plane plane,
                                 int8_t subsampling) {
  return MultiplyBy4(row_or_column4x4) >> (plane == kPlaneY ? 0 : subsampling);
}

constexpr PlaneType GetPlaneType(Plane plane) {
  return static_cast<PlaneType>(plane != kPlaneY);
}

// 5.11.44.
constexpr bool IsDirectionalMode(PredictionMode mode) {
  return mode >= kPredictionModeVertical && mode <= kPredictionModeD67;
}

// 5.9.3.
//
// |a| and |b| are order hints, treated as unsigned order_hint_bits-bit
// integers. |order_hint_shift_bits| equals (32 - order_hint_bits) % 32.
// order_hint_bits is at most 8, so |order_hint_shift_bits| is zero or a
// value between 24 and 31 (inclusive).
//
// If |order_hint_shift_bits| is zero, |a| and |b| are both zeros, and the
// result is zero. If |order_hint_shift_bits| is not zero, returns the
// signed difference |a| - |b| using "modular arithmetic". More precisely, the
// signed difference |a| - |b| is treated as a signed order_hint_bits-bit
// integer and cast to an int. The returned difference is between
// -(1 << (order_hint_bits - 1)) and (1 << (order_hint_bits - 1)) - 1
// (inclusive).
//
// NOTE: |a| and |b| are the order_hint_bits least significant bits of the
// actual values. This function returns the signed difference between the
// actual values. The returned difference is correct as long as the actual
// values are not more than 1 << (order_hint_bits - 1) - 1 apart.
//
// Example: Suppose order_hint_bits is 4 and |order_hint_shift_bits|
// is 28. Then |a| and |b| are in the range [0, 15], and the actual values for
// |a| and |b| must not be more than 7 apart. (If the actual values for |a| and
// |b| are exactly 8 apart, this function cannot tell whether the actual value
// for |a| is before or after the actual value for |b|.)
//
// First, consider the order hints 2 and 6. For this simple case, we have
//   GetRelativeDistance(2, 6, 28) = 2 - 6 = -4, and
//   GetRelativeDistance(6, 2, 28) = 6 - 2 = 4.
//
// On the other hand, consider the order hints 2 and 14. The order hints are
// 12 (> 7) apart, so we need to use the actual values instead. The actual
// values may be 34 (= 2 mod 16) and 30 (= 14 mod 16), respectively. Therefore
// we have
//   GetRelativeDistance(2, 14, 28) = 34 - 30 = 4, and
//   GetRelativeDistance(14, 2, 28) = 30 - 34 = -4.
//
// The following comments apply only to specific CPUs' SIMD implementations,
// such as intrinsics code.
// For the 2 shift operations in this function, if the SIMD packed data is
// 16-bit wide, try to use |order_hint_shift_bits| - 16 as the number of bits to
// shift; If the SIMD packed data is 8-bit wide, try to use
// |order_hint_shift_bits| - 24 as as the number of bits to shift.
// |order_hint_shift_bits| - 16 and |order_hint_shift_bits| - 24 could be -16 or
// -24. In these cases diff is 0, and the behavior of left or right shifting -16
// or -24 bits is defined for x86 SIMD instructions and ARM NEON instructions,
// and the result of shifting 0 is still 0. There is no guarantee that this
// behavior and result apply to other CPUs' SIMD instructions.
inline int GetRelativeDistance(const unsigned int a, const unsigned int b,
                               const unsigned int order_hint_shift_bits) {
  const int diff = a - b;
  assert(order_hint_shift_bits <= 31);
  if (order_hint_shift_bits == 0) {
    assert(a == 0);
    assert(b == 0);
  } else {
    assert(order_hint_shift_bits >= 24);  // i.e., order_hint_bits <= 8
    assert(a < (1u << (32 - order_hint_shift_bits)));
    assert(b < (1u << (32 - order_hint_shift_bits)));
    assert(diff < (1 << (32 - order_hint_shift_bits)));
    assert(diff >= -(1 << (32 - order_hint_shift_bits)));
  }
  // Sign extend the result of subtracting the values.
  // Cast to unsigned int and then left shift to avoid undefined behavior with
  // negative values. Cast to int to do the sign extension through right shift.
  // This requires the right shift of a signed integer be an arithmetic shift,
  // which is true for clang, gcc, and Visual C++.
  // These two casts do not generate extra instructions.
  // Don't use LeftShift(diff) since a valid diff may fail its assertions.
  // For example, GetRelativeDistance(2, 14, 28), diff equals -12 and is less
  // than the minimum allowed value of LeftShift() which is -8.
  // The next 3 lines are equivalent to:
  // const int order_hint_bits = Mod32(32 - order_hint_shift_bits);
  // const int m = (1 << order_hint_bits) >> 1;
  // return (diff & (m - 1)) - (diff & m);
  return static_cast<int>(static_cast<unsigned int>(diff)
                          << order_hint_shift_bits) >>
         order_hint_shift_bits;
}

// Applies |sign| (must be 0 or -1) to |value|, i.e.,
//   return (sign == 0) ? value : -value;
// and does so without a branch.
constexpr int ApplySign(int value, int sign) { return (value ^ sign) - sign; }

// 7.9.3. (without the clamp for numerator and denominator).
inline void GetMvProjection(const MotionVector& mv, int numerator,
                            int division_multiplier,
                            MotionVector* projection_mv) {
  // Allow numerator and to be 0 so that this function can be called
  // unconditionally. When numerator is 0, |projection_mv| will be 0, and this
  // is what we want.
  assert(std::abs(numerator) <= kMaxFrameDistance);
  for (int i = 0; i < 2; ++i) {
    projection_mv->mv[i] =
        Clip3(RightShiftWithRoundingSigned(
                  mv.mv[i] * numerator * division_multiplier, 14),
              -kProjectionMvClamp, kProjectionMvClamp);
  }
}

// 7.9.4.
constexpr int Project(int value, int delta, int dst_sign) {
  return value + ApplySign(delta / 64, dst_sign);
}

inline bool IsBlockSmallerThan8x8(BlockSize size) {
  return size < kBlock8x8 && size != kBlock4x16;
}

// Returns true if the either the width or the height of the block is equal to
// four.
inline bool IsBlockDimension4(BlockSize size) {
  return size < kBlock8x8 || size == kBlock16x4;
}

// Converts bitdepth 8, 10, and 12 to array index 0, 1, and 2, respectively.
constexpr int BitdepthToArrayIndex(int bitdepth) { return (bitdepth - 8) >> 1; }

// Maps a square transform to an index between [0, 4]. kTransformSize4x4 maps
// to 0, kTransformSize8x8 maps to 1 and so on.
inline int TransformSizeToSquareTransformIndex(TransformSize tx_size) {
  assert(kTransformWidth[tx_size] == kTransformHeight[tx_size]);

  // The values of the square transform sizes happen to be in the right
  // ranges, so we can just divide them by 4 to get the indexes.
  static_assert(
      std::is_unsigned<std::underlying_type<TransformSize>::type>::value, "");
  static_assert(kTransformSize4x4 < 4, "");
  static_assert(4 <= kTransformSize8x8 && kTransformSize8x8 < 8, "");
  static_assert(8 <= kTransformSize16x16 && kTransformSize16x16 < 12, "");
  static_assert(12 <= kTransformSize32x32 && kTransformSize32x32 < 16, "");
  static_assert(16 <= kTransformSize64x64 && kTransformSize64x64 < 20, "");
  return DivideBy4(tx_size);
}

// Gets the corresponding Y/U/V position, to set and get filter masks
// in deblock filtering.
// Returns luma_position if it's Y plane, whose subsampling must be 0.
// Returns the odd position for U/V plane, if there is subsampling.
constexpr int GetDeblockPosition(const int luma_position,
                                 const int subsampling) {
  return luma_position | subsampling;
}

// Returns the size of the residual buffer required to hold the residual values
// for a block or frame of size |rows| by |columns| (taking into account
// |subsampling_x|, |subsampling_y| and |residual_size|). |residual_size| is the
// number of bytes required to represent one residual value.
inline size_t GetResidualBufferSize(const int rows, const int columns,
                                    const int subsampling_x,
                                    const int subsampling_y,
                                    const size_t residual_size) {
  // The subsampling multipliers are:
  //   Both x and y are subsampled: 3 / 2.
  //   Only x or y is subsampled: 2 / 1 (which is equivalent to 4 / 2).
  //   Both x and y are not subsampled: 3 / 1 (which is equivalent to 6 / 2).
  // So we compute the final subsampling multiplier as follows:
  //   multiplier = (2 + (4 >> subsampling_x >> subsampling_y)) / 2.
  // Add 32 * |kResidualPaddingVertical| padding to avoid bottom boundary checks
  // when parsing quantized coefficients.
  const int subsampling_multiplier_num =
      2 + (4 >> subsampling_x >> subsampling_y);
  const int number_elements =
      (rows * columns * subsampling_multiplier_num) >> 1;
  const int tx_padding = 32 * kResidualPaddingVertical;
  return residual_size * (number_elements + tx_padding);
}

// This function is equivalent to:
// std::min({kTransformWidthLog2[tx_size] - 2,
//           kTransformWidthLog2[left_tx_size] - 2,
//           2});
constexpr LoopFilterTransformSizeId GetTransformSizeIdWidth(
    TransformSize tx_size, TransformSize left_tx_size) {
  return static_cast<LoopFilterTransformSizeId>(
      static_cast<int>(tx_size > kTransformSize4x16 &&
                       left_tx_size > kTransformSize4x16) +
      static_cast<int>(tx_size > kTransformSize8x32 &&
                       left_tx_size > kTransformSize8x32));
}

// This is used for 7.11.3.4 Block Inter Prediction Process, to select convolve
// filters.
inline int GetFilterIndex(const int filter_index, const int length) {
  if (length <= 4) {
    if (filter_index == kInterpolationFilterEightTap ||
        filter_index == kInterpolationFilterEightTapSharp) {
      return 4;
    }
    if (filter_index == kInterpolationFilterEightTapSmooth) {
      return 5;
    }
  }
  return filter_index;
}

// This has identical results as RightShiftWithRounding since |subsampling| can
// only be 0 or 1.
constexpr int SubsampledValue(int value, int subsampling) {
  return (value + subsampling) >> subsampling;
}

}  // namespace libgav1

#endif  // LIBGAV1_SRC_UTILS_COMMON_H_